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Preface

The data era is here. It provides a wealth of opportunities, but also poses 
challenges for the effective and effi cient utilization of the huge data. Data 
mining research is necessary to derive useful information from large data. 
The book reviews applied data mining from theoretical basis to practical 
applications. 

The book consists of three main parts: Fundamentals, Advanced 
Data Mining, and Emerging Applications. In the fi rst part, the authors 
fi rst introduce and review the fundamental concepts and mathematical 
models which are commonly used in data mining.There are fi ve chapters 
in this section, which lay a solid base and prepare the necessary skills and 
approaches for further understanding the remaining parts of the book. The 
second part comprises three chapters and addresses the topics of advanced 
clustering, multi-label classifi cation, and privacy preserving, which are 
all hot topics in applied data mining. In the fi nal part, the authors present 
some recent emerging applications of applied data mining, i.e., data 
stream,recommender systems, and social tagging annotation systems.This 
part introduces the contents in a sequence of theoretical background, state-
of-the-art techniques, application cases, and future research directions. 

This book combines the fundamental concepts, models, and algorithms 
in the data mining domain together, to serve as a reference for researchers 
and practitioners from as diverse backgrounds as computer science, 
machine learning, information systems, artifi cial intelligence, statistics, 
operational science, business intelligence as well as social science disciplines. 
Furthermore, this book provides a compilation and summarization for 
disseminating and reviewing the recent emerging advances in a variety of 
data mining application arenas, such as advanced data mining, analytics, 
internet computing, recommender systems as well as social computing 
and applied informatics from the perspective of developmental practice 
for emerging research and practical applications. This book will also be 
useful as a textbook for postgraduate students and senior undergraduate 
students in related areas.
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This book features the following topics:

 • Systematically presents and discusses the mathematical background 
and representative algorithms for data mining, information retrieval, 
and internet computing.

 • Thoroughly reviews the related studies and outcomes conducted on 
the addressed topics.

 • Substantially demonstrates various important applications in the 
areas of classical data mining, advanced data mining, and emerging 
research topics such as stream data mining, recommender systems, 
social computing.

 • Heuristically outlines the open research issues of interdisciplinary 
research topics, and identifi es several future research directions that 
readers may be interested in.

April 2013 Guandong Xu
 Yu Zong

Zhenglu Yang
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CHAPTER 1

Introduction 

In the last couple of decades, we have witnessed a signifi cant increase in 
the volume of data in our daily life—there is data available for almost all 
aspects of life. Almost every individual, company and organization has 
created and can access a large amount of data and information recording 
the historical activities of themselves when they are interacting with the  
surrounding world. This kind of data and information helps to provide the  
analytical sources to reveal the evolution of important objects or trends, 
which will greatly help the growth and development of business and 
economy. However, due to the bottleneck of technological advance and 
application, such potential has yet been fully addressed and exploited in 
theory as well as in real world applications. Undoubtedly, data mining is a 
very important and active topic since it was coined in the 1990s, and many 
algorithmic and theoretical breakthroughs have been achieved as a result of 
synthesized efforts of multiple domains, such as database, machine learning, 
statistics, information retrieval and information systems. Recently, there has 
been an increasing focus shift in data mining from algorithmic innovations 
to application and marketing driven issues, i.e., due to the increasing 
demand from industry and business, more and more people pay attention 
to applied data mining. This book aims at creating a bridge between data 
mining algorithms and applications, especially the newly emerging topics of 
applied data mining. In this chapter, we fi rst review the related concepts and 
techniques involved in data mining research and applications. The layout 
of this book is then described from three perspectives—fundamentals, 
advanced data mining and emerging applications. Finally the readership 
of this book and its purpose is discussed.

1.1 Background
We are often overwhelmed with various kinds of data which comes from the 
pervasive use of electronic equipment and computing facilities, and whose 
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size is continuously increasing. Personal computing devices are becoming 
cheap and convenient, so it is easy to use it in almost every aspect of our 
daily life, ranging from entertainment and communication to education and 
political life. The dropping down of prices of electronic storage drivers allows 
us to purchase disks to save information easily, which had to be discarded 
earlier due to the expense reason. Nowadays database and information 
systems have been widely deployed in industry and business, and they 
have the capability to record the interactions between users and systems, 
such as online shoppings, banking transactions, fi nancial decisions and so 
on. The interactions between users and database systems form an important 
data source for business analysis and business intelligence. To deal with the 
overload of information, search engines have been invented as a useful tool 
to help us locate and retrieve the needed information over the Internet. The 
user navigational and retrieval activities that have been recorded in Web 
log servers, undoubtedly can convey the browsing behavior and hidden 
intent of users that are explicitly unseen, without in-depth analysis. Thus, 
the widespread use of high-speed telecommunication infrastructures, the 
easy affordability of data storage equipment, the ubiquitous deployment 
of information systems and advanced data analysis techniques have put us 
in front of an unprecedented data-intensive and data-centric world. We are 
facing an urgent challenge in dealing with the growing gap between data 
generation and our understanding capability. Due to the restricted volume 
of human brain cells, an individual’s reasoning, summarizing and analyses 
is limited. On the contrary, with the increase in data volume, the proportion 
of data that people can understand decreases. These two facts bring a real 
demand to tackle the realistic problem in current information society—it is 
almost impossible to simply rely on human labors to accomplish the data 
analysis more scalable and intelligent computational methods are called for 
urgently. Data mining is emerging as one kind of such technical solutions 
to address these challenges and demands.

