

The correct bibliographic citation for this manual is as follows: Delwiche, Lora D., and Susan J. Slaughter.
2019. The Little SAS® Book: A Primer, Sixth Edition. Cary, NC: SAS Institute Inc.

The Little SAS® Book: A Primer, Sixth Edition

Copyright © 2019, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-64295-616-0 (Hardcover)
ISBN 978-1-64295-283-4 (Paperback)
ISBN 978-1-64295-342-8 (Web PDF)
ISBN 978-1-64295-343-5 (EPUB)
ISBN 978-1-64295-344-2 (Kindle)

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the
prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by
the vendor at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the
permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic
editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of
others’ rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set
forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414

October 2019

SAS Institute Inc. provides a complete selection of books and electronic products to help customers use SAS
software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-
copy books, visit the SAS Books Web site at support.sas.com/bookstore or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents

Acknowledgments ix
Introducing SAS Software x
About This Book xi
About These Authors xv

Chapter 1 Getting Started Using SAS Software 1

 1.1 The SAS Language 2

 1.2 SAS Data Sets 4

 1.3 DATA and PROC Steps 6

 1.4 The DATA Step’s Built-in Loop 8

 1.5 Choosing a Method for Running SAS 10

 1.6 Reading the SAS Log 12

 1.7 Using SAS System Options 14

Chapter 2 Accessing Your Data 17

 2.1 Methods for Getting Your Data into SAS 18

 2.2 SAS Data Libraries and Data Sets 20

 2.3 Listing the Contents of a SAS Data Set 22

 2.4 Reading Excel Files with the IMPORT Procedure 24

 2.5 Accessing Excel Files Using the XLSX LIBNAME Engine 26

 2.6 Reading Delimited Files with the IMPORT Procedure 28

 2.7 Telling SAS Where to Find Your Raw Data 30

 2.8 Reading Raw Data Separated by Spaces 32

 2.9 Reading Raw Data Arranged in Columns 34

 2.10 Reading Raw Data Not in Standard Format 36

 2.11 Selected Informats 38

 2.12 Mixing Input Styles 40

 2.13 Reading Messy Raw Data 42

 2.14 Reading Multiple Lines of Raw Data per Observation 44

iv Contents

 2.15 Reading Multiple Observations per Line of Raw Data 46

 2.16 Reading Part of a Raw Data File 48

 2.17 Controlling Input with Options in the INFILE Statement 50

 2.18 Reading Delimited Files with the DATA Step 52

Chapter 3 Working with Your Data 55

 3.1 Using the DATA Step to Modify Data 56

 3.2 Creating and Modifying Variables 58

 3.3 Using SAS Functions 60

 3.4 Selected SAS Character Functions 62

 3.5 Selected SAS Numeric Functions 64

 3.6 Using IF-THEN and DO Statements 66

 3.7 Grouping Observations with IF-THEN/ELSE Statements 68

 3.8 Subsetting Your Data in a DATA Step 70

 3.9 Subsetting Your Data Using PROC SQL 72

 3.10 Writing Multiple Data Sets Using OUTPUT Statements 74

 3.11 Making Several Observations from One Using OUTPUT Statements 76

 3.12 Using Iterative DO, DO WHILE, and DO UNTIL Statements 78

 3.13 Working with SAS Dates 80

 3.14 Selected Date Informats, Functions, and Formats 82

 3.15 Using RETAIN and Sum Statements 84

 3.16 Simplifying Programs with Arrays 86

 3.17 Using Shortcuts for Lists of Variable Names 88

 3.18 Using Variable Names with Special Characters 90

Chapter 4 Sorting, Printing, and Summarizing Your Data 93

 4.1 Using SAS Procedures 94

 4.2 Subsetting in Procedures with the WHERE Statement 96

 4.3 Sorting Your Data with PROC SORT 98

 4.4 Changing the Sort Order for Character Data 100

 4.5 Printing Your Data with PROC PRINT 102

 4.6 Changing the Appearance of DataValues with Formats 104

 4.7 Selected Standard Formats 106

 4.8 Creating Your Own Formats with PROC FORMAT 108

Contents v

 4.9 Writing a Report to a Text File 110

 4.10 Summarizing Your Data Using PROC MEANS 112

 4.11 Writing Summary Statistics to a SAS Data Set 114

 4.12 Producing One-Way Frequencies with PROC FREQ 116

 4.13 Producing Crosstabulations with PROC FREQ 118

 4.14 Grouping Data with User-Defined Formats 120

 4.15 Producing Tabular Reports with PROC TABULATE 122

 4.16 Adding Statistics to PROC TABULATE Output 124

 4.17 Enhancing the Appearance of PROC TABULATE Output 126

 4.18 Changing Headers in PROC TABULATE Output 128

 4.19 Producing Simple Output with PROC REPORT 130

 4.20 Using DEFINE Statements in PROC REPORT 132

 4.21 Creating Summary Reports with PROC REPORT 134

 4.22 Adding Summary Breaks to PROC REPORT Output 136

 4.23 Adding Statistics to PROC REPORT Output 138

 4.24 Adding Computed Variables to PROC REPORT Output 140

Chapter 5 Enhancing Your Output with ODS 143

 5.1 Concepts of the Output Delivery System 144

 5.2 Creating HTML Output 146

 5.3 Creating RTF Output 148

 5.4 Creating PDF Output 150

 5.5 Creating Text Output 152

 5.6 Customizing Titles and Footnotes 154

 5.7 Customizing PROC PRINT with the STYLE= Option 156

 5.8 Customizing PROC REPORT with the STYLE= Option 158

 5.9 Customizing PROC TABULATE with the STYLE= Option 160

 5.10 Adding Trafficlighting to Your Output 162

 5.11 Selected Style Attributes 164

 5.12 Tracing and Selecting Procedure Output 166

 5.13 Creating SAS Data Sets from Procedure Output 168

vi Contents

Chapter 6 Modifying and Combining SAS Data Sets 171

 6.1 Stacking Data Sets Using the SET Statement 172

 6.2 Interleaving Data Sets Using the SET Statement 174

 6.3 Combining Data Sets Using a One-to-One Match Merge 176

 6.4 Combining Data Sets Using a One-to-Many Match Merge 178

 6.5 Using PROC SQL to Join Data Sets 180

 6.6 Merging Summary Statistics with the Original Data 182

 6.7 Combining a Grand Total with the Original Data 184

 6.8 Adding Summary Statistics to Data Using PROC SQL 186

 6.9 Updating a Master Data Set with Transactions 188

 6.10 Using SAS Data Set Options 190

 6.11 Tracking and Selecting Observations with the IN= Option 192

 6.12 Selecting Observations with the WHERE= Option 194

 6.13 Changing Observations to Variables Using PROC TRANSPOSE 196

 6.14 Using SAS Automatic Variables 198

Chapter 7 Writing Flexible Code with the SAS Macro Facility 201

 7.1 Macro Concepts 202

 7.2 Substituting Text with Macro Variables 204

 7.3 Concatenating Macro Variables with Other Text 206

 7.4 Creating Modular Code with Macros 208

 7.5 Adding Parameters to Macros 210

 7.6 Writing Macros with Conditional Logic 212

 7.7 Using %DO Loops in Macros 214

 7.8 Writing Data-Driven Programs with CALL SYMPUTX 216

 7.9 Writing Data-Driven Programs with PROC SQL 218

 7.10 Debugging Macro Errors 220

Chapter 8 Visualizing Your Data 223

 8.1 Concepts of ODS Graphics 224

 8.2 Creating Bar Charts with PROC SGPLOT 226

 8.3 Creating Histograms and Density Curves with PROC SGPLOT 228

 8.4 Creating Box Plots with PROC SGPLOT 230

 8.5 Creating Scatter Plots with PROC SGPLOT 232

Contents vii

 8.6 Creating Series Plots with PROC SGPLOT 234

 8.7 Creating Fitted Curves with PROC SGPLOT 236

 8.8 Controlling Axes and Reference Lines in PROC SGPLOT 238

 8.9 Controlling Legends and Insets in PROC SGPLOT 240

 8.10 Customizing Graph Attributes in PROC SGPLOT 242

 8.11 Creating Paneled Graphs with PROC SGPANEL 244

 8.12 Specifying Image Properties and Saving Graphics Output 246

Chapter 9 Using Basic Statistical Procedures 249

 9.1 Examining the Distribution of Data with PROC UNIVARIATE 250

 9.2 Creating Statistical Graphics with PROC UNIVARIATE 252

 9.3 Producing Statistics with PROC MEANS 254

 9.4 Testing Means with PROC TTEST 256

 9.5 Creating Statistical Graphics with PROC TTEST 258

 9.6 Testing Categorical Data with PROC FREQ 260

 9.7 Creating Statistical Graphics with PROC FREQ 262

 9.8 Examining Correlations with PROC CORR 264

 9.9 Creating Statistical Graphics with PROC CORR 266

 9.10 Using PROC REG for Simple Regression Analysis 268

 9.11 Creating Statistical Graphics with PROC REG 270

 9.12 Using PROC ANOVA for One-Way Analysis of Variance 272

 9.13 Reading the Output of PROC ANOVA 274

Chapter 10 Exporting Your Data 277

 10.1 Methods for Exporting Your Data 278

 10.2 Writing Delimited Files with the EXPORT Procedure 280

 10.3 Writing Delimited Files Using ODS 282

 10.4 Writing Microsoft Excel Files with the EXPORT Procedure 284

 10.5 Writing Microsoft Excel Files Using ODS 286

 10.6 Writing Raw Data Files with the DATA Step 288

viii Contents

Chapter 11 Debugging Your SAS Programs 291

 11.1 Writing SAS Programs That Work 292

 11.2 Fixing Programs That Don’t Work 294

 11.3 Searching for the Missing Semicolon 296

 11.4 Note: INPUT Statement Reached Past the End of a Line 298

 11.5 Note: Lost Card 300

 11.6 Note: Invalid Data 302

 11.7 Note: Missing Values Were Generated 304

 11.8 Note: Numeric Values Have Been Converted to Character (or Vice Versa) 306

 11.9 DATA Step Produces Wrong Results but No Error Message 308

 11.10 Error: Invalid Option, Error: The Option Is Not Recognized, or Error: Statement Is
 Not Valid 310

 11.11 Note: Variable Is Uninitialized or Error: Variable Not Found 312

 11.12 SAS Truncates a Character Variable 314

 11.13 Saving Memory or Disk Space 316

Index 319

Introducing SAS Software

SAS software is used by millions of people all over the world—in over 147 countries, at over 83,000
sites. SAS (pronounced sass) is both a company and software. When people say SAS, they
sometimes mean the software running on their computers and sometimes mean the company, SAS
Institute.
People often ask what SAS stands for. Originally the letters S-A-S stood for Statistical Analysis
System (not to be confused with Scandinavian Airlines System, San Antonio Shoemakers, or the
Society for Applied Spectroscopy). But SAS products quickly became so diverse that SAS officially
dropped the name Statistical Analysis System and became simply SAS.

SAS products The roots of SAS software reach back to the 1970s when it started out as a
software package for statistical analysis, but SAS didn’t stop there. By the mid-1980s SAS had
already branched out into graphics, online data entry, and compilers for the C programming
language. In the 1990s, the SAS family tree grew to include tools for visualizing data, administering
data warehouses, and building interfaces to the World Wide Web. In the new century, SAS has
continued to grow with products designed for cleansing messy data, discovering and developing
drugs, detecting money laundering, and building systems for artificial intelligence and machine
learning.
While SAS has a diverse family of products, most of these products are integrated. That is, they can
be put together like building blocks to construct a seamless system. For example, you might use
SAS/ACCESS software to read data stored in an external database such as Oracle, analyze it using
SAS/ETS software (econometrics and time series software for modeling and forecasting), use ODS
Graphics to produce sophisticated plots, and then forward the results in an email message to your
colleagues, all in a single computer program. To find out more about the products that are
available from SAS, visit the website:

www.sas.com

Learning SAS In addition to this and other books, there are online resources for learning SAS.
SAS Institute has many how-to tutorials and complete courses covering a broad range of topics.
Some of these are free, while others are available for a fee. If you don’t have access to SAS software
at your workplace or school, then there are other ways you can practice what you learn. SAS
University Edition is available for free download and installation on your personal computer. Or,
you can set up an account to use SAS OnDemand for Academics which runs on servers hosted by
SAS Institute. Both SAS University Edition and SAS OnDemand for Academics are available for
academic, noncommercial use only.
Operating environments SAS software runs in a wide range of operating environments. You
can take a program written on a personal computer and run it on a UNIX server after changing
only the file-handling statements that are specific to each operating environment. And because SAS
programs are as portable as possible, SAS programmers are as portable as possible, too. If you
know SAS in one operating environment, you can switch to another operating environment
without having to relearn SAS.

