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| Part I: Introduction




| Recommender system (RecSys)

An information filtering technique, which provides users with information that he/she
may be interested in.
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| Problem formulation

* Input: Items (e.g. video corpus), user-item interactions (e.g., user view history and content)
or other data source (e.g., user/video features)

e Output: A few items (e.g. videos) are filtered or ranked and then show them to the users.

e Evaluation: system utility (e.g., ranking accuracy)

user history and context
. millions . hundreds

video candidate |hun
corpus generation >
—>

other candidate sources

RQ:
Whether the model makes
accurate predictions?

video
features




| Classic models

Basic assumption: Minimize the gap between historical feedback (observational) and

prediction
[ [ e

4 2 8 ¥ a4 5 8
LI o 6 6
observational data model prediction

= Collaborative filtering

= Latent factor models
= Data driven: The model performance is highly depend

= Shallow representation on the quality of observational data.

= Matrix factorization
« Factorization machine = Consider utility such as model accuracy only
= Deep representation

= Neural collaborative filtering

= Graph neural representation
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| Shortcomings of classic models

Classic RecSys models are data-driven, and they consider utility, such as model accuracy only,
cause:

* Unrobustness:
* Data bias, data missing and data noise cause unrobust model training
 The model may be affected by hidden factors (e.g., social media)

* Lack explainability
 Classic RecSys retain black-box nature.
» User feedback usually entangles users’ real interests, hard to generate post-hoc explanations
* Does not consider explanation evaluation

* Fairness
e Data may contain sensitive information such as user genders
* Does not consider fairness evaluation

3



| Trustworthy Recommender Systems

Aims to competent RecSys that incorporates the core aspects of trustworthiness such as
explainability, fairness, robustness, privacy and controllability.

ceane”®

Robustness Explainability Fairness

= Improve system responsibility
= Gain trust from users
= Promote recommender systems for social good

Three-layer hierarchy to trustworthy RecSys

Trustworthy Al: A Computational Perspective, ArXiv: 2107.06641, 2021.
Tutorial: https://sites.google.com/msu.edu/trustworthy-ai/

ZUTS
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| Robustness Issue

Data bias: the distribution of observational data is different from the ideal data distribution
(experimental).

= Data bias is everywhere:
= Biased data collection
= e.g., uneven exposure of items
= User give wrong feedback to items
= e.g., user conformity

Data distribution Skewed distribution of

for testing training data

0.13%  2.14% 13.59%  34.13%  34.13% 13.59% 214% 0.13%

L7 (f) L)




| Robustness Issue

Data missing: unobserved user-item feedback cannot be collected

is missing

—— Probability distribution of x in G
—— Probability distribution of x outside G

Observed |
—_—

-
interactions a\

| |ix mean: 29.5

;i x.mean:47.1

Observed Items (.Pé

Partially observed feedbacks °

14 s 1Ll

0 100 200 300 400 500
(b) Distribution on Epinions.

Unobserved ltems

= Data missing causes uneven item exposure
= The trained model will further deprive the exposure of unexposed items
= i.e, the poor gets poorer phenomenon



| Robustness Issue

Data noise: observed user feedback or context information may be noisy, not reflecting the
actual satisfaction of user
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| Explainability Issue

Black-box recommendation model creates confusion and doubt

Recommendation

|_5 o)

From Black-box
to “Transparent”

||’Q

'

—> Content provider

o

—> Customer Support

Y

L\

=

—> System designer

—> Data scientist

R

\l/
)

—> Regulator

| How do | answer the system output for
7customer?
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| Explainability Issue

User persuadableness

* provide personalized recommendations complemented with explanations to answer: Why such items
are recommended to you?

Because you follow jaychou

amazon
¥ : ~—
ﬁ kingone_wang_one -

=  Win users’ trust in recommender systems

= Improve recommendation persuasiveness

Model diagnostics
* help system developer understand what can be done to improve the model



| Fairness Issue

Refer to unfair allocations of recommended items, caused by e.g., gender discrimination

The database shows
women need maternity leave

Male Jobhunter \
é = Arecommender system should avoid discriminatory
‘ behaviors in human-machine interaction.