1.1.1 Data Mining—Defi nitions and Concepts

Data mining is actually an analytical process to reveal the patterns or 
trends hidden in the vast data ocean of data via cutting-edge computational 
intelligence paradigms [5]. The original meaning of “mining” represents 
the operation of extracting precious resources such as oil or gold from 
the earth. The combination of mining with the word “data” refl ects the 
in-depth analysis of data to reveal the knowledge “nuggets” that are not 
exposed explicitly in the mass of data. As the undiscovered knowledge is 
of statistical nature, via statistical means, it is sometimes called statistical 
analysis, or multivariate statistical analysis due to its multivariate nature. 
From the perspective of scientifi c research, data mining is closely related 



to many other disciplines, such as machine learning, database, statistics, 
data analytics, operational research, decision support, information systems, 
information retrieval and so on. For example, from the viewpoint of data 
itself, data mining is a variant discipline of database systems, following 
research directions, such as data warehousing (on storage and retrieval) and  
clustering (data coherence and performance). In terms of methodologies 
and tools, data mining could be considered as the sub-stream of machine 
learning and statistics—revealing the statistical characteristics of data 
occurrences and distributions via computational or artifi cial intelligence 
paradigms. 

Thus data mining is defi ned as the process of using one or more 
computational learning techniques to analyze and extract useful knowledge 
from data in databases. The aim of data mining is to reveal trends and 
patterns hidden in data. Hence from this viewpoint, this procedure is very 
relevant to the term Pattern Recognition, which is a traditional and active 
topic in Artifi cial Intelligence. The emergence of data mining is closely related 
to the research advances in database systems in computer science, especially 
the evolution and organization of databases, and later incorporating more 
computational learning approaches. The very basic database operations 
such as query and reporting simulate the very early stages of data mining. 
Query and reporting are very functional tools to help us locate and identify 
the requested data records within the database at various granularity levels, 
and present more informative characteristics of the identifi ed data, such 
as statistical results. The operations could be done locally and remotely, 
where the former is executed at local end-user side, while the latter over 
a distributed network environment, such as the Intranet or Internet. Data 
retrieval, similar to data mining, extracts the needed data and information 
from databases. In order to fi lter out the needed data from the whole 
data repository, the database administrators or end-users need to defi ne 
beforehand a set of constraints or fi lters which will be employed at a later 
stage. A typical example is the marketing investigation of customer groups 
who have bought two products consequently by using the “and” joint 
operator to form a fi lter, in order to identify the specifi c customer group. This 
is viewed as a simplest business means in marketing campaign. Apparently, 
the database itself offers somewhat surface methods for data analysis and 
business intelligence but far from the real business requirements such as 
customer behavioral modeling and product targeting.

Data mining is different from data query and retrieval because it drills 
down the in-depth associations and coherences between the data occurrence 
within the repository that are impossible to be known beforehand or via 
using basic data manipulating. Instead of query and retrieval operations, 
data mining usually utilizes more complicated and intelligent data analysis 
approaches, which are “borrowed” from the relevant research domains 
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such as machine learning and artifi cial intelligence. Additionally, it also 
allows the supportive decision made upon the judgment on the data itself, 
and the knowledgeable patterns derived. A similar data analytical method 
is called Online Analytical Processing (OLAP), which is actually a graphic 
data reporting tool to visualize the multidimensional structure within 
the database. OLAP is used to summarize and demonstrate the relations 
between available variables in the form of a two-dimensional table. Different 
from OLAP, data mining brings together all the attributes and treats them 
in a unifi ed manner, revealing the underlying models or patterns for real 
applications, such as business analytics. In one word, OLAP is more like 
a visualization instrument, whereas, data mining refl ects the analytical 
capability for more intelligent use. Although data query, retrieval and 
OLAP and data mining have owned a lot of commonplaces, data mining 
is distinctive from the counterparts due to its outstanding and competent 
advantages of analysis. 

Knowledge Discovery in Database (KDD) is a name frequently used 
interchangeably together with data mining. In fact, data mining has a 
broader coverage of applicability while KDD is more focused on the 
extension of scientifi c methods in data mining. In addition to performing 
data mining, a typical KDD process also includes the stages of data 
collection, data preprocessing and knowledge utilization, which form a 
whole cycle of data preparation, data mining or knowledge discovery and 
knowledge utilization. However it is indeed hard to draw a clear border to 
differentiate these two kinds of disciplines since there is a big overlapping 
between the two from the perspectives of not only the research targets 
and approaches, but also the research communities and publications. 
More theoretically, data mining is more about data objects and algorithms 
involved, while KDD is a synergy of knowledge discovery process and 
learning approaches used. In this book, we mainly focus our description 
on data mining, presenting a generic and broad landscape to bridge the 
gap between theory and application.