SASware Ballot SAS puts a high percentage of its revenue into research and development, and
each year SAS users help determine how that money will be spent by contributing ideas for the
SASware Ballot. The ballot is a list of suggestions for new features and enhancements. Anyone can
submit an idea and thereby influence the future development of SAS software. To contribute your
own ideas or to vote for ones that you like, search the internet for “SASware Ballot.”

About This Book

Who needs this book This book is for all new SAS users in business, government, and
academia, and for anyone who will be conducting data analysis using SAS software. You need no
prior experience with SAS, but if you have some experience you may still find this book useful for
learning techniques you missed or for reference.

What this book covers This book introduces you to the SAS language with lots of practical
examples, clear and concise explanations, and as little technical jargon as possible. Most of the
features covered here come from Base SAS, which contains the core of features used by all SAS
programmers. One exception is Chapter 9, which includes procedures from SAS/STAT. Other
exceptions appear in Chapters 2 and 10, which cover importing and exporting data from other
types of software; some methods require SAS/ACCESS Interface to PC Files.

We have tried to include every feature of Base SAS that a beginner is likely to need. Some readers
may be surprised that certain topics, such as macros, are included because they are normally
considered advanced. But they appear here because sometimes new users need them. However,
that doesn’t mean that you need to know everything in this book. On the contrary, this book is
designed so that you can read just those sections you need to solve your problems. Even if you
read this book from cover to cover, you may still find yourself returning to refresh your memory as
new programming challenges arise.

What this book does not cover To use this book you need no prior knowledge of SAS, but
you must know something about your local computer and operating environment. The SAS
language is virtually the same from one operating environment to another, but some differences
are unavoidable. For example, every operating environment has a different way of storing and
accessing files. Your employer may have rules such as limits for the size of files that you can print.
This book addresses operating environments when relevant, but no book can answer every
question about your local system. You must have either a working knowledge of your computer
system or someone you can turn to with questions.

As a SAS programmer, you have a choice about which interface you use to write your programs,
and how you run them. This edition of The Little SAS Book is designed to work with all of the
interfaces that are included with Base SAS: SAS Studio, SAS Enterprise Guide, and the SAS
windowing environment (also known as Display Manager), in addition to batch submission. (SAS
University Edition and SAS OnDemand for Academics use the SAS Studio interface.) Each of these
methods offers its own unique set of features. This book mentions a few of the differences, but is
not a comprehensive introduction. See Section 1.5 for a brief description of each method and
recommendations about how to learn more.

This book is not a replacement for the SAS Documentation, or the many SAS publications. We
encourage you to turn to them for details that are not covered in this book. You can find the
complete SAS Documentation at SAS Institute’s support website:

support.sas.com

We cover only a few of the many SAS statistical procedures. Fortunately, the statistical procedures
share many of the same statements, options, and output, so these few can serve as an introduction
to the others. Once you have read Chapter 9, we think that other statistical procedures will feel
familiar.

https://support.sas.com/en/support-home.html

xii The Little SAS Book

Unfortunately, a book of this type cannot provide a thorough introduction to statistical concepts
such as degrees of freedom, or crossed and nested effects. There are underlying assumptions about
your data that must be met for the tests to be valid. Experimental design and careful selection of
models are critical. Interpretation of the results can often be difficult and subjective. We assume
that readers who are interested in statistical computing already know something about statistics.
People who want to use statistical procedures but are unfamiliar with these concepts should
consult a statistician, seek out an introductory statistics text, or, better yet, take a course in statistics.

Modular sections Our goal in writing this book is to make learning SAS as easy and enjoyable
as possible. Let’s face itSAS is a big topic. You may have already spent some time staring at a
screen full of documentation until your eyes become blurry. We can’t condense all of SAS into this
little book, but we can condense topics into short, readable sections.

This entire book consists of two-page sections, each section a complete topic. This way, you can
easily skip over topics that do not apply to you. Of course, we think every section is important, or
we would not have included it. You probably don’t need to know everything in this book,
however, to complete your job. By presenting topics in short digestible sections, we believe that
learning SAS will be easier and more funlike eating three meals a day instead of one giant meal a
week.

Graphics Wherever possible, graphic illustrations either identify the contents of the section or
help explain the topic. A box with rough edges indicates a raw data file, and a box with nice
smooth edges indicates a SAS data set. The squiggles inside the box indicate data—any old data—
and a period indicates a missing value. The arrow between boxes of these types means that the
section explains how to get from data that look like one box to data that look like the other. Some
sections have graphics that depict printed output. These graphics look like a stack of papers with
headers printed at the top of the page.

Typographical conventions SAS doesn’t care whether your programs are written in
uppercase or lowercase, so you can write your programs any way you want. In this book, we have
used uppercase and lowercase to tell you something. The statements on the left below show the
syntax, or general form, while the statements on the right show an example of actual statements as
they might appear in a SAS program.

Syntax Example
PROC PRINT DATA = data-set-name;
 VAR variable-list;

PROC PRINT DATA = bigcats;
 VAR Lions Tigers;

Notice that the keywords PROC PRINT, DATA, and VAR are the same on both sides and that the
descriptive terms data-set-name and variable-list on the syntax side have been replaced with an
actual data set name and variable names in the example.

Introduction xiii

In this book, all SAS keywords appear in uppercase letters. A keyword is an instruction to SAS and
must be spelled correctly. Anything written in lowercase italics is a description of what goes in that
spot in the statement, not what you actually type. Anything in lowercase or mixed case letters (and
not in italics) is something that the programmer has made up such as a variable name, a name for a
SAS data set, a comment, or a title. See Section 1.2 for further discussion of the significance of case
in SAS names.

Indention This book contains many SAS programs, each complete and executable. Programs are
formatted in a way which makes them easy for you to read and understand. You do not have to
format your programs this way, as SAS is very flexible, but attention to some of these details will
make your programs easier to read. Easy-to-read programs are time-savers for you, or the
consultant you hire at $200 per hour, when you need to go back and decipher the program months
or years later.

The structure of programs is shown by indenting all statements after the first in a step. This is a
simple way to make your programs more readable, and it’s a good habit to form. SAS doesn’t
really care where statements start or even if they are all on one line. In the following program, the
INFILE and INPUT statements are indented, indicating that they belong with the DATA statement:

* Read animals’ weights from file. Print the results.;
DATA animals;
 INFILE 'c:\MyRawData\Zoo.dat';
 INPUT Lions Tigers;
RUN;

PROC PRINT DATA = animals;
RUN;

Data and programs used in this book You can access the data and programs that are
used in the examples by linking to either of the author pages for this book at:

support.sas.com/delwiche

or

support.sas.com/slaughter

From there, you can select Example Code and Data to download a file containing the data and
programs from this book.

Last, we have tried to make this book as readable as possible and, we hope, even enjoyable.
Once you master the contents of this small book you will no longer be a beginning SAS
programmer.

https://support.sas.com/en/books/authors/lora-delwiche.html
https://support.sas.com/en/books/authors/susan-slaughter.html

About These Authors
With over 25 years of experience, Lora D. Delwiche (right) enjoys teaching
people about SAS software and likes solving challenging problems using
SAS. She has spent most of her career at the University of California, Davis,
using SAS in support of teaching and research.

Susan J. Slaughter (left) discovered SAS software in graduate school over
25 years ago. Since then, she has used SAS in a variety of business and
academic settings. She now works as a consultant through her company,
Avocet Solutions.

With coauthor Rebecca Ottesen, Lora and Susan have also written Exercises
and Projects for the Little SAS Book, Sixth Edition, a companion to this book.

Learn more about these authors by visiting their author pages, where you can download free book
excerpts, access example code and data, read the latest reviews, get updates, and more:
http://support.sas.com/delwiche
http://support.sas.com/slaughter

3

From Alice Through the Looking Glass by Lewis Carroll. Public domain.

‘‘
’’

Contrariwise,” continued
Tweedledee,” if it was so, it
might be; and if it were so, it
would be; but as it isn’t, it ain’t.
That’s logic.

LEWIS CARROLL

CHAPTER 3

Working with Your Data

3.1 Using the DATA Step to Modify Data 56

3.2 Creating and Modifying Variables 58

3.3 Using SAS Functions 60

3.4 Selected SAS Character Functions 62

3.5 Selected SAS Numeric Functions 64

3.6 Using IF-THEN and DO Statements 66

3.7 Grouping Observations with IF-THEN/ELSE Statements 68

3.8 Subsetting Your Data in a DATA Step 70

3.9 Subsetting Your Data Using PROC SQL 72

3.10 Writing Multiple Data Sets Using OUTPUT Statements 74

3.11 Making Several Observations from One Using OUTPUT Statements 76

3.12 Using Iterative DO, DO WHILE, and DO UNTIL Statements 78

3.13 Working with SAS Dates 80

3.14 Selected Date Informats, Functions, and Formats 82

3.15 Using RETAIN and Sum Statements 84

3.16 Simplifying Programs with Arrays 86

3.17 Using Shortcuts for Lists of Variable Names 88

3.18 Using Variable Names with Special Characters 90

56 The Little SAS Book

3.1 Using the DATA Step to Modify Data
The DATA step is a very powerful tool for manipulating data. Using the DATA step, you can read
raw data files, modify existing SAS data sets, and combine SAS data sets. You can also create new
variables making use of many available operators and SAS functions, use conditional logic, subset
data, and a whole host of other things. There is so much you can do with the DATA step that we
could easily write an entire book on the topic. This chapter discusses many of the common
operations that you might want to perform on your data. Chapter 6 covers various methods for
combining data sets.

DATA steps with INPUT statements We have already seen many examples in Chapter 2
of using the INPUT statement to read raw data files. If you want to do any other data
manipulation, such as create new variables, you can do that in the same DATA step as the INPUT
statement. Just remember that DATA steps execute line by line, so most other statements need to
come after the INPUT statement. The following shows the general form of the DATA step when
reading raw data files:

DATA new-data-set;
 INFILE raw-data-file;
 INPUT variables;
 Other DATA step statements go here;

DATA steps with SET statements When your data are already in a SAS data set, but you
want to manipulate the data more, you use a SET statement. The SET statement brings the data into
the DATA step one observation at a time, and processes all the observations automatically. To read
a SAS data set, start with the DATA statement specifying the name of the new data set. Then follow
with the SET statement specifying the name of the old data set you want to read. If you don’t want
to create a new data set, you can specify the same name in the DATA and SET statements. Then the
results of the DATA step will overwrite the old data set named in the SET statement as long as the
DATA step does not have any errors. The following shows the general form of the DATA and SET
statements:

DATA new-data-set;
 SET old-data-set;
 Other DATA step statements go here;

Any assignment, subsetting IF, or other DATA step statements usually follow the SET statement.
For example, the following creates a new data set, FRIDAY, which is a replica of the SALES data
set, except it has an additional variable, Total:

DATA friday;
 SET sales;
 Total = Popcorn + Peanuts;
RUN;

Example The following raw data give information about hotels in Kyoto, Japan. The hotel name
is followed by the nightly rate for two people in yen and the distance from Kyoto Station in
kilometers.

Chapter 3: Working with Your Data 57

The Grand West Arashiyama 32200 9.5
Kyoto Sharagam 48000 3.3
The Palace Side Hotel 10200 3.8
Rinn Fushimiinari 41000 2.9
Rinn Nijo Castle 18000 3.3
Suiran Kyoto 102000 11.0

This program reads the raw data file KyotoHotels.dat and creates a permanent SAS data set. After
the INPUT statement is a simple assignment statement (covered in more detail in the next section)
that creates a new variable, USD, which multiplies the value of the variable Yen by the exchange
rate of 0.0089.