= A recommender system should ensure fairness in
decision-making.

Female Jobhunter




| Causal learning v.s. Correlation learning

Classic data-driven models: Causal learning models:
e Data-driven models may infer spurious * Relationships where an intervention in
correlations which would not reflect user one variable (cause) contributes to a
true preference and are not interpretable. change in another variable (effect).

PD(uvi) ~ PT(/UHZ)

A 4

True preference distribution Skewed preference distribution
on testing data on training data
(stable causation) (spurious correlation ) Causation




| Causal learning v.s. Correlation learning

causal learning

N
observations & Causal Inference
Fo e : (c.g. Experimental studics, Structural
( causal model ] Zﬁrn(g::s&md Causal Models, Reinforcement Leaming)
: Bl T interventions O
: causal reasoning s , / D e
| /
subsumes | ’ / 3
| . subsume Vé
| | - f
: statistical learning : /
| Y e o=
Y m O . > O
s observations
[ e e }w{ & outcomes J Explainability Daclilon-miaking
fc.g. Interpretability, Bias analysis)

probabilistic reasoning

Causal reasoning & probabilistic reasoning

(e.g. Personalised Medicine)

three pillars of causal inference

*



| Causal learning

Background

Some people who contributed to causality theories:

Donald Judea Donald Dawid Clive

Rubin Pearl Campbell Philip Granger
(*1943) (*1936) (1916-1996) (*1946) (1934-2009)

= Causality theory helps to decide when, and how, causation can be inferred from domain
knowledge and data.

= The basis of a causality theory is causal model that provides a language to encode causal
relationships



| Causal learning

THE
OF
W H Y ACM Turing Award 2011:
"For fundamental contributions to

artificial intelligence through the

development of a calculus for
probabilistic and causal reasoning.”

THE NEW SCIENCE
OF CAUSE AND EFFECT

JUDEA PEARL
AND DANA MACKENZIE

BASIC BOOKS
New York




| Causal learning

Causal inference is driven by applications and is at the core of statistics (the science of using
information discovered from collecting, organising, and studying
numbers)

* Many origins of causal inference
= Biology and genetics;
= Agriculture;
= Epidemiology, public health, and medicine;
= Economics, education, psychology, and other social sciences;
= Artificial intelligence and computer science;
= Management and business.



| Causal learning

What does causal learning bring?

Level (Symbol)

Typical Activity

Typical Questions

Examples

1. Association

P(ylx)

Seeing

What is? How would
seeing X change my
belief inY?

What does a symptom
tell me about a disease?
What does a survey tell
us about the election
results?

2. Intervention
P(yldo(x), 2)

Doing,
Intervening

What if? What if I do X?

What if I take aspirin,
will my headache be
cured? What if we ban
cigarettes?

3. Counterfactuals
P(y,Ix', y')

Imagining,
Retrospection

Why? Was it X that
caused Y? What if I had
acted differently?

Was it the aspirin that
stopped my headache?
Would Kennedy be alive
had Oswald not shot
him? What if I had not
been smoking the past
two years?




| Causal learning

(1) oecivion 2] it 3 3] comivrn

What is there? What will happen? What would happen?
e.g., what month do items  €.8., how many items will  e.g., how much more items we
sell the most? we sell in next month sell if we run more google ads
R A — A Intervention
A
?
/




| Causal learning

Intervention
* Assess the causal effect of some potential cause (e.g. an action, or event) on some outcomes

Random Selection
J J

O3

ROUP 1 GROUP 2

O Causal effect

* Individual level: individual treatment effect (ITE) on the outcome for
instance is the difference between its two potential outcomes

7, =Yl -Y2

N J
* Population level: average treatment effect (ATE) is computed over the
whole population

Targ = Eyeyltul = Eyeylyldo(1)] — Eyey[yldo(0)]

Randomized Controlled Trial




| Causal learning

Example
* |TE: Instance:  Bob
) 11 milk
Treatment: D = { 0 no milk
Observed outcome: Y?!: asleep at 5: 00 am
Causal effect of milk:
Comparison
* ATE:

Tare = Eyeyltul = IEueU[Yu1 - Yz?]