1.1.2 Data Mining Process

The key components within a data mining task consist of the following 
subtasks:

 • Defi nition of the data analytical purposes and application domain.
 •  Data organization and design structure, data preparation, consolidation 

and integration.
 •  Exploratory analysis of the data and summarization of the preliminary 

results.



 •  Computational learning approach choosing and devising based on 
data analytical purposes.

 •  Data mining process using the above approaches.
 •  Knowledge representation of results in the form of models or 

patterns.
 •  Interpretation of knowledge patterns and the subsequent utilization 

in decision supports.

1.1.2.1 Defi nition of Aims

Defi nition of aims is to clearly specify the analytical purpose of data mining, 
i.e., what kinds of data mining tasks are intended to be conducted, what 
major outcomes would be discovered, what the application domain of the 
data mining task is, and how the fi ndings are interpreted based on domain 
expertise. A clear statement of the problem and the aims to be achieved are 
the prerequisite for setting up the mining task correctly and the key for 
fulfi lling the aims successfully. The defi nition of the analytical aims also 
prepares a guidance for the data organization and the engaged data mining 
approaches in the following subtasks:

1.1.2.2 Design of Data Schema

This step is to design the data organization upon which the data analysis 
will be performed. Normally in a data analysis task, there are a handful of 
features involved, and these features can be accommodated into various 
data models. Hence choosing an appropriate data schema and selecting 
the related attributes in the chosen schema is also a crucial procedure in 
the success of data mining. Mathematically, there exist some well studied 
models, such as Vector Space Model (VSM) and graph model to choose 
from. We need to choose a practical model to refl ect and accommodate the 
engaged features. Features are another important consideration in data 
mining, which is used to describe the data objects and characterize the 
individual property of the data. For example, given a scenario of customer 
credit assessment in banking applications, the considered attributes could 
include customers’ age, education background, salary income, asset 
amount, historic default records and so on. To induce the practical credit 
assessment rules or patterns, we need to carefully select the possibly relevant 
attributes to form the features of the chosen model. There are a number of 
feature selection algorithms developed in past studies of data mining and 
machine learning. An additional concern is the diverse residency of data in 
multiple databases due to the current distributed computing environment 
and popularization of internal or external networking. In other words, the 
selected data attributes are distributed in different databases locally and 
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remotely. Thus data federation and consolidation is often a necessary step 
to deal with the heterogeneity and homogeneity of multiple databases. 
All these operations comprise the data preparation and preprocessing of 
data mining. 

1.1.2.3 Exploratory Analysis

Exploratory analysis of the data is the process of exploring the basic statistical 
property of the data involved. The aim of this preliminary analysis is to 
transform the original data distribution to a new visualization form, which 
can be better understood. This step provides the start to choose appropriate 
data mining algorithms since the suitability of various algorithms is largely 
dependent on the data integrity and coherence. The exploratory analysis 
of the data is also able to identify the anomalous data—the entries which 
exhibit distinctive distribution or occurrence, sometimes also called outliers, 
and the missing data. This can trigger the additional data preprocessing 
operations to assure the data integrity and quality. Another purpose of 
this step is to suggest the need for extraction of additional data since the 
obtained data is not rich enough to conduct the desired tasks. In short, this 
stage works as a prerequisite to connect the analytical aims and data mining 
algorithms, facilitating the analytical tasks and saving the computational 
overhead for algorithm design and refi nement.

1.1.2.4 Algorithm Design and Implementation

Data mining algorithm design and implementation is always the most 
important part in the whole data mining process. As discussed above, 
the selection of appropriate analytical algorithms is closely related to the 
analytical purposes, the organization of data, the model of analysis task 
and the initial exploratory analysis on the constructed data source. There 
is a wide spectrum of data mining algorithms that can be used to tackle 
the requested tasks, so it is essential to carefully select the appropriate 
algorithms. The choice of data mining algorithms are mainly dependent 
on the used data itself and the nature of the analytical task. Benefi ting from 
the advances and achievements in related research communities, such as 
machine learning, computational intelligence and statistics, many practical 
and effective paradigms have been devised and employed in a variety of 
applications, and great successes have been made. We can categorize these 
methods into the following approaches:

 •  Descriptive approach: This kind of approach aims at giving a descriptive 
statement on the data we are analyzing. To do this, we have to look 
deeply into the distribution of the data, reveal the mutual relations 



among the objects, and capture the common characteristics of data 
distribution via machine intelligence methods. For example, clustering 
analysis is used to partition data objects into various groups unknown 
beforehand based on the mutual distance or similarity between them. 
The criterion of such partition is to meet the optimal condition that 
the objects within the same group are close to each other, while the 
objects from different groups should be separated far enough. Topic 
modeling is a newly emerging descriptive learning method to detect 
the topical coherence with the observations. Through the adjustment 
of the statistical model chosen for learning and comparison between 
the observation and model derivation, we can identify the hidden topic 
distribution underlying the observations and associations between 
the topics and the data objects. In this way all the objects are treated 
equally and an overall and statistical description is derived from the 
machine learning process. As they mainly rely on the computational 
power of machines without human interactions, sometimes we also 
call them unsupervised approaches.