LIBNAME hotels 'c:\MySASLib';
DATA hotels.kyotohotels;
 INFILE 'c:\MyRawData\KyotoHotels.dat';
 INPUT Hotel $ 1-25 Yen Kilometers;
 USD = Yen * 0.0089;
RUN;

Here is the SAS data set KYOTOHOTELS created in the program:

 Hotel Yen Kilometers USD
1 The Grand West Arashiyama 32200 9.5 286.58
2 Kyoto Sharagam 48000 3.3 427.20
3 The Palace Side Hotel 10200 3.8 90.78
4 Rinn Fushimiinari 41000 2.9 364.90
5 Rinn Nijo Castle 18000 3.3 160.20
6 Suiran Kyoto 102000 11.0 907.80

Example This program uses the SET statement to read the SAS data set KYOTOHOTELS created
in the previous example, and to create a new temporary SAS data set HOTELS. Then, after the SET
statement, a simple assignment statement creates a new variable, Miles, which multiplies the value
of the variable Kilometers by 0.62.

LIBNAME hotels 'C:\MySASLib';
DATA hotels;
 SET hotels.kyotohotels;
 Miles = Kilometers * 0.62;
RUN;

Here is the SAS data set HOTELS:

 Hotel Yen Kilometers USD Miles
1 The Grand West Arashiyama 32200 9.5 286.58 5.890
2 Kyoto Sharagam 48000 3.3 427.20 2.046
3 The Palace Side Hotel 10200 3.8 90.78 2.356
4 Rinn Fushimiinari 41000 2.9 364.90 1.798
5 Rinn Nijo Castle 18000 3.3 160.20 2.046
6 Suiran Kyoto 102000 11.0 907.80 6.820

58 The Little SAS Book

3.2 Creating and Modifying Variables
If someone were to compile a list of the most popular things to do with SAS software, creating and
modifying variables would surely be near the top. Fortunately, SAS is flexible and uses a common-
sense approach to these tasks. You create and redefine variables with assignment statements using
this basic form:

variable = expression;

On the left side of the equal sign is a variable name, either new or old. On the right side of the
equal sign may appear a constant, another variable, or a mathematical expression. Here are
examples of these basic types of assignment statements:

Type of expression Assignment statement
numeric constant Qwerty = 10;

character constant Qwerty = 'ten';

a variable Qwerty = OldVar;

addition Qwerty = OldVar + 10;

subtraction Qwerty = OldVar - 10;

multiplication Qwerty = OldVar * 10;

division Qwerty = OldVar / 10;

exponentiation Qwerty = OldVar ** 10;

Whether the variable Qwerty is numeric or character depends on the expression that defines it.
When the expression is numeric, Qwerty will be numeric. When it is character, Qwerty will be
character.

When deciding how to interpret your expression, SAS follows the standard mathematical rules of
precedence: SAS performs exponentiation first, then multiplication and division, followed by
addition and subtraction. You can use parentheses to override that order. Here are two similar SAS
statements showing that a couple of parentheses can make a big difference:

Assignment statement Result
x = 10 * 4 + 3 ** 2; x = 49
x = 10 * (4 + 3 ** 2); x = 130

While SAS can read expressions with or without parentheses, people often can’t. If you use
parentheses, your programs will be a lot easier to read.

Example The following comma-separated values (CSV) data are from a survey of home
gardeners. Gardeners were asked to estimate the number of pounds they harvested for four crops:
tomatoes, zucchini, peas, and grapes.

Name,Tomato,Zucchini,Peas,Grapes
Gregor,10,2,40,0
Molly,15,5,10,1000
Luther,50,10,15,50
Susan,20,0,.,20

Chapter 3: Working with Your Data 59

This program reads the data from a file called Garden.csv using PROC IMPORT, then it modifies
the data in a DATA step:

* Read csv file with PROC IMPORT;
PROC IMPORT DATAFILE = 'c:\MyRawData\Garden.csv' OUT = homegarden REPLACE;
RUN;
* Modify homegarden data set with assignment statements;
DATA homegarden;
 SET homegarden;
 Zone = 14;
 Type = 'home';
 Zucchini = Zucchini * 10;
 Total = Tomato + Zucchini + Peas + Grapes;
 PerTom = (Tomato / Total) * 100;
RUN;

This program contains five assignment statements. The first creates a new variable, Zone, equal to a
numeric constant, 14. The variable Type is set equal to a character constant, home. The variable
Zucchini is multiplied by 10 because that just seems natural for the prolific zucchini. Total is the
sum for all the types of plants. PerTom is not a genetically engineered tomato but the percentage of
harvest which were tomatoes. The SAS data set HOMEGARDEN contains all the variables, old and
new:

 Name Tomato Zucchini Peas Grapes Zone Type Total PerTom
1 Gregor 10 20 40 0 14 home 70 14.2857
2 Molly 15 50 10 1000 14 home 1075 1.3953
3 Luther 50 100 15 50 14 home 215 23.2558
4 Susan 20 0 . 20 14 home . .

Notice that the variable Zucchini appears only once because the new value replaced the old value.
The other four assignment statements each created a new variable. When a variable is new, SAS
adds it to the data set you are creating. When a variable already exists, SAS replaces the original
value with the new one. Using an existing name has the advantage of not cluttering your data set
with a lot of similar variables. However, you don’t want to overwrite a variable unless you are
really sure you won’t need the original value later.

The variable Peas had a missing value for the last observation. Because of this, the variables Total
and PerTom, which are calculated from Peas, were also set to missing and this message appeared
in the log:

NOTE: Missing values were generated as a result of performing an operation
 on missing values.

This message is a flag that often indicates an error. However, in this case it is not an error but
simply the result of incomplete data collection. If you want to add only nonmissing values, you can
use the SUM function discussed in Section 11.7.

60 The Little SAS Book

3.3 Using SAS Functions
Sometimes a simple expression, using only arithmetic operators, does not give you the new value
you are looking for. This is where functions are handy, simplifying your task because SAS has
already done the programming for you. All you need to do is plug the right values into the
function and out comes the result—like putting a dollar in a change machine and getting back four
quarters.

 SAS has hundreds of functions in general areas including:

 Character Macro
Character String Matching Mathematical
Date and Time Probability
Descriptive Statistics Random Number
Distance State and ZIP Code
Financial Variable Information

The next two sections list the most common SAS functions along with
examples.

Functions perform a calculation on, or a transformation of, the
arguments given in parentheses following the function name. SAS

 functions have the following general form:

 function-name(argument, argument, ...)

All functions must have parentheses even if they don’t require any arguments. Arguments are
separated by commas and can be variable names, constant values such as numbers or characters
enclosed in quotation marks, or expressions. The following statement computes DateOfBirth as a
SAS date value using the function MDY and the variables MonthBorn, DayBorn, and YearBorn.
The MDY function takes three arguments, one each for the month, day, and year:

DateOfBirth = MDY(MonthBorn, DayBorn, YearBorn);

Functions can be nested, where one function is the argument of another function. For example, the
following statement calculates NewValue using two nested functions, INT and LOG:

NewValue = INT(LOG(10));

The result for this example is 2, the integer portion of the natural log of the numeric constant 10
(2.3026). Just be careful when nesting functions that each parenthesis has a mate.

Example Data from a pumpkin carving contest illustrate the use of several functions. The
contestants’ names are followed by their age, type of pumpkin (carved or decorated), date of entry,
and scores from three judges. Here is the SAS data set CONTEST that was created in Section 2.10:

Chapter 3: Working with Your Data 61

 Name Age Type Date Score1 Score2 Score3
1 Alicia Grossman 13 c 22216 7.8 6.5 7.2
2 Matthew Lee 9 D 22218 6.5 5.9 6.8
3 Elizabeth Garcia 10 C 22217 8.9 7.9 8.5
4 Lori Newcombe 6 D 22218 6.7 . 4.9
5 Jose Martinez 7 d 22219 8.9 9.5 10.0
6 Brian Williams 11 C 22217 7.8 8.4 8.5

The following program reads the SAS data set CONTEST, creates two new variables (AvgScore
and DayEntered), and transforms another (Type):

LIBNAME pump 'c:\MySASLib';
*Use SAS functions to create and modify variables;
DATA pumpkin;
 SET pump.contest;
 AvgScore = MEAN(Score1, Score2, Score3);
 DayEntered = DAY(Date);
 Type = UPCASE(Type);
RUN;

The variable AvgScore is created using the MEAN function, which returns the mean of the
nonmissing arguments. This differs from simply adding the arguments together and dividing by
their number, which would return a missing value if any of the arguments were missing.

The variable DayEntered is created using the DAY function, which returns the day of the month.
SAS has all sorts of functions for manipulating dates, and what’s great about them is that you don’t
have to worry about things like leap year—SAS takes care of that for you.

The variable Type is transformed using the UPCASE function. SAS is case sensitive when it comes
to variable values; a 'd' is not the same as 'D'. The data file has both lowercase and uppercase letters
for the variable Type, so the function UPCASE is used to make all the values uppercase.

Here is the SAS data set PUMPKIN created in the above program:

 Name Age Type Date Score1 Score2 Score3 AvgScore DayEntered
1 Alicia Grossman 13 C 22216 7.8 6.5 7.2 7.16667 28
2 Matthew Lee 9 D 22218 6.5 5.9 6.8 6.40000 30
3 Elizabeth Garcia 10 C 22217 8.9 7.9 8.5 8.43333 29
4 Lori Newcombe 6 D 22218 6.7 . 4.9 5.80000 30
5 Jose Martinez 7 D 22219 8.9 9.5 10.0 9.46667 31
6 Brian Williams 11 C 22217 7.8 8.4 8.5 8.23333 29

Notice that the values for the Date variable are shown as the number of days since January 1, 1960.
Section 4.6 discusses how to format these values into readable dates.

62 The Little SAS Book

3.4 Selected SAS Character Functions
Function name Syntax1

 Definition
Character
ANYALNUM

ANYALNUM(arg,start) Returns position of first occurrence of any alphabetic

character or numeral at or after optional start position
ANYALPHA

ANYALPHA(arg,start) Returns position of first occurrence of any alphabetic

character at or after optional start position
ANYDIGIT

ANYDIGIT(arg,start) Returns position of first occurrence of any numeral at

or after optional start position
ANYSPACE

ANYSPACE(arg,start) Returns position of first occurrence of a whitespace

character at or after optional start position
CAT

CAT(arg-1,arg-2,…arg-n) Concatenates two or more character strings together

leaving leading and trailing blanks
CATS

CATS(arg-1,arg-2,…arg-n) Concatenates two or more character strings together

stripping leading and trailing blanks
CATX

CATX('separator-string',
arg-1,arg-2,…arg-n)

Concatenates two or more character strings together
stripping leading and trailing blanks and inserting a
separator string between arguments

COMPRESS

COMPRESS(arg, 'char') Removes spaces or optional characters from character
string

INDEX INDEX(arg, 'string') Returns starting position for string of characters

LEFT LEFT(arg) Left aligns a SAS character expression

LENGTH LENGTH(arg) Returns the length of an argument not counting
trailing blanks (missing values have a length of 1)

PROPCASE

PROPCASE(arg)

Converts first character in word to uppercase and
remaining characters to lowercase

SUBSTR SUBSTR(arg,position,n) Extracts a substring from an argument starting
at position for n characters or until end if no n2

TRANSLATE TRANSLATE(source,to-1,
 from-1,...to-n,from-n)

Replaces from characters in source with to characters
(one-to-one replacement only—you can’t replace one
character with two, for example)

TRANWRD

TRANWRD(source,from,to)

Replaces from character string in source with to
character string

TRIM TRIM(arg) Removes trailing blanks from character expression

UPCASE UPCASE(arg) Converts all letters in argument to uppercase

1 arg is short for argument, which means a literal value, variable name, or expression.
2 SUBSTR has a different function when on the left side of an equal sign.