* ATE only requires to query interventional distributions but not counterfactuals

*



| Causal learning

Confounder
* The assignment is not random in observational study (real-world senario)

Single cause Common cause: age
 Randomized Controlled Trial
* Randomly assign the control/treated
* Gold-standard for studying causal learning
* Time consuming and more ethical concerns

@
@
* Observational study 6) = T (9 —

e Assignment is NOT random
* Confounding bias is presented |deal case Reality

| 1

Randomized controlled trial Observational study




| Causal learning

Confounder

* Notation

e Treatment: the variable to be manipulated
e Qutcome: the variable that can be observed with some responses
* Confounder: the variable influences both treatment and outcome

° Example *****
Treatment Outcome

influenc& Aﬂuence

Restaurant type

Causality e.g., the number of customers

E[Y(1)] - E[Y(0)] £ E[Y |T = 1] — E[Y |T = 0]

Confounder

3



| Causal learning

Counterfactual

* Answers the “whatif” question: e.g., what would the expected value of the demand Q
have been if we were set the priceat P = p;?

Decision boundary

* Example:

[Counterfactual explanation]
A minimal set of influential factors that, if
applied, flip the model decision.




| Causal learning

Counterfactual
* Application in Explainable RecSys

4 A
Minimum
Recommend changes? Flip recommendation
------- -> ————————) o e e
-
e
Explanation: Ly
Had i, has the attributes of [“Long
Color? Brand? slave”, “Black”, “Dior”], the
Category? recommend item would change to i,

Explainable Recommendation

3



| Causal learning

Counterfactual

e Application in Trustworthy RecSys

disparity

) . . Female =0
. what if ﬁ
O disparity S"’ Q — Ey:ius=0 =0.1
AR 05 - attributes change? Discount = 0

Female =0

- =01

J
S
12
disparity (3
S
13

If “Female” attribute is removed, i
model fairness could be improved. -

Counterfactual Explanation

Fairness diagnostics

3



| Causal learning for Trustworthy RecSys

Why causal learning

@ G -g WHAHISIS RS

(7 \\ ' COUNTEREACTUAL @
™ ¢
AN
Training Real World
Deconfounding for robustness Counterfactual reasoning Counterfactual reasoning
for explainability for fairness
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| Causal learning approaches

For observational studies, we need a definition of causality that does not hinge on (explicit)
randomisation

Pioneers in causal inference have come up with three definitions/languages:
e Stuctual Causal Model (SCM) - Judea Pearl
e Potential Outcome Framework (RCM) - Donald Rubin

*



| Stuctual Causal Model (Pearl’s SCM)

Structural equation X = fx(Ex) ] N
e Each function represents a causal process D = fp(X,Ep)

Y = fy(X,D,Ey)
Causal graph Structural equation Causal graph

* Adirected acyclic graph

* Error terms are jointly independent

Interventional and counterfactual logic 5 .
* An intervention on variable D by do(D)

* New graph is generated by removing all edges from parents to x;

. intervention
e Causal effect computation

3
£ UTS




| Stuctual Causal Model (Pearl’s SCM)

Causal graph

* |s developed based on assumptions

* Deconfounding: blocks bad effects from confounders (causal identification)

DATA

: ~
° that... sure...
L K\ ' )\ y
S — //’ \\\

Making a causal graph makes
those assumptions explicit.

We all make causal assumptions
when looking at data.

intervention

Control the confounder
True causal effect:
E[Y(1)] - E[Y(0)] =
E[Y|T =1,C]—-E[Y|T =0,C]




| Potential Outcome Framework (Rubin Causal Model)

Potential outcome

* Definition: Given the treatment and outcome t, vy, if the instance i is under treatment t, the potential

outcome of instance is yt

e Aims to directly model ITE or ATE:

Potential outcomes: notation

Y;
dO(T — 1) ldo(T 1)

Y

ITE: i =y} —y)
ATE: 1 = E;[t;] = Ei[y{ — /]

1
= EZ(yil - )
=1

¢ RCM works under

The stable unit treatment value assumption (SUTVA)
Consistency
Ilgnorability (unconfoundedness)



| SCM v.s. RCM

SCMs and RCMs are essentially interchangeable and equivalent to each other

In the RCM, causal effects of variables other than treatment and instrumental variables are not
defined.