 •  Predictive approach: This kind of approach aims at concluding some 
operational rules or regulations for prediction. By generalizing the 
linkage between the outcome and observed variables, we can induce 
some rules or patterns of classifi cations and predictions. These rules 
help us to predict the unknown status of new targeted objects or 
occurrence of specifi c results. To accomplish this, we have to collect 
suffi cient data samples in advance, which have been already labeled 
with the specifi c input labels, for example, the positive or negative in 
pathological examination or accept and reject decision in bank credit 
assessment. These approaches are mainly developed in the domain of 
machine learning such as Support Vector Machine (SVM), decision tree 
and so on. The learned results from such approaches are represented 
as a set of reasoning conditions and stored as rule to guide the future 
prediction and judgment. One distinct feature of this kind approaches is 
the presence of labeled samples beforehand and the classifi er are trained 
upon the training data, so it is also called supervised approaches (i.e., 
with prior knowledge and human supervision). Predictive approaches 
account for majority of analytical tasks in real applications due to its 
advantage for future prediction. 

 •  Evolutionary approach: The above two kinds of approaches are often 
used to deal with the static data, i.e., data collected is restricted within 
a specifi c time frame. However, with the huge refl ux of massive data 
available in a distributed and networked environment, the dynamics 
becomes a challenging characteristic in data mining research. This 
calls for evolutionary data mining algorithms to deal with the change 
of temporal and spatial data within the database. The representative 
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methods and applications include sequential pattern mining and data 
stream mining. The former is to determine the signifi cant patterns from 
the sequential data observations, such as the customer behavior in online 
shopping, whereas the latter was proposed to tackle the diffi culties 
within data stream applications, such as RFID signal sampling and 
processing. The main difference of this with other approaches is the 
outstanding capability to deal with continuous signal generating and 
processing in real time with affordable computational cost, such as 
limited memory and CPU usage. Recently, such approaches highlight 
this new active and potential trends within data mining research.

 •  Detective approach: the descriptive and predictive approaches are 
focused on the exploration of the global property of data rather 
than that of local information. Sometimes the analysis at the smaller 
granularity will provide us more informative fi ndings than the overall 
description or prediction. Detective approaches are the means to 
help us uncover the local mutual relations at a lower level. In data 
mining, association rule mining or sequential pattern mining are able 
to fulfi ll such requirement within a specifi c application domain, such 
as business transaction data or online shopping data.

Although four categories from the perspectives of data objects and 
analysis aims are presented, it is worth noting that the dividing lines 
between all these approaches are blurred and overlap one other. In real 
applications, we often take a mixture of these approaches to satisfy the 
requirements of complexity and practicality. More often, using the existing 
approaches or a mixture of them is a far cry from the success of analytical 
tasks in real applications, resulting in the desire to design new innovative 
algorithms and implementing them in real scenarios with satisfactory 
performance. This inspires researchers from different communities to make 
more efforts and fully utilize the fi ndings from relevant areas. 

Another signifi cant issue attracting our attention is the increasingly 
popularity of data mining in almost every aspect of business, industry and 
society. The real analytical questions have raised a bunch of new challenges 
and opportunities for researchers to form the synergy to undertake applied 
data mining, which lays down a solid foundation and a real motivation for 
this new book.

1.1.3 Data Mining Algorithms

1.1.3.1 Descriptive and Predictive

Due to the broad applications and unique intelligent capability of data 
mining, a huge amount of research efforts have been invested and a wide 



spectrum of algorithms and techniques have been developed [5]. In general, 
from the perspective of data mining aims, data mining algorithms can be 
categorized into two main streams: descriptive and predictive algorithms. 
Descriptive approaches aim to reveal the characteristic data structure hidden 
in the data collection, while the predictive methods build up prediction 
models to forecast the potential attribute of new data subjects instead.

There are various descriptive data mining approaches that have been 
devised in the past decades, such as data characterization, discrimination, 
association rule mining, clustering and so on. The common capability of 
such kinds of approaches is to present the data property and describe the 
data distribution in a mathematical manner, which is not easily seen at 
surface analysis. Clustering is a typical descriptive algorithm, indicating 
the aggregation behavior of data objects. By defi ning the specifi c distance 
or similarity measure, we are able to capture the mutual distance or 
similarity between different data points (as shown in Fig.1.1.1). In contrast, 
predictive approaches mainly exploit the prior knowledge, such as known 
labels or categories, to derive a prediction “model” that best describes 
and differentiates data classes. As the model is learned from the available 
dataset by using machine learning approaches, the process is also called 
model training, while the dataset used is therefore named training data 
(i.e., data objects whose class label is known). After the model is trained, it 
is used to predict the class label for new data subjects based on the actual 
attribute of the data.