Chapter 3: Working with Your Data 63

Function name Example Result Example Result
Character
ANYALNUM

a='123 E St, #2 ';
x=ANYALNUM(a);

x=1 a='123 E St, #2 ';
y=ANYALNUM(a,10);

y=12

ANYALPHA a='123 E St, #2 ';
x=ANYALPHA(a);

x=5 a='123 E St, #2 ';
y=ANYALPHA(a,10);

y=0

ANYDIGIT

a='123 E St, #2 ';
x=ANYDIGIT(a);

x=1 a='123 E St, #2 ';
y=ANYDIGIT(a,10);

y=12

ANYSPACE

a='123 E St, #2 ';
x=ANYSPACE(a);

x=4 a='123 E St, #2 ';
y=ANYSPACE(a,10);

y=10

CAT

a=' cat';b='dog ';
x=CAT(a,b);

x=' catdog ' a='cat ';b=' dog';
y=CAT(a,b);

y='cat dog'

CATS

a=' cat';b='dog ';
x=CATS(a,b);

x='catdog' a='cat ';b=' dog';
y=CATS(a,b);

y='catdog'

CATX

a=' cat';b='dog ';
x=CATX(' ',a,b);

x='cat dog' a=' cat';b='dog ';
y=CATX('&',a,b);

y='cat&dog'

COMPRESS

a=' cat & dog';
x=COMPRESS(a);

x='cat&dog' a=' cat & dog';
y=COMPRESS(a,'&');

y=' cat dog'

INDEX

a='123 E St, #2';
x=INDEX(a,'#');

x=11

a='123 E St, #2';
y=INDEX(a,'St');

y=7

LEFT

a=' cat';
x=LEFT(a);

x='cat ' a=' my cat';
y=LEFT(a);

y='my cat '

LENGTH a='my cat';
x=LENGTH(a);

x=6 a=' my cat ';
y=LENGTH(a);

y=7

PROPCASE

a='MyCat';
x=PROPCASE(a);

x='Mycat' a='TIGER';
y=PROPCASE(a);

y='Tiger'

SUBSTR2 a='(916)734-6281';
x=SUBSTR(a,2,3);

x='916' y=SUBSTR('1cat',2); y='cat'

TRANSLATE a='6/16/99';
x=TRANSLATE
(a,'-','/');

x='6-16-99' a='my cat can';
y=TRANSLATE
(a, 'r','c');

y='my rat ran'

TRANWRD

a='Main Street';
x=TRANWRD
(a,'Street','St');

x='Main St'

a='my cat can';
y=TRANWRD
(a,'cat','rat');

y='my rat can'

TRIM a='my '; b='cat';
x=TRIM(a)||b;3

x='mycat ' a='my cat '; b=’s’;
y=TRIM(a)||b;

y='my cats '

UPCASE a='MyCat';
x=UPCASE(a);

x='MYCAT' y=UPCASE('Tiger'); y='TIGER'

3 The concatenation operator || concatenates character strings.

64 The Little SAS Book

3.5 Selected SAS Numeric Functions
Function name Syntax4

 Definition
Numeric
INT INT(arg) Returns the integer portion of argument

LOG LOG(arg) Natural logarithm

LOG10 LOG10(arg) Logarithm to the base 10

MAX MAX(arg-1,arg-2,…arg-n) Largest nonmissing value

MEAN MEAN(arg-1,arg-2,…arg-n) Arithmetic mean of nonmissing values

MIN MIN(arg-1,arg-2,…arg-n) Smallest nonmissing value

N N(arg-1,arg-2,…arg-n) Number of nonmissing values

NMISS NMISS(arg-1,arg-2,…arg-n) Number of missing values

RAND RAND('UNIFORM') Generates a random number between 0 and 1 using the
uniform distribution5

ROUND ROUND(arg, round-off-unit) Rounds to nearest round-off unit

SUM SUM(arg-1,arg-2,…arg-n) Sum of nonmissing values

Date6
DATEJUL DATEJUL(julian-date) Converts a Julian date to a SAS date value

DAY DAY(date) Returns the day of the month from a SAS date value

MDY MDY(month,day,year) Returns a SAS date value from month, day, and year
values

MONTH MONTH(date) Returns the month (1–12) from a SAS date value

QTR QTR(date) Returns the yearly quarter (1–4) from a SAS date value

TODAY TODAY() Returns the current date as a SAS date value

WEEKDAY WEEKDAY(date) Returns day of week (1=Sunday) from SAS date value

YEAR YEAR(date) Returns year from a SAS date value

YRDIF YRDIF(start-date,end-
date,'AGE')

Computes difference in years between two SAS date
values taking leap years into account

4 arg is short for argument, which means a literal value, variable name, or expression.
5 The RAND function can generate random numbers using distributions besides UNIFORM, and each distribution may have optional

parameters. To generate the same random numbers each time you run your program, use the CALL STREAMINIT statement.
6 A SAS date value is the number of days since January 1, 1960.

Chapter 3: Working with Your Data 65

Function name Example Result Example Result
Numeric
INT x=INT(4.32); x=4 y=INT(5.789); y=5

LOG x=LOG(1); x=0.0 y=LOG(10); y=2.30259

LOG10 x=LOG10(1); x=0.0 y=LOG10(10); y=1.0

MAX x=MAX(9.3,8,7.5); x=9.3 y=MAX(-3,.,5); y=5

MEAN x=MEAN(1,4,7,2); x=3.5 y=MEAN(2,.,3); y=2.5

MIN x=MIN(9.3,8,7.5); x=7.5 y=MIN(-3,.,5); y=-3

N x=N(1,.,7,2); x=3 y=N(.,4,.,.); y=1

NMISS x=NMISS(1,.,7,2); x=1 y=NMISS(.,4,.,.); y=3

RAND x=RAND('UNIFORM'); x=0.48592 y=RAND('UNIFORM'); y=0.93748

ROUND x=ROUND(12.65); x=13 y=ROUND(12.65,.1); y=12.7

SUM x=SUM(3,5,1); x=9.0 y=SUM(4,7,.); y=11

Date
DATEJUL a=60001;

x=DATEJUL(a);
x=0 a=60365;

y=DATEJUL(a);
y=364

DAY a=MDY(4,18,2012);
x=DAY(a);

x=18 a=MDY(9,3,60);
y=DAY(a);

y=3

MDY x=MDY(1,1,1960); x=0 m=2; d=1; y=60;
Date=MDY(m,d,y);

Date=31

MONTH a=MDY(4,18,2012);
x=MONTH(a);

x=4 a=MDY(9,3,60);
y=MONTH(a);

y=9

QTR a=MDY(4,18,2012);
x=QTR(a);

x=2 a=MDY(9,3,60);
y=QTR(a);

y=3

TODAY x=TODAY(); x=today’s
date

y=TODAY()-1; y=yesterday’s
date

WEEKDAY a=MDY(4,13,2012);
x=WEEKDAY(a);

x=6 a=MDY(4,18,2012);
y=WEEKDAY(a);

y=4

YEAR a=MDY(4,13,2012);
x=YEAR(a);

x=2012 a=MDY(1,1,1960);
y=YEAR(a);

y=1960

YRDIF a=MDY(4,13,2000);
b=MDY(4,13,2012);
x=YRDIF(a,b,'AGE');

x=12.0 a=MDY(4,13,2000);
b=MDY(8,13,2012);
y=YRDIF(a,b,'AGE');

y=12.3342

66 The Little SAS Book

3.6 Using IF-THEN and DO Statements
Frequently, you want an assignment statement to apply to some observations, but not all—under
some conditions, but not others. This is called conditional logic, and you do it with IF-THEN
statements:

IF condition THEN action;

The condition is an expression comparing one thing to another, and the action is what SAS should
do when the expression is true, often an assignment statement. For example:

IF Model = 'Berlinetta' THEN Make = 'Ferrari';

This statement tells SAS to set the variable Make equal to Ferrari whenever the variable Model
equals Berlinetta. The terms on either side of the comparison may be constants, variables, or
expressions. Those terms are separated by a comparison operator, which may be either symbolic or
mnemonic. The decision of whether to use symbolic or mnemonic operators depends on your
personal preference. Here are the basic comparison operators:

Symbolic Mnemonic Meaning
= EQ equals
¬ =, ^ =, or ~ = NE not equal
> GT greater than
< LT less than
> = GE greater than or equal
< = LE less than or equal
=: starts with

The IN operator also makes comparisons, but it works a bit differently. IN compares the value of a
variable to a list of values. Here is an example:

IF Model IN ('Model T', 'Model A') THEN Make = 'Ford';

This statement tells SAS to set the variable Make equal to Ford whenever the value of Model is
Model T or Model A.

A single IF-THEN statement can only have one action. If you add the keywords DO and END, then
you can execute more than one action. For example:

IF condition THEN DO; IF Model = 'DMC-12' THEN DO;
 action; Make = 'DeLorean';
 action; BodyStyle = 'coupe';
END; END;

The DO statement causes all SAS statements coming after it to be treated as a unit until a matching
END statement appears. Together, the DO statement, the END statement, and all the statements in
between are called a DO group.

You can also specify multiple conditions with the keywords AND and OR:

IF condition AND condition THEN action;

Chapter 3: Working with Your Data 67

For example:

IF Make = 'Alfa Romeo' AND Model = 'Tipo B' THEN Seats = 1;

Like the comparison operators, AND and OR may be symbolic or mnemonic:

Symbolic Mnemonic Meaning
& AND all comparisons must be true
| , ¦ , or ! OR at least one comparison must be true

Be careful with long strings of comparisons; they can be a logical maze.

Example The following tab-delimited data show information about rare antique cars sold at
auction. The data values are the make, model, the year the car was made, the number of seats , and
the selling price in millions of dollars:

Make Model YearMade Seats MillionsPaid
DeDion LaMarquise 1884 4 4.6
Rolls-Royce Silver Ghost 1912 4 1.7
Mercedes-Benz SSK 1929 2 7.4
 F-88 1954 . 3.2
Ferrari 250 Testa Rossa 1957 2 16.3

This program uses PROC IMPORT to read the data from a file called Auction.txt, then a DATA
step makes some modifications to the data.

PROC IMPORT DATAFILE = 'c:\MyRawData\Auction.txt' OUT = oldcars REPLACE;
RUN;
*Use IF-THEN statements to create and modify variables;
DATA oldcars;
 SET oldcars;
 IF YearMade < 1890 THEN Veteran = 'Yes';
 IF Model = 'F-88' THEN DO;
 Make = 'Oldsmobile';
 Seats = 2;
 END;
RUN;

This program contains two IF-THEN statements. The first IF-THEN creates a new variable named
Veteran and gives it a value of Yes for any car made before 1890. The second IF-THEN uses DO
and END to fill in missing data for the model F-88. The resulting SAS data set OLDCARS looks like
this:

 Make Model YearMade Seats MillionsPaid Veteran
1 DeDion LaMarquise 1884 4 4.6 Yes
2 Rolls-Royce Silver Ghost 1912 4 1.7
3 Mercedes-Benz SSK 1929 2 7.4
4 Oldsmobile F-88 1954 2 3.2
5 Ferrari 250 Testa Rossa 1957 2 16.3

68 The Little SAS Book

3.7 Grouping Observations with IF-THEN/ELSE Statements
One common use of IF-THEN statements is for grouping observations.
For example, you might have data for each day but need a report by
season, or perhaps you have data for each census tract but want to
analyze it by state. There are many possible reasons for grouping data,
so sooner or later you’ll probably need to do it.

There are several ways to create a grouping variable (including using a
PUT function with a user-defined format, covered in Section 4.14), but the simplest and most
common method is with a series of IF-THEN statements. By adding the keyword ELSE to your IF
statements, you can tell SAS that these statements are related.

IF-THEN/ELSE logic takes this basic form:

IF condition THEN action;
 ELSE IF condition THEN action;
 ELSE IF condition THEN action;

Notice that the ELSE statement is simply an IF-THEN statement with an ELSE tacked onto the
front. You can have any number of these statements.

IF-THEN/ELSE logic has two advantages when compared to a simple series of IF-THEN statements
without any ELSE statements. First, it is more efficient, using less computer time; once an
observation satisfies a condition, SAS skips the rest of the series. Second, ELSE logic ensures that
your groups are mutually exclusive so you don’t accidentally have an observation fitting into more
than one group.

Sometimes the last ELSE statement in a series is a little different, containing just an action, with no
IF or THEN. Note the final ELSE statement in this series:

IF condition THEN action;
 ELSE IF condition THEN action;
 ELSE action;

An ELSE of this kind becomes a default, which is automatically executed for all observations failing
to satisfy any of the previous IF statements. You can have only one of these statements, and it must
be the last in the IF-THEN/ELSE series.

When creating character variables using IF-THEN/ELSE statements, you may need to include a
LENGTH statement in your program to define the length of the variable you are creating. Without
a LENGTH (or ATTRIB) statement, a character variable’s length is determined by the first
occurrence of the new variable name. For example, if you had the following statements:

IF Temperature > 100 THEN Status = 'Hot';
 ELSE Status = 'Cold';

The Status variable would have a length of three, because the word Hot is only three characters.
This would lead to the value Cold being truncated to Col. Adding the following LENGTH
statement before the first occurrence of the Status varable fixes this problem.