 We can model causal effects of interest without knowing the complete causal graph.

RCM requires strong assumptions, such as unconfoundedness

e Cannot be applied to deconfounding learning.

In SCM, causal effects of any variable can be studied.

* When studying causal relationships between arbitrary sets of variables, SCM is often the
preferred approach.

3



| Our researches on causality-inspired Recommendation

Bias Handling for Recommendation Robustness
e Selection bias mitigation in Social Recommendation

* Distribution shift in Reinforcement learning based-Recommendation

Explainable Recommendation
* Semantics-Aware Intent Learning - Explain users’ intents with item semantics

e Counterfactual explanation for Recommendation

Fairness-aware Recommendation

e Counterfactual explanation for Fairness

3



|Se|ection bias mitigation in Social Recommendation

ACM Transactions on

Be Causal: De-biasing Confounding in Recommendation ATERPEED (I

e Data missing causes selection bias
* In real-world social recommendations, the unobserved items are missing not at random (MNAR)

* e.g., Users tend to watch movies watched by their friends

« The MNAR results selection bias, which is attributed to the presence of confounders (social network)

social network

@
confounder 2@ @

/ ©
/ \ o B — BEEE

treatment —>» outcome

observed ratings
exposure

3



|Se|ection bias mitigation in Social Recommendation

Be Causal: De-biasing Confounding in Recommendation

e (Causal graph-based model framework

inherent
confounder factors

|~

exposure |—> rating |

Designed Causal graph

ZUTS
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Social network confounder

user
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Model framework

ACM Transactions on
Knowledge Discovery from
Data

Quantify social confounders with
Social network confounder model
Build the exposure mechanism with
Exposure model

Learn balanced representation
independent of exposure with
Deconfounder model

Using balanced representation for
Rating prediction




| Distribution shift in RL based-Recommendation

Off-policy Learning over Heterogeneous Information for Recommendation O S EB S

Off-policy learning suffers the bias issue caused by the policy distribution shift

policy

(1\ IS{tea\f;eard \L \
2 @
USL Q Recommender
Ot Ay
=
-
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Learn target

bias issue

y logging actions
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g
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User

Gauod 193ae L

- e RSN -- QR Y

Logged actions Recommend actions J

Poor gets poorer phenomenon



| Distribution shift in RL based-Recommendation

Off-policy Learning over Heterogeneous Information for Recommendation O SWEBZ

e Real-world context information could be useful to augment partially observed data and infer users'
potential preference

& Q..

Logged actions

Heterogeneous Information Network

* Counterfactual Risk Minimization to answer how much reward would be received if a new policy had
been deployed, instead of the original policy



| Distribution shift in RL based-Recommendation

° [ L] 4 THE B
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We design three steps for the HIN-enhanced off-policy learning

* Co-attentive state, action and context representation learning
e HIN-augmented policy learning through aggregating context-aware state representation
e Counterfactual Risk Minimization to correct the discrepancy between target policy and logging policy




| Distribution shift in RL based-Recommendation

HIN-augmented policy learning O g

* Context-aware state, action representation learning (Attention mechanism):
BY = Relu (Wys; + Wy_qCu—q +by)

ﬁ? = Relu (Waet + Wu_)aCu_)a + ba)
§t = ﬂl; ® St

& =Pl oe

* Context-aware policy learning:

T u—a
u—a u—>a) — €xp (et+1st )
La,en, exp (e s ™9

St - §t @ Cu—a ® ét ”O(at | St

CRM-based unbiased optimization (cIPS estimator):

T u—a
1 ~ (mglar|s
L?IPS(”G)= T E ("t—)tt)mm{ (o | %) C}
t=1

7o (ar | s¢7¢)