Figure 1.1.1: Cluster analysis

1.1.3.2 Association Rule and Frequent Pattern Mining

Association rule mining [1] is one of the most important techniques in the 
data mining domain, which is to reveal the co-occurrence relationships of 
activities or observations in a large database or data repository. Suppose in a 

   Introduction 11



12 Applied Data Mining

traditional e-marketing application, the purchase consequence of “milk” and 
“bread” is a commonly observed pattern in any supermarket case, therefore 
resulting the generating of association rule bread, milk . Of course, there 
may exist a large number of association rules in a huge transaction database 
dependent on the setting of the satisfactory (or confi dence) threshold. The 
algorithm of association rule mining is thus designed to extract such rules 
as are hidden in the massive data based on the analyst’s targets. Figure 
1.1.2 gives a typical association rule set in a market-basket transaction 
campaign. Here you can observe the common occurrence of various items 
in supermarket transaction records, which can be used to improve the 
market profi t by adjusting the item-shelf arrangement in daily supermarket 
management. Frequent pattern mining is one of the most fundamental 
research issues in data mining, which aims to mine useful information 
from huge volumes of data [4]. The purpose of searching such frequent 
patterns (i.e., association rules) is to explore the historical supermarket 
transaction data, which is indeed to discover the customer behavior based 
on the purchased items.

Figure 1.1.2: An example of association rules

1.1.3.3 Clustering

Clustering is an approach to reveal the group coherence of data points and 
capture the partition of data points [2]. The outcome of clustering operation 
is a set of clusters, in which the data points within the same cluster have 
a minimum mutual distance, while the data points belonging to different 
clusters are suffi ciently separated from each other. Since clustering is 
performed relying on the data distribution itself, i.e., the mutual distance, 
but not associated with other prior knowledge, it is also called unsupervised 
algorithm. Figure 1.1.3 depicts an example of cluster analysis of debt-income 
relationships.

Bread, Milk1

2

3

4

5

Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

Bread, Milk, Diaper, Coke



1.1.3.4 Classifi cation and Prediction

Classifi cation is a typical predictive method. The aim of classifi cation is to 
determine the class (or category) label for data objects based on the trained 
model (sometimes also called classifi er). It is hard to completely differentiate 
the prediction approach from classifi cation. In the data mining community, 
one commonly agreed opinion is that classifi cation is mainly focused on 
determining the categorical attribute of data objects, while prediction is 
focused on continuous-values attributes instead, i.e., it is used to predict 
the analog values of data objects. As the model learning and prediction is 
performed under the prior knowledge of data (e.g., the known label), this 
kind of method has an alternative name—supervised learning approaches. 
Figure 1.1.4 presents an example of supervised learning based on prior 
knowledge—label, where the positive and negative objects are marked 
by round and cross symbols respectively. The aim of classifi cation is to 
build up a dividing line to differentiate the positive and negative points 
from the existing labels. A number of classifi cation algorithms have been 
well studied in data mining and machine learning domains, the common 
and well used approaches include Decision Trees, Rule-based Induction, 
Genetic Algorithms, Neural Networks, Bayesian Networks, Support Vector 
Machine (SVM), C4.5 and so on. Figure 1.1.5 is a constructed decision tree 
from the observations of whether it is appropriate to play tennis depending 
on the weather conditions, such as sunny, rainy, windy, humid conditions 
and so on. In this example, the classifi cation rules are expressed as a set of 
If-Then clauses. Apart from decision tree, classifi er is another important 
classifi cation model. Based on the different classifi cation requirement, 
various classifi ers could be trained upon the supervision, e.g., Fig. 1.1.6 
demonstrates an example of linear and nonlinear classifi er in the above 
example of debt-income relationship case.

Figure 1.1.3: Example of unsupervised learning
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Figure 1.1.4: Example of supervised learning

Figure 1.1.5: Example of decision tree

Figure 1.1.6: Linear and nonlinear classifi cation

IncomeIncome

Debt Debt

Income

Income Income

Debt
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1.1.3.5 Advanced Data Mining Algorithms

Despite the great success of data mining techniques applied in different 
areas and settings, there is an increasing demand for developing new data 
mining algorithms and improving state-of-the-art approaches to handle 
the more complicated and dynamical problems. In the meantime, with the 
prevalence and deployment of data mining in real applications, some new 
research questions and emerging research directions have been raised in 
response to the advance and breakthrough of theory and technology in 
data mining. Consequently, applied data mining is becoming an active and 
fast progressing topic which has opened up a big algorithmic space and 
developing potential. Here we list some interesting topics, which will be 
described in subsequent chapters.