Chapter 3: Working with Your Data 69

LENGTH Status $4;
IF Temperature > 100 THEN Status = 'Hot';
 ELSE Status = 'Cold';

Example Here are data from a survey of home improvements. Each record contains three data
values: owner’s name, description of the work done, and cost of the improvements in dollars:

Owner Description Cost
Bob kitchen cabinet face-lift 1253.00
Shirley bathroom addition 11350.70
Silvia paint exterior .
Al backyard gazebo 3098.63
Norm paint interior 647.77
Kathy second floor addition 75362.93

This program reads the tab-delimited file called Home.txt using PROC IMPORT then assigns a
grouping variable called CostGroup in a DATA step. This variable has a value of high, medium,
low, or TBD, depending on the value of Cost:

PROC IMPORT DATAFILE = 'c:\MyRawData\Home.txt' OUT = homeimp REPLACE;
RUN;
DATA homeimprovements;
 SET homeimp;
 *Group observations by cost;
 LENGTH CostGroup $6;
 IF Cost = . THEN CostGroup = 'TBD';
 ELSE IF Cost < 2000 THEN CostGroup = 'low';
 ELSE IF Cost < 10000 THEN CostGroup = 'medium';
 ELSE CostGroup = 'high';
RUN;

Notice that there are four statements in this IF-THEN/ELSE series, one for each possible value of
the variable CostGroup. The first statement deals with observations that have missing data for the
variable Cost. Without this first statement, observations with a missing value for Cost would be
incorrectly assigned a CostGroup of low. SAS considers missing values to be smaller than
nonmissing values, smaller than any printable character for character variables, and smaller than
negative numbers for numeric variables. Unless you are sure that your data contain no missing
values, you should allow for missing values when you write IF-THEN/ELSE statements. The
LENGTH statement before the IF-THEN/ELSE statements sets the length of the new variable
CostGroup to six, ensuring that no values will be truncated.

The data set HOMEIMPROVEMENTS looks like this:

 Owner Description Cost CostGroup
1 Bob kitchen cabinet face-lift 1253 low
2 Shirley bathroom addition 11350.7 high
3 Silvia paint exterior . TBD
4 Al backyard gazebo 3098.63 medium
5 Norm paint interior 647.77 low
6 Kathy second floor addition 75362.93 high

70 The Little SAS Book

3.8 Subsetting Your Data in a DATA Step
Often programmers find that they want to use some of the observations in a
data set and exclude the rest. A common way to do this is with a subsetting IF
statement in a DATA step. Here is the basic form of a subsetting IF:

 IF expression;

 Consider this example:

 IF Sex = 'f';

At first subsetting IF statements may seem odd. People naturally ask, “IF Sex = ‘f’, then what?” The
subsetting IF looks incomplete, as if a careless typist pressed the delete key too long. But
it is really a special case of the standard IF-THEN statement. In this case, the action is merely
implied. If the expression is true, then SAS continues with the DATA step. If the expression is false,
then no further statements are processed for that observation; that observation is not added to the
data set being created; and SAS moves on to the next observation. You can think of the subsetting
IF as a kind of on-off switch. If the condition is true, then the switch is on and the observation is
processed. If the condition is false, then that observation is turned off.

DELETE statements do the opposite of subsetting IFs. While the subsetting IF statement tells SAS
which observations to include, the DELETE statement tells SAS which observations to exclude:

IF expression THEN DELETE;

The following two statements are equivalent (assuming there are only two values for the variable
Sex, and no missing data):

IF Sex = 'f'; IF Sex = 'm' THEN DELETE;

You can also subset data using the WHERE statement in the DATA step. The WHERE statement is
similar to the IF statement and can be more efficient. But you can only use the WHERE statement
when selecting observations from existing SAS data sets and only for variables that already exist in
the data set. (There is also a WHERE= data set option which is covered in Section 6.12.) The
WHERE statement has the following general form:

WHERE expression;

Example A local zoo maintains a database about the feeding of the animals. A portion of the
data appears below. For each group of animals the data include the scientific class, the enclosure
those animals live in, and whether they get fed in the morning, afternoon, or both:

Animal,Class,Enclosure,FeedTime
bears,Mammalia,E2,both
elephants,Mammalia,W3,am
flamingos,Aves,W1,pm
frogs,Amphibia,E8,pm
kangaroos,Mammalia,W4,am
lions,Mammalia,W6,pm
snakes,Reptilia,E9,pm
tigers,Mammalia,W9,both
zebras,Mammalia,W2,am

Chapter 3: Working with Your Data 71

This program reads the data from a comma-delimited data file called Zoo.csv, creating a
permanent SAS data set, ZOO. Then it uses a subsetting IF statement in a separate DATA step to
select only observations where the animal class is Mammalia:

LIBNAME feed'c:\MySASLib';
PROC IMPORT DATAFILE = 'c:\MyRawData\Zoo.csv' OUT = feed.zoo REPLACE;
RUN;
*Choose only mammals;
DATA mammals;
 SET feed.zoo;
 IF Class = 'Mammalia';
 IF Enclosure =: 'E' THEN Area = 'East';
 ELSE IF Enclosure =: 'W' THEN Area = 'West';
RUN;

After the subsetting IF statement is a series of IF-THEN/ELSE statements that create a new variable
Area based on the starting character in the variable Enclosure. Note that the Area variable appears
in the resulting data set even though the statements creating it come after the subsetting IF
statement. Observations are written to the data set at the end of the DATA step unless there is an
OUTPUT statement (discussed in Sections 3.10 and 3.11) in the DATA step. The MAMMALS data
set looks like this:

 Animal Class Enclosure FeedTime Area
1 bears Mammalia E2 both East
2 elephants Mammalia W3 am West
3 kangaroos Mammalia W4 am West
4 lions Mammalia W6 pm West
5 tigers Mammalia W9 both West
6 zebras Mammalia W2 am West

These notes appear in the log stating that although nine observations were read from the original
data set, the resulting data set MAMMALS contains only six observations:

NOTE: There were 9 observations read from the data set FEED.ZOO.
NOTE: The data set WORK.MAMMALS has 6 observations and 5 variables.

It is always a good idea to check the SAS log when you subset observations to make sure that you
ended up with what you expected.

In the program above, you could substitute this statement:

IF Class = 'Aves' OR Class = 'Amphibia' OR Class = 'Reptilia' THEN DELETE;

for the statement:

IF Class = 'Mammalia';

But you would have to do a lot more typing. Generally, you use the subsetting IF when it is easier
to specify a condition for including observations, and use the DELETE statement when it is easier
to specify a condition for excluding observations.

72 The Little SAS Book

3.9 Subsetting Your Data Using PROC SQL
If you are familiar with Structured Query Language (SQL), you will be pleased
to know that there is an SQL procedure in SAS. A common task in SQL is
querying data and producing subsets of data. In SQL documentation, data sets
are called tables, observations are called rows, and variables are called columns,
but they are the same thing. The basic form of PROC SQL for subsetting data is:

 PROC SQL;
CREATE TABLE new-data-set AS
 SELECT variable-list
FROM old-data-set
WHERE expression;

QUIT;

The procedure starts with the keywords PROC SQL followed by a semicolon. Next comes the SQL
statement containing four clauses. The CREATE TABLE … AS clause denotes the name of the new
SAS data set that you will create. The SELECT clause lists the variables (or columns) you want to
keep. The FROM clause indicates the name of the old SAS data set you are reading. Then the
WHERE clause states which observations (or rows) you want to keep. Note that between the PROC
SQL and QUIT statements, there is only one statement ending in a semicolon. But this one
statement contains many clauses (CREATE TABLE, SELECT, FROM, and WHERE). If you leave
out the CREATE TABLE clause, then instead of creating a new SAS data set, you will just get a
display of the results. PROC SQL ends with a QUIT statement instead of a RUN statement. Unlike
most procedures, with PROC SQL, SAS immediately executes whatever you submit without
waiting for a RUN statement. You can continue to submit more SQL statements because PROC
SQL keeps running until it encounters a QUIT statement or a new DATA or PROC step.

The SELECT clause In the SELECT clause, separate the names of the variables you want to
keep with commas or, if you want to keep all the variables, simply use an asterisk (*):

SELECT Lion, Weight, Sex or SELECT *

You can also calculate new variables in the SELECT clause using an expression and the keyword
AS to give the variable a name:

SELECT Lion, Weight * 0.454 AS Kilos, Sex

The WHERE clause Use the WHERE clause in PROC SQL to select which rows, or
observations, you want to appear in the new data set. The syntax for the WHERE clause is similar
to the subsetting IF statement discussed in the previous section. You can use any of the comparison
operators discussed in Section 3.6. For example, the following WHERE clauses would both select
observations for lions, tigers and bears:

WHERE animal = 'lions' OR animal = 'tigers' OR animal = 'bears'
WHERE animal IN ('lions', 'tigers', 'bears')

If you want to include a calculated variable in the WHERE clause, then precede the variable name
with the keyword CALCULATED:

WHERE CALCULATED Kilos > 200

Chapter 3: Working with Your Data 73

Example The SAS data set ZOO, which was created in the previous section, contains data on the
feeding of animals at a local zoo. For each group of animals the data include the scientific class, the
enclosure those animals live in, and whether they get fed in the morning, afternoon, or both:

 Animal Class Enclosure FeedTime
1 bears Mammalia E2 both
2 elephants Mammalia W3 am
3 flamingos Aves W1 pm
4 frogs Amphibia E8 pm
5 kangaroos Mammalia W4 am
6 lions Mammalia W6 pm
7 snakes Reptilia E9 pm
8 tigers Mammalia W9 both
9 zebras Mammalia W2 am

The following program uses the SQL procedure to create a new temporary SAS data set,
MAMMALS, which contains all the variables (as indicated by the asterisk after the SELECT
keyword) in the ZOO data set, but only observations where the value of the variable Class is
Mammalia.

LIBNAME feed'c:\MySASLib';
*Choose only mammals;
PROC SQL;
 CREATE TABLE mammals AS
 SELECT *
 FROM feed.zoo
 WHERE Class = 'Mammalia';
QUIT;

Here is the new data set MAMMALS:

 Animal Class Enclosure FeedTime
1 bears Mammalia E2 both
2 elephants Mammalia W3 am
3 kangaroos Mammalia W4 am
4 lions Mammalia W6 pm
5 tigers Mammalia W9 both
6 zebras Mammalia W2 am

The following note appears in the log.

NOTE: Table WORK.MAMMALS created, with 6 rows and 4 columns.

When you use the SQL procedure to subset data, the SAS log tells you how many rows and
columns the new data set contains. But, unlike using a subsetting IF statement in a DATA step, it
does not tell you how many variables and observations were in the old data set.

74 The Little SAS Book

3.10 Writing Multiple Data Sets Using OUTPUT Statements
Up to this point, all the DATA steps in this book have created
a single data set. Most of the time this is what you want.
However, there may be times when it is more efficient or
more convenient to create multiple data sets in a single
DATA step. You can do this by simply putting more than one
data set name in your DATA statement. The statement below
tells SAS to create three data sets named LIONS, TIGERS, and
BEARS:

DATA lions tigers bears;

If that is all you do, then SAS will write all the observations to all the data sets, and you will have
three identical data sets. Normally, of course, you want to create different data sets. You can do
that with an OUTPUT statement.

Every DATA step has an implied OUTPUT statement at the end, which tells SAS to write the
current observation to the output data set before returning to the beginning of the DATA step to
process the next observation. You can override this implicit OUTPUT statement with your own
OUTPUT statement. However, once you put an OUTPUT statement in your DATA step, it is no
longer implied, and SAS writes an observation only when it encounters an OUTPUT statement.
Here is the basic form of the OUTPUT statement:

OUTPUT data-set-name;

If you leave out the data set name, then the observation will be written to all data sets named in the
DATA statement. OUTPUT statements can be used alone or in IF-THEN statements.