R(0) = By |y Litps (0) |

=Ex,

g (ar | s37°) }]

m (ar | s§79)°

T
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| Semantics-Aware Intent Learning

IEEE TRANSACTIONS ON

Causal Disentanglement for Semantics-Aware Intent Learning ~ KNOWLEDGEAND

e Disentangle users' true interests

e Explain users’ intents by item semantics (contexual information)

Users Uy Possible Latent Intents

k: passing the time Rich semantics

Interactions

k3: shopping for others

k,: social events .-

Heterogenous Information Network (HIN)

*



| Semantics-Aware Intent Learning

IEEE TRANSACTIONS ON

Causal Disentanglement for Semantics-Aware Intent Learning ~ KNOWLEDGE AND |

Challenge

* The complexity in heterogeneous information display skewed distributions, thus can bias the user
preference and prediction score

Attribute missing pct. of different

aspects
19.7%

. g |,

3 2 Va -

= —>)

2 " rating:

E = 2.0/5.0 12

< 0.14%

@ — e
S 5 g Harry Potter Racing with the Moon
3 < B Director: Steve Kloves Director: Steve Kloves
a Type: Romantic

Actor: Sean Penn

Contribution
* Provides semantics to user intents (Interpretability)

* Debias bias stemmed from heterogenous information network (Robustness)



| Semantics-Aware Intent Learning

IEEE TRANSACTIONS ON

Causal Disentanglement for Semantics-Aware Intent Learning ~ KNOWLEDGEAND

The SCM model for disentangling learning

@ Context representation
*@P User representation
@ Item representation
'(E/ Sematic-aware Intent
@ Prediction score

Context information in Cis the confounder since it is the common cause for user information U and E

e Backdoor adjustment can block the path from Cto U, thus can remove the confounding bias

3
£ UTS




| Semantics-Aware Intent Learning

IEEE TRANSACTIONS ON

Causal Disentanglement for Semantics-Aware Intent Learning  KNOWLEDGE AND
DATA ENGINEERING

Backdoor adjustment
* Backdoor criterion
Definition. A set of variables W satisfies the backdoor criterion relative to Tand Y if :

1. W blocks all backdoor paths from Tto Y
2. W does not contain any descendants of T

C satisfies Backdoor criterion: C blocks backdoor path from U (treatment) to Y (outcome)

* Backdoor adjustment via do-operator:

 As C satisfies the backdoor criterion, the do-operator P(y | do(u)) is the true causality of U on Y,
equal to blocking path C— U

3



IEEE TRANSACTIONS ON

| Semantics-Aware Intent Learning
KNOWLEDGE AND

Causal Disentanglement for Semantics-Aware Intent Learning
DATA ENGINEERING

Backdoor Adjustment for removing bias

Inference space for C
F ra m ewo r k interactions Pre-trained Model for Context Information:
semantics O—® S e « S
Director: Steve Kioves & 18 | HE E 1 c-
: Romanti I LUEE : < \
mee ™ 8 e £(6)) e
3 iz - c c ,/‘
2 2 . AMA TMT i N ilm
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wyiydyiqus(UMDMU)
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Disentanglement Learning for User Intent P(Y |do(u® = 0)
v

idiip(MDM) |
ayiyas(AMA)
098 | 032 | 019 |

ay o
= X ‘
o tirto(TMT) <l
i

HIN s W% "ol
disentangled intents ,,,O 028 | 007 [ 092 | 4,
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Inference space for U

Ro:Ba:po-pa

udofu® = 0)) fuido(u® = 1)

<

Causal Disentanglement Model
Inference space for E

We design two steps for the unbiased semantic-aware user intents learning
Semantic aware user intents learning: Learn semantic aware representation E with HIN information

Fine-tune E with Causal intervention for easing the bias stemmed from HIN

*



| Counterfactual Explanation for Recommendation

Reinforced Path Reasoning for Counterfactual Explainable Recommendation

* Bridge the gap of generating item attribute-based counterfactual explanations from Knowledge Graphs
(KGs)