 1.  High-Dimensional Clustering In general, data objects to be clustered are 
described by points in a high-dimensional space, where each dimension 
corresponds to an attribute/feature. A distance measurement between 
any two points is used to measure their similarity. The research has 
shown that the increasing dimensionality results in the loss of contrast 
in distances between data objects. Thus, clustering algorithms that 
measure the similarity between data objects based on all attributes/
features tend to degrade in high dimensional data spaces. In additional, 
the widely used distance measurement usually perform effectively 
only on some particular subsets of attributes, where the data objects 
are distributed densely. In other words, it is more likely to form dense 
and reasonable clusters of data objects in a low-dimensional subspace. 
Recently, several algorithms for discovering data object clusters in 
subsets of attributes have been proposed, and they can be classifi ed 
into two categories: subspace clustering and projective clustering [8].

 2.  Multi-Label Classifi cation In the framework of classifi cation, each 
object is described as an instance, which is usually a feature vector 
that characterizes the object from different aspects. Moreover, each 
instance is associated with one or more labels indicating its categories. 
Generally speaking, the process of classifi cation consists of two main 
steps: the fi rst is training a classifi er or model on a given set of labeled 
instances, the second is using the learned classifi er to predict the 
label of unseen instance. However, the instances might be assigned 
with multiple labels simultaneously, and problems of this type are 
ubiquitous in many modern applications. Recently, there has been a 
considerable amount of research concerned with dealing with multi-
label problems and many state-of-the-art methods have already been 
proposed [3]. It has also been applied to lots of practical applications, 
including text classifi cation, gene function prediction, music emotion 
analysis, semantic annotation of video, tag recommendation, etc.
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 3.  Stream data mining Data stream mining is an important issue because 
it is the basis for many applications, such as network traffi c, web 
searches, sensor network processing, etc. The purpose of data stream 
mining is to discover the patterns or structures from the continuous 
data, which may be used later to infer events that could happen. The 
special characteristics for stream data is its dynamics that commonly 
stream data can be read only once. This property limits many 
traditional strategies for analyzing stream data, because these works 
always assume that the whole data could be stored in limited storage. 
In other words, stream data mining could be thought as computation 
on very large (unlimited large) data.

 4.  Recommender Systems These are important applications because they 
are essential for many business models. The purpose of recommender 
systems is to suggest some good items to people based on their 
preference and historical purchased data. The basic idea of these 
systems is that if users shared the same interests in the past, they 
will, with high probability, have similar behaviors in the future. The 
historical data which refl ects users’ preferences may consist of explicit 
ratings, web click log, or tags [6]. It is obviously that personalization 
plays a critical role in an effective recommendation system [7].

1.2 Organization of the Book
This book is structured into three parts. Part 1: Fundamentals, Part 2: 
Advanced Data Mining and Part 3: Emerging Applications. In Part 1, we 
mainly introduce and  review the fundamental concepts and mathematical 
models which are commonly used in data mining. Starting from various data 
types, we introduce the basic measures and data preprocessing techniques 
applied in data mining. This part includes fi ve chapters, which will lay down 
a solid base and prepare the necessary skills and approaches for further 
understanding the subsequent chapters. Part 2 covers three chapters and 
addresses the topics of advanced clustering, multi-label classifi cation and 
stream data mining, which are all hot topics in applied data mining. In 
addition, we report some recently emerging application directions in applied 
data mining. Particularly, we will discuss the issues of privacy preserving, 
recommender systems and social tagging annotation systems, where we 
will structure the contents in a sequence of theoretical background, state-
of-the-art techniques, application cases and future research questions. We 
also aim to highlight the applied potential of these challenging topics.



1.2.1 Part 1: Fundamentals

1.2.1.1 Chapter 2

Mathematics plays an important role in data mining. As a handbook 
covering a variety of research topics mentioned in related disciplines, it is 
necessary to prepare some basic but crucial concepts and backgrounds for 
readers to easily proceed to the following chapters. This chapter forms an 
essential and solid base to the whole book.

1.2.1.2 Chapter 3

Data preparation is the beginning of the data mining process. Data mining 
results are heavily dependent on the data quality prepared before the 
mining process. This chapter discusses related topics with respect to data 
preparation, covering attribute selection, data cleaning and integrity, data 
federation and integration, etc.

1.2.1.3 Chapter 4

Cluster analysis forms the topic of Chapter 4. In this chapter, we classify the 
proposed clustering algorithms into four categories: traditional clustering 
algorithm, high-dimensional clustering algorithm, constraint-based 
clustering algorithm, and consensus clustering algorithm. The traditional 
data clustering approaches include partitioning methods, hierarchical 
methods, density-based methods, grid-based methods, and model-based 
methods. Two different kinds of high-dimensional clustering algorithms are 
also described. In the constraint-based clustering algorithm subsection, the 
concept is defi ned; the algorithms are described and comparison of different 
algorithms are presented as well. Consensus clustering algorithm is based on 
the clustering results and is a new way to fi nd robust clustering results.