IF gender = 'F' THEN OUTPUT females;

Example The SAS data set ZOO, which was created in Section 3.8, contains data on the feeding
of animals at a local zoo. For each group of animals the data include the scientific class, the
enclosure those animals live in, and whether they get fed in the morning, afternoon, or both:

 Animal Class Enclosure FeedTime
1 bears Mammalia E2 both
2 elephants Mammalia W3 am
3 flamingos Aves W1 pm
4 frogs Amphibia E8 pm
5 kangaroos Mammalia W4 am
6 lions Mammalia W6 pm
7 snakes Reptilia E9 pm
8 tigers Mammalia W9 both
9 zebras Mammalia W2 am

Chapter 3: Working with Your Data 75

To help with feeding the animals, the following program creates two data sets, one for morning
feedings and one for afternoon feedings:

LIBNAME feed'c:\MySASLib';
*Create data sets for morning and afternoon feedings;
DATA morning afternoon;
 SET feed.zoo;
 IF FeedTime = 'am' THEN OUTPUT morning;
 ELSE IF FeedTime = 'pm' THEN OUTPUT afternoon;
 ELSE IF FeedTime = 'both' THEN OUTPUT;
RUN;

This DATA statement creates a data set named MORNING and a data set named AFTERNOON.
Then the IF-THEN/ELSE statements tell SAS which observations to put in each data set. Because
the final OUTPUT statement does not specify a data set, SAS adds those observations to both data
sets. The log contains these notes saying that SAS read one input file and wrote two data sets:

NOTE: There were 9 observations read from the data set FEED.ZOO.
NOTE: The data set WORK.MORNING has 5 observations and 4 variables.
NOTE: The data set WORK.AFTERNOON has 6 observations and 4 variables.

Here are the MORNING and AFTERNOON data sets that are created:

 Animal Class Enclosure FeedTime
1 bears Mammalia E2 both
2 elephants Mammalia W3 am
3 kangaroos Mammalia W4 am
4 tigers Mammalia W9 both
5 zebras Mammalia W2 am

 Animal Class Enclosure FeedTime
1 bears Mammalia E2 both
2 flamingos Aves W1 pm
3 frogs Amphibia E8 pm
4 lions Mammalia W6 pm
5 snakes Reptilia E9 pm
6 tigers Mammalia W9 both

OUTPUT statements have other uses besides writing multiple data sets in a single DATA step and
can be used any time you want to explicitly control when SAS writes observations to a data set (see
the next two sections).

76 The Little SAS Book

3.11 Making Several Observations from One Using OUTPUT
Statements

Usually, SAS writes an observation to a data set at the end of the DATA step,
but you can override this default using the OUTPUT statement. If you want to
write several observations for each pass through the DATA step, you can put an
OUTPUT statement in a DO loop (see the next section) or just use several
OUTPUT statements. The OUTPUT statement gives you control over when an

observation is written to a SAS data set. If your DATA step doesn’t have an OUTPUT statement,
then it is implied at the end of the step. Once you have an OUTPUT statement, it is no longer
implied, and SAS writes an observation only when it encounters an OUTPUT statement.

Example A minor league baseball team has a comma-delimited file containing information
about upcoming games. The file contains the opposing team name, game date, whether it is a home
(H) or away (A) game, and if it is a single (S) or doubleheader(D).

Team,GameDate,Location,Type
Columbia Peaches,04/15/2020,A,S
Walla Walla Sweets,04/17/2020,H,D
Gilroy Garlics,4/18/2020,H,S
Sacramento Tomatoes,4/21/2020,A,S

The team manager needs a file that contains one observation for each game, so the observations for
doubleheaders need to be repeated. This program first uses PROC IMPORT to read the data file. In
the DATA step, if the entry is for a doubleheader, the observation is output two times. If not, the
observation is output only once.

PROC IMPORT DATAFILE = 'c:\MyRawData\Schedule.csv' OUT = GameDates
 REPLACE;
RUN;
DATA Games;
 SET GameDates;
 *If a doubleheader, output twice;
 IF Type = 'D' THEN DO;
 OUTPUT;
 OUTPUT;
 END;
 *Else if not a doubleheader output only once;
 ELSE OUTPUT;
RUN;

Here is the GAMES data set created from the above program:

 Team GameDate Location Type
1 Columbia Peaches 04/15/2020 A S
2 Walla Walla Sweets 04/17/2020 H D
3 Walla Walla Sweets 04/17/2020 H D
4 Gilroy Garlics 04/18/2020 H S
5 Sacramento Tomatoes 04/21/2020 A S

Chapter 3: Working with Your Data 77

Example Here’s how you can use OUTPUT statements to create several observations from a
single pass through the DATA step. The following data are for ticket sales at three movie theaters.
After the month are the theaters’ names and sales for all three theaters:

Jan Varsity 56723 Downtown 69831 Super-6 70025
Feb Varsity 62137 Downtown 43901 Super-6 81534
Mar Varsity 49982 Downtown 55783 Super-6 69800

For the analysis you want to perform, you need to have the theater name as one variable and the
ticket sales as another variable. The month should be repeated once for each theater.

The following program has three INPUT statements all reading from the same raw data file. The
first INPUT statement reads values for Month, Location, and Tickets, and then holds the data line
using the trailing at sign (@). The OUTPUT statement that follows writes an observation. The next
INPUT statement reads the second set of data for Location and Tickets, and again holds the data
line. Another OUTPUT statement writes another observation. Month still has the same value
because it isn’t in the second INPUT statement. The last INPUT statement reads the last values for
Location and Tickets, this time releasing the data line for the next iteration through the DATA step.
The final OUTPUT statement writes the third observation for that iteration of the DATA step. The
program has three OUTPUT statements for the three observations created in each iteration of the
DATA step:

* Create three observations for each data line read
* using three OUTPUT statements;
DATA theaters;
 INFILE 'c:\MyRawData\Movies.dat';
 INPUT Month $ Location $ Tickets @;
 OUTPUT;
 INPUT Location $ Tickets @;
 OUTPUT;
 INPUT Location $ Tickets;
 OUTPUT;
RUN;

Here is the THEATERS data set created in the above program. Notice that there are three
observations in the data set for each line in the raw data file, and that the value for Month is
repeated:

 Month Location Tickets
1 Jan Varsity 56723
2 Jan Downtown 69831
3 Jan Super-6 70025
4 Feb Varsity 62137
5 Feb Downtown 43901
6 Feb Super-6 81534
7 Mar Varsity 49982
8 Mar Downtown 55783
9 Mar Super-6 69800

78 The Little SAS Book

3.12 Using Iterative DO, DO WHILE, and DO UNTIL Statements
We introduced the DO statement in Section 3.6 where you can conditionally execute a group of
statements called a DO group. In this section we will talk about using DO statements that can
execute the same DO group more than once. The iterative DO statement executes the DO group a
set number of times. The number of times the DO WHILE and DO UNTIL statements execute the
DO group depend on the value of a specified expression.

Iterative DO All DO groups start with the DO statement and end with an END statement.
Between the DO and END, you can have any number of other SAS statements including even other
DO groups. The general form of a DO group with an iterative DO statement is:

DO index-variable = specification for iteration;
 statement(s);
END;

The iterative DO statement can take on many different forms. All forms start with the keyword
DO, followed by an index variable, then a specification for how the index variable should be
incremented. The index variable is often a new variable that you create for the purpose of looping
through the DO group. This variable is added to the data set unless you drop it. In one form, you
can simply list the values you want the index variable to take as it executes the DO group.

DO index-variable = item-1, item-2, … ;

The items in the list can be all numeric constants, all character constants (enclosed in quotes), or
even variable names. For example, the following DO statement would iterate four times, for the
four values of Year in the list:

DO Year = 2003, 2006, 2012, 2017;

You can also increment numeric values automatically by specifying start and stop values. Use the
BY option to specify the amount of the increment. If you do not use the BY option, then the index
variable will increment by one. The DO group is executed until the value of the index variable
passes the stop value. Here is the general form:

DO index-variable = start-value TO stop-value BY increment;

In the following statement, the index variable, X, will loop through the DO group with values 10,
11, 12, 13, 14, 15, and 16. When X reaches 17, it has passed the stop value and the DO group stops
executing.

DO X = 10 TO 16;

In the next statement, X will loop through the DO group with the values 10, 12, 14, and 16. When X
reaches 18, it has passed the stop value and the DO group stops executing.

DO X = 10 TO 16 BY 2;

DO WHILE and DO UNTIL The DO WHILE and DO UNTIL statements work a little
differently than the iterative DO. The DO WHILE statement will continue looping as long as the
expression is still true. If the expression is never true, then the DO group will never execute.

DO WHILE (expression);

Chapter 3: Working with Your Data 79

The DO UNTIL statement will continue looping until the expression becomes true, so it will always
execute at least once:

DO UNTIL (expression);

The following statements will cause a DO group to execute when Age is less than 65:

DO UNTIL (Age GE 65); DO WHILE (Age < 65);

If the value of Age starts out greater than or equal to 65, then the DO UNTIL statement will execute
the DO group one time, whereas the DO WHILE statement will never execute the DO group. If the
value of Age never gets to be 65 or higher, then SAS will just keep going, and going, and going.

Example Suppose you have $100 to invest and you want to know how many years it would take
for your savings to pass $1,000. You choose five different interest rates to test and assume that all
the interest earned is reinvested. The following program has a DO UNTIL loop nested inside an
iterative DO group. The iterative DO group is executed five times with the values of InterestRate
set to 0.02, 0.03, 0.04, 0.05, and 0.06. Each iteration of the DO group starts with statements that set
the value of Savings to the initial amount of 100, and the value of Years to zero since we want to
start counting over for each interest rate.

DATA numyears;
 DO InterestRate = 0.02 TO 0.06 BY 0.01;
 *Initialize Savings and Year for each interest rate;
 Savings = 100;
 Years = 0;

 *Find number of years until savings greater than $1000;
 DO UNTIL (Savings > 1000);
 Years = Years + 1;
 Savings = Savings + (InterestRate * Savings);
 END;

 *Write results to years data set;
 OUTPUT;
 END;
RUN;

The DO UNTIL loop executes until the value of Savings is greater than $1,000. Each time through
the loop, one is added to the variable Years, and the interest earned (InterestRate times Savings) is
added to the current value of Savings. After each iteration of the DO UNTIL loop, the value of
Savings is evaluated and when it is greater than 1,000 SAS exits the loop and goes on to the next
DATA step statement. The OUTPUT statement after the DO UNTIL loop, but inside the iterative
DO group, outputs current values of the variables to the NUMYEARS data set. Here is the data set:

 InterestRate Savings Years
1 0.02 1014.43 117
2 0.03 1003.01 78
3 0.04 1011.50 59
4 0.05 1040.13 48
5 0.06 1028.57 40

80 The Little SAS Book

3.13 Working with SAS Dates
Dates can be tricky to work with. Some months have 30 days, some 31, some 28, and don’t forget
leap year. SAS dates simplify all this. A SAS date is a numeric value equal to the number of days
since January 1, 1960. The table below lists four dates and their values as SAS dates:

Date SAS date value Date SAS date value
January 1, 1959 -365 January 1, 1961 366
January 1, 1960 0 January 1, 2020 21915

SAS has special tools for working with dates (as well as time and datetime values): informats for
reading dates, functions for manipulating dates, and formats for printing dates. A table of selected
date informats, formats, and functions appears in the next section.

Informats To read variables that are dates in raw data files, you use formatted style input. SAS
has a variety of date informats for reading dates in many different forms. All of these informats
convert your data to a number equal to the number of days since January 1, 1960. The INPUT
statement below tells SAS to read a variable named BirthDate using the ANYDTDTE9. informat:

INPUT BirthDate ANYDTDTE9.;

ANYDTDTEw. is a special informat that can read dates in almost any form. If a date is ambiguous
such as 01-02-03, then SAS uses the value of the DATESTYLE= system option to determine the
order of month, day and year. The default value of DATESTYLE= is MDY (month, day, then year).

Setting the default century for input When SAS sees a date with a two-digit year like
07/04/76, SAS has to decide in which century the year belongs. Is the year 1976, 2076, or perhaps
1776? The system option YEARCUTOFF= specifies the first year of a hundred-year span for SAS to
use. At the time this book was written, the default value for this option was 1926. You can change
this value with an OPTIONS statement. To avoid problems, you may want to specify the
YEARCUTOFF= option whenever you input data containing two-digit years. This statement tells
SAS to interpret two-digit dates as occurring between 1950 and 2049:

OPTIONS YEARCUTOFF = 1950;

Dates in SAS expressions Once a variable has been read with a SAS date informat, it can be
used in arithmetic expressions like other numeric variables. For example, if a library book is due in
three weeks, you could find the due date by adding 21 days to the date it was checked out:

DueDate = CheckDate + 21;

You can use a date as a constant in a SAS expression. Put the date in DATEw. format (such as
01JAN1960). Then add quotation marks followed by the letter D. The assignment statement below
creates a variable named EarthDay21, which is equal to the SAS date value for April 22, 2021:

EarthDay21 = '22APR2021'D;

Functions SAS date functions perform a number of handy operations. The statement below uses
three functions to compute age from a variable named BirthDate.