Users [ — WrittenBy
— ProducedBy

Items =PIy [Item Attribute-based Counterfactual Explanation]
— StarringBy A minimal set of item attributes that, if applied, flip the

recommendation decision.
Item attributes pi1Z] P29 P3= P45

Fig. 1: Toy example of inferring item attribute-based counter-
factual explanations from knowledge graphs.



| Counterfactual Explanation for Recommendation

Reinforced Path Reasoning for Counterfactual Explainable Recommendation

Counterfactual item j ~ 75 (O )

IVI . [
O d e I fra mewor k /" Reinforcement Learning Agent
[ |-->7|'E(9E)(--| Original interaction: (1, e¢)
i Counterfactual item: €.+ 1
g Path: (e, — €} — )

Counterfactual Path Sampler
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El i ] g {Textual Explanation

g - (O@Oh,, (@@O)h., et = H--- g <~ g‘dr bgshﬁ; mr;llge’] ﬂfe[q_mg

5 i ve

g Item embedding Item embedding E E ‘i;o ; ditem change to €.,

4 - (QOO. (OO0} -

8 Amﬂmte embeddmg Attribute embeddmg / e it tem fist il \ |
N g "\ Recommendation Model 4 . Explanation /

« Two base models: Graph Iearnlng module and Recommendatlon model
« Counterfactual path sampler uses entity embeddings to sample paths as actions for reinforcement learning

« Reinforcement learning agent learns the explanation policy by optimizing the cumulative counterfactual
rewards of deployed actions from the sampler.

ZUTS



| Counterfactual Explanation for Fairness

Counterfactual Explanation for Fairness in Recommendation

* Inferring attribute-level counterfactual explanation for fairness.

 Why counterfactual explanation: Existing methods generate fairness explanations by selecting top-n
features with the largest values, which may introduce pseudo-explanations (i.e., cannot find minimal

explanations)

attributes change? Discount = 0

|- minimal explanation

_ disparity (—
. . . Female =0 .
O  gipuivy S EL:U.s_o = [ S] |mm) pseudo-explanation
e
S
L3

e - g -
7’
7’ A
4 \
1 \
| 1
' . /1 If“Female” attribute is removed,
. Aging . : . .
SO h I ' model fairness could be improved.
~ _- LS N

) attribute space - Counterfactual Explanation

S
~~
~~

-
-

Figure 1: Toy example of inferring attribute-level counter-
factual explanation for fairness.



| Counterfactual Explanation for Fairness

Counterfactual Explanation for Fairness in Recommendation

———

ar = {es,e1, -}  S¢

Model framework overview

H, k Explanation|policy 7T i

v

----------
P L HCf ~~~~~~
-
u, K S

Counterfactual Fairness
Explanation Model

Graph Representation | 7
h’LL7 h’U7 eU7 ev CRM V@R 7I'E

Iogglng policy 7T 0

Figure 2: The proposed CFairER framework.
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| Causal-Neural Connection for Recommendation

e Future Direction |

e (Causal-Neural connection for enhancing neural networks, e.g., GCN
* Explicitly model the causality between each of the nodes with the GCN instead of
modeling the neighbor correlations

 Complete Pearl Causal Hierarchy (PCH), i.e., “seeing” (layer 1), “doing” (2), and
“imagining” (3) for causal-neural connection expressiveness

(a) (b)

Unobserved Learne(_i/
Nature/Truth Hypothesized
Structural Causal Neural
Model M* Model N
VAN 7T\
PCH:| £; ﬁé L3 Ly || Lo ‘ L3 ‘
. <

.
.
e
el
el
.
.

......

. .

..........

-------------

Training (L] = L1)




| Dynamic Bias Mitigation

* Future Direction Il
* Dynamic bias
e Biases are usually dynamic rather than static
* Online updating of debiasing strategies
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sl *— Other-Food  a—A Starbucks
! ,' “ —® Asian <4—d City Park
X , 'V |»—> Mexican V¥ American
— ' )
2 10 ! 4+—+4 Coffee Sh. - - Corp. Office
U] = : i
= ~
©
s |
Q.
(@]
B 5