1.2.1.4 Chapter 5

Chapter 5 describes the methods for data classifi cation, including decision 
tree induction, Bayesian network classifi cation, rule-based classifi cation, 
neural network technique of back-propagation, support vector machines, 
associative classification, k-nearest neighbor classifiers, case-based 
reasoning, genetic algorithms, rough set theory, and fuzzy set approaches. 
Issues regarding accuracy and how to choose the best classifi er are also 
discussed.
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1.2.1.5 Chapter 6

The original motivation for searching frequent patterns (i.e., association 
rules) came from the need to analyze supermarket transaction data, which 
is indeed to discover customer behavior based on the purchased items. 
Association rules present the fact that how frequently items are bought 
together. For example, an association rule “beer-diaper (70%)” indicates 
that 70% of the customers who bought beer also bought diapers. Such 
rules can be used to make predictions and recommendations for customers 
and design then store layout. Stemming from the basic itemset data, rule 
discovery on more general and complex data (i.e., sequence, tree, graph) has 
been thoroughly explored for the past decade. In this chapter, we introduce 
the basic techniques of frequent pattern mining on different types of data, 
i.e., itemset, sequence, tree, and graph.

1.2.2 Part 2: Advanced Data Mining

1.2.2.1 Chapter 7

This chapter reports the latest research progress in clustering analysis 
from three different aspects: (1) improve the clustering result quality of 
heuristic clustering algorithm by using Space Smoothing Search methods; 
(2) use approximate backbone to capture the common optimal information 
of a given data set, and then use the approximate backbone to improve 
the clustering result quality of heuristic clustering algorithm; (3) design 
a local signifi cant unit (LSU) structure to capture the data distribution in 
high-dimensional space to improve the clustering result quality based on 
kernel estimation and spatial statistical theory.

1.2.2.2 Chapter 8

Recently, there has been a considerable amount of research dealing with 
multi-label problems and many state-of-the-art methods have already been 
proposed. It has also been applied to lots of practical applications. In this 
chapter, a comprehensive and systematic study of multi-label classifi cation 
is carried out in order to give a clear description of what multi-label 
classifi cation is, and what are the basic and representative methods, and 
what are the future open research questions.

1.2.2.3 Chapter 9

Data stream mining is the process of discovering structures or rules from 
rapid continuous data, which can commonly be read only once with limited 
storage capabilities. The issue is important because it is the basis of many 



real applications, such as sensor network data, web queries, network traffi c, 
etc. The purpose of the study on data stream mining is to make appropriate 
predictions, by exploring the historical stream data. In this chapter, we 
present the main techniques to tackle the challenge.

1.2.3 Part 3: Emerging Applications

1.2.3.1 Chapter 10

Privacy-preserving data mining is an important issue because there is an 
increasing requirement of storing personal data for users. The issue has been 
thoroughly studied in several areas such as the database community, the 
cryptography community, and the statistical disclosure control community. 
In this chapter, we will discuss the basic concepts and main strategies of 
privacy-preserving data mining.

1.2.3.2 Chapter 11

Recommender systems present people with interesting items based on 
information from other people. The basic idea of these systems is that 
if users shared the same interests in the past, they will also have similar 
behaviors in the future. The information that other people provide may 
come from explicit ratings, tags, or reviews. Specially, the recommendations 
may be personalized to the preferences of different users. In this chapter, 
we introduce the basic concepts and strategies for recommender systems.

1.2.3.3 Chapter 12

With the popularity of social web technologies social tagging systems 
have become an important application and service. The social web data 
produced by the collaborative practice of mass provides a new arena in 
data mining research. One emerging research trend in social web mining 
is to make use of the tagging behavior in social annotation systems for 
presenting the most demanded information to users—i.e., personalized 
recommendations. In this chapter, we aim at bridging the gap between 
social tagging systems and recommender systems. After introducing the 
basic concepts in social collaborative annotation systems and reviewing 
the advances in recommender systems, we address the research issues of 
social tagging recommender systems.

1.3 The Audience of the Book
This book not only combines the fundamental concepts, models and 
algorithms in the data mining domain together to serve as a referential 
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handbook to researchers and practitioners from as diverse backgrounds 
as Computer Science, Machine Learning, Information Systems, Artifi cial 
Intelligence, Statistics, Operational Science, Business Intelligence as well as 
Social Science disciplines but also provides a compilation and summarization 
for disseminating and reviewing the recently emerging advances in a 
variety of data mining application arenas, such as Advanced Data Mining, 
Analytics, Internet Computing, Recommender Systems, Information 
Retrieval as well as Social Computing and Applied Informatics from the 
perspective of developmental practice for emerging researches and real 
applications. This book will also be useful as a text book for postgraduate 
students and senior undergraduate students in related areas.

The salient features of this book is that it:

 •  Systematically presents and discusses the mathematical background 
and representative algorithms for Data Mining, Information Retrieval 
and Internet Computing.

 •  Thoroughly reviews the related studies and outcomes conducted on 
the addressed topics.

 •  Substantially demonstrates various important applications in the areas 
of classical Data Mining, Advanced Data Mining and emerging research 
topics such as Privacy Preserving, Stream Data Mining, Recommender 
Systems, Social Computing etc.