CurrentAge = INT(YRDIF(BirthDate, TODAY(), 'AGE'));

Chapter 3: Working with Your Data 81

The YRDIF function, with the 'AGE' argument, computes the number of years between the variable
BirthDate and the current date (from the TODAY function). Then the INT function returns the
integer portion of the value.

Formats If you print a SAS date value, SAS will by default print the actual value—the number of
days since January 1, 1960. Since this is not very meaningful to most people, SAS has a variety of
formats for printing dates in different forms. The FORMAT statement below tells SAS to print the
variable BirthDate using the WORDDATE18. format:

FORMAT BirthDate WORDDATE18.;

FORMAT statements can go in either DATA steps or PROC steps. If the FORMAT statement is in a
DATA step, then the format association is permanent and is stored with the SAS data set. If the
FORMAT statement is in a PROC step, then it is temporary—affecting only the results from that
procedure. Formats are covered in more detail in Section 4.6.

Example A local library has a data file containing details about library cards. Each record
contains the card holder’s name, birthdate, the date that the card was issued, and the due date for
the last book borrowed.

A. Jones 1-1-60 9-15-96 18JUN20
R. Grandage 03/18/1988 31 10 2007 5jul2020
K. Kaminaka 052903 20200124 12-MAR-20

The program below reads the raw data, and then computes the variable DaysOverDue by
subtracting DueDate from the current date. The card holder's current age is computed. Then an IF
statement uses a date constant to identify cards issued after January 1, 2020.

DATA librarycards;
 INFILE 'c:\MyRawData\Library.dat' TRUNCOVER;
 INPUT Name $11. + 1 BirthDate MMDDYY10. +1 IssueDate ANYDTDTE10.
 DueDate DATE11.;
 DaysOverDue = TODAY() - DueDate;
 CurrentAge = INT(YRDIF(BirthDate, TODAY(), 'AGE'));
 IF IssueDate > '01JAN2020'D THEN NewCard = 'yes';
RUN;
PROC PRINT DATA = librarycards;
 FORMAT Issuedate MMDDYY8. DueDate WEEKDATE17.;
 TITLE 'SAS Dates without and with Formats';
RUN;

Here is the output from PROC PRINT. Notice that the variable BirthDate is printed without a date
format, while IssueDate and DueDate use formats. Because DaysOverDue and CurrentAge are
computed using the TODAY() function, their values will change depending on the day the
program is run. The value of DaysOverDue is negative for books due in the future.

SAS Dates without and with Formats
Obs Name BirthDate IssueDate DueDate DaysOverDue CurrentAge NewCard

1 A. Jones 0 09/15/96 Mon, Jun 18, 2020 0 60
2 R. Grandage 10304 10/31/07 Thu, Jul 5, 2020 -17 32
3 K. Kaminaka 15854 01/24/20 Mon, Mar 12, 2020 98 17 yes

82 The Little SAS Book

3.14 Selected Date Informats, Functions, and Formats
Informats Definition Width range Default width
ANYDTDTEw. Reads dates in various date forms 5–32 9

DATEw. Reads dates in form: ddmmmyy or ddmmmyyyy 7–32 7
DDMMYYw. Reads dates in form: ddmmyy or ddmmyyyy 6–32 6

JULIANw. Reads Julian dates in form: yyddd or yyyyddd 5–32 5
MMDDYYw. Reads dates in form: mmddyy or mmddyyyy 6–32 6

Functions Syntax Definition
DATEJUL DATEJUL(julian-date) Converts a Julian date to a SAS date value7

DAY DAY(date) Returns the day of the month from a SAS date value

MDY MDY(month,day,year) Returns a SAS date value from month, day, and
year values

MONTH MONTH(date) Returns the month (1–12) from a SAS date value

QTR QTR(date) Returns the yearly quarter (1–4) from a SAS date
value

TODAY TODAY() Returns the current date as a SAS date value

WEEKDAY WEEKDAY(date) Returns day of week (1=Sunday) from SAS date value

YEAR YEAR(date) Returns year from a SAS date value

YRDIF YRDIF(start-date,end-date,
'AGE')

Computes difference in years between two SAS date
values taking leap years into account

Formats Definition Width range Default width
DATEw. Writes SAS date values in form: ddmmmyy 5–11 7

EURDFDDw. Writes SAS date values in form: dd.mm.yy 2–10 8

JULIANw. Writes a Julian date from a SAS date value 5–7 5

MMDDYYw. Writes SAS date values in form: mmddyy or mmddyyyy 2–10 8

WEEKDATEw. Writes SAS date values in form:
day-of-week, month-name dd, yy or yyyy

3–37 29

WORDDATEw. Writes SAS date values in form: month-name dd, yyyy 3–32 18

7 A SAS date value is the number of days since January 1, 1960.

Chapter 3: Working with Your Data 83

Informats Input data INPUT statement Results
ANYDTDTEw. 1jan1961

01/01/61
INPUT Day ANYDTDTE10.; 366

366
DATEw. 1jan1961 INPUT Day DATE10.; 366

DDMMYYw. 01.01.61
02/01/61

INPUT Day DDMMYY8.; 366
367

JULIANw. 61001 INPUT Day JULIAN7.; 366

MMDDYYw. 01-01-61 INPUT Day MMDDYY8.; 366

Functions Example Result Example Results
DATEJUL a=60001;

x=DATEJUL(a);
x=0 a=60365;

y=DATEJUL(a);
y=364

DAY a=MDY(4,18,2020);
x=DAY(a);

x=18 a=MDY(9,3,60);
y=DAY(a);

y=3

MDY x=MDY(1,1,1960); x=0 m=2; d=1; y=60;
Date=MDY(m,d,y);

Date=31

MONTH a=MDY(4,18,2020);
x=MONTH(a);

x=4 a=MDY(9,3,60);
y=MONTH(a);

y=9

QTR a=MDY(4,18,2020);
x=QTR(a);

x=2 a=MDY(9,3,60);
y=QTR(a);

y=3

TODAY x=TODAY(); x=today’s
date

y=TODAY()-1; y=yesterday’s
date

WEEKDAY a=MDY(4,13,2020);
x=WEEKDAY(a);

x=2 a=MDY(4,18,2020);
y=WEEKDAY(a);

y=7

YEAR a=MDY(4,13,2000);
x=YEAR(a);

x=2000 a=MDY(1,1,1960);
y=YEAR(a);

y=1960

YRDIF a=MDY(4,13,2000);
b=MDY(4,13,2020);
x=YRDIF(a,b,'AGE');

x=20 a=MDY(4,13,2000);
b=MDY(8,13,2020);
y=YRDIF(a,b,'AGE');

y=20.3342

Formats Input data FORMAT statement8 Results
DATEw. 366 FORMAT Birth DATE7.;

FORMAT Birth DATE9.;
01JAN61
01JAN1961

EURDFDDw. 366 FORMAT Birth EURDFDD8.
FORMAT Birth EURDFDD10.;

01.01.61
01.01.1961

JULIANw. 366 FORMAT Birth JULIAN5.;
FORMAT Birth JULIAN7.;

61001
1961001

MMDDYYw. 366 FORMAT Birth MMDDYY6.;
FORMAT Birth MMDDYY10.;

010161
01/01/1961

WEEKDATEw. 366 FORMAT Birth WEEKDATE9.;
FORMAT Birth WEEKDATE29.;

Sunday
Sunday, January 1, 1961

WORDDATEw. 366 FORMAT Birth WORDDATE12.;
FORMAT Birth WORDDATE18.;

Jan 1, 1961
January 1, 1961

8 Formats can be used in PUT statements and PUT functions in DATA steps, and in FORMAT statements in either DATA or PROC steps.

84 The Little SAS Book

3.15 Using RETAIN and Sum Statements
When variables are assigned values through either an INPUT or assignment statement, those
variables are set to missing at the beginning of each iteration of the DATA step. The RETAIN and
sum statements change this behavior. If a variable appears in a RETAIN statement, then its value
will be retained from one iteration of the DATA step to the next. A sum statement also retains a
value, but then it adds the value to an expression.

RETAIN statement Use the RETAIN statement when you want SAS to preserve a variable’s value
from the previous iteration of the DATA step. The RETAIN statement can appear anywhere in the
DATA step and has the following form, where all variables to be retained are listed after the
RETAIN keyword:

RETAIN variable-list;

You can also specify an initial value, instead of missing, for the variables. All variables listed before
an initial value will start the first iteration of the DATA step with that value:

RETAIN variable-list initial-value;

Sum statement A sum statement also retains values from the previous iteration of the DATA
step, but you use it for the special cases where you simply want to cumulatively add the value of
an expression to a variable. A sum statement, like an assignment statement, contains no keywords.
It has the following form:

variable + expression;

No, there is no typo here and no equal sign either. This statement adds the value of the expression
to the variable while retaining the variable’s value from one iteration of the DATA step to the next.
The variable must be numeric and has the initial value of zero. This statement can be rewritten
using the RETAIN statement and SUM function as follows:

RETAIN variable 0;
variable = SUM(variable, expression);

As you can see, a sum statement is really a special case of using RETAIN.

Example This example illustrates the use of both the RETAIN and sum statements. The minor league
baseball team, the Walla Walla Sweets, has the following data about their games. The month and day
the game was played, and the team played are followed by the number of hits and runs for the game:

Month Day Team Hits Runs
6 19 Columbia Peaches 8 3
6 20 Columbia Peaches 10 5
6 23 Plains Peanuts 3 4
6 24 Plains Peanuts 7 2
6 25 Plains Peanuts 12 8
6 30 Gilroy Garlics 4 4
7 1 Gilroy Garlics 9 4
7 4 Sacramento Tomatoes 15 9
7 4 Sacramento Tomatoes 10 10
7 5 Sacramento Tomatoes 2 3

Chapter 3: Working with Your Data 85

The team wants two additional variables in their data set. One shows the cumulative number of
runs for the season, and the other shows the maximum number of runs in a game to date. The
following program reads the tab-delimited file using PROC IMPORT, then in a DATA step, uses a
sum statement to compute the cumulative number of runs, and the RETAIN statement and MAX
function to determine the maximum number of runs in a game to date:

PROC IMPORT DATAFILE = 'c:\MyRawData\Games.txt' OUT = gamestats REPLACE;
RUN;
* Using RETAIN and sum statements to find most runs and total runs;
DATA gamestats;
 SET gamestats;
 RETAIN MaxRuns;
 MaxRuns = MAX(MaxRuns, Runs);
 RunsToDate + Runs;
RUN;

The variable MaxRuns is set equal to the maximum of its value from the previous iteration of the
DATA step (since it appears in the RETAIN statement) or the value of the variable Runs. The
variable RunsToDate adds the number of runs per game, Runs, to itself while retaining its value
from one iteration of the DATA step to the next. This produces a cumulative record of the number
of runs.

Here is the resulting SAS data set:

 Month Day Team Hits Runs MaxRuns RunsToDate
1 6 19 Columbia Peaches 8 3 3 3
2 6 20 Columbia Peaches 10 5 5 8
3 6 23 Plains Peanuts 3 4 5 12
4 6 24 Plains Peanuts 7 2 5 14
5 6 25 Plains Peanuts 12 8 8 22
6 6 30 Gilroy Garlics 4 4 8 26
7 7 1 Gilroy Garlics 9 4 8 30
8 7 4 Sacramento Tomatoes 15 9 9 39
9 7 4 Sacramento Tomatoes 10 10 10 49
10 7 5 Sacramento Tomatoes 2 3 10 52

86 The Little SAS Book

3.16 Simplifying Programs with Arrays
Sometimes you want to do the same thing to many variables. You may want to take the log of
every numeric variable or change every occurrence of zero to a missing value. You could write a
series of assignment statements or IF statements, but if you have a lot of variables to transform,
using arrays will simplify and shorten your program.

An array is an ordered group of similar items. You might think your local grocery store has a nice
array of fruits to choose from. In SAS, an array is a group of variables. You can define an array to
be any group of variables you like, as long as they are either all numeric or all character. The
variables can be existing ones, or they can be new variables that you want to create.

Arrays are defined using the ARRAY statement in the DATA step. The ARRAY statement has the
following general form:

ARRAY name (n) $ variable-list;

In this statement, name is a name you give to the array, and n is the number of variables in the
array. Following the (n) is a list of variable names. The number of variables in the list must equal
the number given in parentheses. (You may use { } or [] instead of parentheses if you like.) This is
called an explicit array, where you explicitly state the number of variables in the array. Use a $ if
the variables are character, and have not previously been defined.

The array itself is not stored with the data set; it is defined only for the duration of the DATA step.
You can give the array any name, as long as it does not match any of the variable names in your
data set or any SAS keywords. Also, array names must be 32 characters or fewer, start with a letter
or underscore, and contain only letters, numerals, or underscores.

To reference a variable using the array name, give the array name and the subscript for that
variable. The first variable in the variable list has subscript 1, the second has subscript 2, and so on.
So if you have an array defined as:

ARRAY veg (4) Carrots Tomatoes Onions Celery;

VEG(1) is the variable Carrots, VEG(2) is the variable Tomatoes, VEG(3) is the variable Onions, and
VEG(4) is the variable Celery. This is all just fine, but simply defining an array doesn’t do anything
for you. You want to be able to use the array to make things easier for you.

Example The radio station KBRK is conducting a survey asking people to rate five different
songs. Songs are rated on a scale of 1 to 5, where 1 equals change the station when it comes on, and
5 equals turn up the volume when it comes on. If listeners had not heard the song or didn’t care to
comment on it, a 9 was entered for that song. Here are the data:

City,Age,wj,kt,tr,filp,ttr
Albany,54,3,9,4,4,9
Richmond,33,2,9,3,3,3
Oakland,27,3,9,4,2,3
Richmond,41,3,5,4,5,5
Berkeley,18,4,4,9,3,2

The listener’s city of residence, age, and their responses to all five songs are listed. The following
program first reads the comma-delimited file using PROC IMPORT and creates a permanent SAS

Chapter 3: Working with Your Data 87

data set, SONGS. Then, in a DATA step, the program changes all the 9s to missing values. (The
variables are named using the first letters of the words in the song’s title.)

* Create a permanent SAS data set;
LIBNAME radio 'c:\MySASLib';
PROC IMPORT DATAFILE = 'c:\MyRawData\KBRK.csv' OUT = radio.songs REPLACE;
RUN;

* Change all 9s to missing values;
DATA fixsongs;
 SET radio.songs;
 ARRAY song (5) wj kt tr filp ttr;
 DO i = 1 TO 5;
 IF song(i) = 9 THEN song(i) = .;
 END;
RUN;

An array, SONG, is defined as having five variables, the variables representing the five songs. Next
comes an iterative DO statement. All statements between the DO statement and the END statement
are executed, in this case, five times, once for each variable in the array.

The variable I is used as an index variable and is incremented by 1 each time through the DO loop.
The first time through the DO loop, the variable I has a value of 1 and the IF statement would read
IF song(1)=9 THEN song(1)=.;, which is the same as IF wj=9 THEN wj=.;. The second
time through, I has a value of 2 and the IF statement would read IF song(2)=9 THEN
song(2)=.;, which is the same as IF kt=9 THEN kt=.;. This continues through all five
variables in the array.

Here is the SAS data set FIXSONGS created in the program:

 City Age wj kt tr filp ttr i
1 Albany 54 3 . 4 4 . 6
2 Richmond 33 2 . 3 3 3 6
3 Oakland 27 3 . 4 2 3 6
4 Richmond 41 3 5 4 5 5 6
5 Berkeley 18 4 4 . 3 2 6

Notice that the array members SONG(1) to SONG(5) did not become part of the data set, but the
variable I did. You could have written five IF statements instead of using arrays and accomplished
the same result. In this program it would not have made a big difference, but if you had 100 songs
in your survey instead of five, then using arrays would clearly be a better solution.

88 The Little SAS Book

3.17 Using Shortcuts for Lists of Variable Names
While writing SAS programs, you will often need to write a list of variable names. If you only have
a handful of variables, you might not feel a need for a shortcut. But if, for example, you need to
define an array with 100 elements, you might be a little grumpy after typing in the 49th variable
name knowing you still have 51 more to go. You might even think, “There must be an easier way.”
Well, there is.

You can use an abbreviated list of variable names almost anywhere you can use a regular variable
list. In functions, abbreviated lists must be preceded by the keyword OF (for example, SUM(OF
Cat8 - Cat12)). Otherwise, you simply replace the regular list with the abbreviated one.

Numbered range lists Variables that start with the same characters and end with consecutive
numbers can be part of a numbered range list. The numbers can start and end anywhere as long as
the number sequence is complete. For example, the following INPUT statement shows a variable
list and its abbreviated form:

Variable list Abbreviated list
INPUT Cat8 Cat9 Cat10 Cat11 Cat12; INPUT Cat8 - Cat12;

Name range lists Name range lists depend on the internal order, or position, of the variables
in the SAS data set. This is determined by the order of appearance of the variables in the DATA
step. For example, in this DATA step, the internal variable order would be Y A C M R B:

DATA example;
 INFILE 'c:\MyRawData\TestData.dat';
 INPUT y a c m r;
 b = c + r;
RUN;

To specify a name range list, put the first variable, then two hyphens, then the last variable. The
following PUT statements show the variable list and its abbreviated form using a named range:

Variable list Abbreviated list
PUT y a c m r b; PUT y -- b;

If you are not sure of the internal order, you can find out using PROC CONTENTS with the
POSITION option. The following program will list the variables in the permanent SAS data set
DISTANCE sorted by position:

LIBNAME mydir 'c:\MySASLib';
PROC CONTENTS DATA = mydir.distance POSITION;
RUN;

Use caution when including name range lists in your programs. Although they can save on typing,
they may also make your programs more difficult to understand and to debug.

Name prefix lists Variables that start with the same characters can be part of a name prefix
list, and can be used in some SAS statements and functions. For example:

Chapter 3: Working with Your Data 89

Variable list Abbreviated list
DogBills = SUM(DogVet,DogFood,Dog_Care); DogBills = SUM(OF Dog:);

Special SAS name lists The special name lists, _ALL_, _CHARACTER_, and _NUMERIC_
can also be used any place you want either all the variables, all the character variables, or all the
numeric variables in a SAS data set. These name lists are useful when you want to do something
like compute the mean of all the numeric variables for an observation (MEAN(OF _NUMERIC_)),
or list the values of all variables in an observation (PUT _ALL_;).

Example The radio station KBRK wants to modify the DATA step from the previous section,
which changes all 9s to missing values. Now, instead of changing the original variables, they create
new variables (Song1 through Song5), which will have the new missing values. This program also
computes the average score using the MEAN function. Here is the permanent SAS data SONGS:

 City Age wj kt tr filp ttr
1 Albany 54 3 9 4 4 9
2 Richmond 33 2 9 3 3 3
3 Oakland 27 3 9 4 2 3
4 Richmond 41 3 5 4 5 5
5 Berkeley 18 4 4 9 3 2

Here is the new program:

LIBNAME radio 'c:\MySASLib';
DATA fixsongs;
 SET radio.songs;
 ARRAY new (5) Song1 - Song5;
 ARRAY old (5) wj -- ttr;
 DO i = 1 TO 5;
 IF old(i) = 9 THEN new(i) = .;
 ELSE new(i) = old(i);
 END;
 AvgScore = MEAN(OF Song1 - Song5);
RUN;

Note that both ARRAY statements use abbreviated variable lists; array NEW uses a numbered
range list and array OLD uses a name range list. Inside the iterative DO loop, the Song variables
(array NEW) are set equal to missing if the original variable (array OLD) had a value of 9.
Otherwise, they are set equal to the original values. After the DO loop, a new variable, AvgScore, is
created using an abbreviated variable list in the function MEAN. The resulting DATA set includes
variables from both the OLD array (wj -- ttr) and NEW array (Song1 - Song5):

 City Age wj kt tr filp ttr Song1 Song2 Song3 Song4 Song5 i AvgScore
1 Albany 54 3 9 4 4 9 3 . 4 4 . 6 3.66667
2 Richmond 33 2 9 3 3 3 2 . 3 3 3 6 2.75000
3 Oakland 27 3 9 4 2 3 3 . 4 2 3 6 3.00000
4 Richmond 41 3 5 4 5 5 3 5 4 5 5 6 4.40000
5 Berkeley 18 4 4 9 3 2 4 4 . 3 2 6 3.25000

90 The Little SAS Book

3.18 Using Variable Names with Special Characters
Traditionally, SAS variable names must start with a letter or underscore, must be 32 characters or
less, and cannot contain any special characters including spaces. If you find this too restrictive, then
you will be glad know that it is possible to change the rules that SAS uses for variable names.

VALIDVARNAME= system option The system option VALIDVARNAME= controls
which set of rules are used for variable names. If VALIDVARNAME= is set to V7, then variable
names must conform to the traditional rules described above. If VALIDVARNAME= is set to ANY,
then variable names may contain special characters including spaces, and may start with any
character. Either way, variable names must still be 32 or fewer characters long. There are several
ways that the value of the VALIDVARNAME= system option can be set (see Section 1.7). To find
the default value for your SAS session, submit the following and read the SAS log:

PROC OPTIONS OPTION = VALIDVARNAME;
RUN;

To set the rules for naming variables for your current SAS session, use the OPTIONS statement

OPTIONS VALIDVARNAME = value;

where value is V7 to use traditional SAS naming rules, or ANY to use the more liberal rules.

Name Literals If you are using ANY rules, and you have variable names that contain spaces or
special characters, then you must use the name literal form for variable names in your programs.
Simply enclose the name in quotes followed by the letter N:

'variable-name'N

Example The following tab-delimited file contains information about camping equipment: the
item name, country of origin, the online price, and the store price. Notice that some of the column
headings contain spaces or special characters.

Item Country of Origin Online$ Store$
3 Person Dome Tent China 308 359
8 Person Cabin Tent USA 399 399
Camp Bag USA 119 129
Down Mummy Bag China 449 469
Deluxe Sleep Pad Canada 169 179
Ultra-light Pad USA 69 74

The following program sets VALIDVARNAME= equal to ANY and reads the file using PROC
IMPORT. Then in a DATA step, it uses the name literal form of the variable names to subset the
data using an IF statement, and it creates a new variable that is the difference between the store
and online prices.

*Read data using ANY rules for variable names;
OPTIONS VALIDVARNAME = ANY;
PROC IMPORT DATAFILE = 'c:\MyRawData\CampEquip.txt'
 OUT = campequipment_any REPLACE;
RUN;

Chapter 3: Working with Your Data 91

DATA campequipment_any;
 SET campequipment_any;
 IF 'Country of Origin'N = 'USA';
 PriceDiff = 'Store$'N - 'Online$'N;
RUN;

Here is the data set CAMPEQUIPMENT_ANY. Notice the special characters and spaces in the
variable names.

 Item Country of Origin Online$ Store$ PriceDiff
1 8 Person Cabin Tent USA 399 399 0
2 Camp Bag USA 119 129 10
3 Ultra-light Pad USA 69 74 5

If you decide that you don’t want to use name literals, then you could choose to rename the
variables so that the names conform to V7 rules. You can do this using a RENAME data set option.
(See Section 6.10.)

Another option is to use V7 naming rules when creating the data set. If V7 rules are in place, then
PROC IMPORT will convert spaces and special characters in headings to underscores when
creating variable names. The following program is like the first one only with VALIDVARNAME=
set to V7. Notice how now, instead of spaces and special characters, the variable names contain
underscores and the name literal form of the variable name is not needed.

*Read data using V7 rules for variable names;
OPTIONS VALIDVARNAME = V7;
PROC IMPORT DATAFILE = 'c:\LSB6\Data\CampEquip.txt'
 OUT = CampEquipment_V7 REPLACE;
RUN;
DATA CampEquipment_V7;
 SET CampEquipment_V7;
 IF Country_of_Origin = 'USA';
 PriceDiff = Store_ - Online_;
RUN;

Here is the data set CAMPEQUIPMENT_V7.

 Item Country_of_Origin Online_ Store_ PriceDiff
1 8 Person Cabin Tent USA 399 399 0
2 Camp Bag USA 119 129 10
3 Ultra-light Pad USA 69 74 5

If you are reading data files (either through PROC IMPORT or the XLSX LIBNAME engine) that
contain headings which include spaces or special characters, we recommend that you always
specify the VALIDVARNAME= rules that you want to use in an OPTIONS statement. That way
your programs will always run no matter what the default value is for VALIDVARNAME= on
your system.

92 The Little SAS Book

	Contents
	Introducing SAS Software
	About This Book
	About These Authors
	Chapter 3 Working with Your Data