 •  Heuristically outlines the open research questions of interdisciplinary 
research topics, and identifi es several future research directions that 
readers may be interested in.
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CHAPTER 2

Mathematical Foundations

Data mining is a data analysis process involving in data itself, operators 
and various numeric metrics. Before we go deeply into the algorithm and 
technique part, we fi rst summarize and present some relevant basic but 
important expressions and concepts from mathematical books and open 
available sources (e.g., Wikipedia).

2.1 Organization of Data
As mentioned earlier, data sets come in different forms [1]: these forms are 
known as schemas. The simplest form of data is a set of vector measurements 
on objects o(1), · · · , o(n). For each object we have measurements of p variables 
X1, · · · ,Xp. Thus, the data can be viewed as a matrix with n rows and p 
columns. We refer to this standard form of data as a data matrix, or simply 
standard data. We can also refer to data set as a table.

Often there are several types of objects we wish to analyze. For example, 
in a payroll database, we might have data both of employees, with variables 
of name, department-name, age and salary, and about departments with 
variables such as department-name, budget and manager. These data 
matrices are connected to each other. Data sets consisting of several such 
matrices or tables are called multi-relational data.

But some data sets do not fi t well into the matrix or table form. A 
typical example is a time series, which can use only a related ordered data 
type named event-sequence. In some applications, there are more complex 
schemas, such as graph-based model, hierarchical structure, etc.

To summarize, in any data mining application it is crucial to be aware 
of the schema of the data. Without such an awareness, it is easy to miss 
important patterns in the data, or perhaps worse, to rediscover patterns 
that are part of the fundamental design of the data. In addition, we must 
be particularly careful about data schemas.
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2.1.1 Boolean Model
There is no doubt that the Boolean model is one of the most useful random 
set models in mathematical morphology, stochastic geometry and spatial 
statistics. It is defi ned as the union of a family of independent random compact 
subsets (denoted in short as “objects”) located at the points of a locally fi nite 
Poisson process. It is stationary if the objects are identically distributed (up 
to their location) and the Poisson process is homogeneous, otherwise it is 
non-stationary. Because the defi nition of set is very intuitive, the Boolean 
model provides an uncomplicated framework for information retrieval 
system users. Unfortunately, the Boolean model has some drawbacks. First, 
the search strategy is based on binary criteria, the lack of the concept of 
document classifi cation is well known, so the search function is limited. 
Second, Boolean expressions have precise semantics, but it is often diffi cult to 
convert the user’s information to Boolean expressions. In fact, most users fi nd 
it is not so easily to converted to a Boolean query information they need. To 
get rid of these defects, Boolean model is still the main model for document 
database system. The major advantage of the Boolean model has a clear and 
simple form, but the major drawback is that complete match will lead to a 
result of too much or too little of the document being returned. As we all 
know, the weight of the index terms fundamentally improves the function of 
the retrieval system, resulting in the generation of the vector model.

2.1.2 Vector Space Model
Vector space model is an algebraic model for representing text documents 
(and any object in general) as vectors of identifi ers, such as, for example, 
index terms. It is used in information fi ltering, information retrieval, 
indexing and relevancy rankings. In vector space model, documents and 
queries are represented as vectors.

Each dimension corresponds to a separate term. The defi nition of term 
depends on the application. Typically, terms are single words, keywords, or 
longer phrases. If words are chosen to be the terms, the dimensionality of 
the vector is the number of words in the vocabulary (the number of distinct 
words occurring in the corpus).

If a term occurs in the document, its value in the vector is non-zero. 
Several different ways of computing these values, also known as (term) 
weights, have been developed. One of the best known schemes is tf-idf 
weighting, and the model is known as term frequency-inverse document 
frequency model. Unlike the term count model, tf-idf incorporates local and 
global information. The weighted vector for document d is vd = (w1,d,w2,d, 
· · · ,wN,d)

T , where term weight is defi ned as:

   wi,d = tfi,d * 
,

log
i d

D
df

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

   (2.1.1)



where tfi,d is the term frequency (term counts) or number of times a term i 
occurs in a document. This accounts for local information; dfi,d = document 
frequency or number of documents containing term i; and D= number of 
documents in a database.

As a basic model, the term vector scheme discussed above has several 
limitations. First, it is very calculation intensive. From the computational 
standpoint it is very slow, requiring a lot of processing time. Second, each 
time we add a new term into the term space we need to recalculate all the 
vectors. For example, computing the length of the query vector requires 
access to every document term and not just the terms specifi ed in the query. 
Other limitations include long documents, false negative matches, semantic 
content, etc. Therefore, this model can have a lot of improvement space.

2.1.3 Graph Model

Graph is a combination of nodes and edges. The nodes represent different 
objects while edges are the inter-connection among them. In mathematics, 
a graph is a pair G = (V,E) of sets such that E  [V]2. The elements of V are 
the nodes of the graph G, the elements of E are its edges. Figure 2.1.1 depicts 
an example of a Graph model.
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Figure 2.1.1: Example of a Graph model

The most typical graph in real world is the global internet, in which 
computers, routers and switches are the nodes while network wires or 
wireless connections are the edges. Similar data sets are easily depicted in the 
form of graph models, since it is one of the most convenient and illustrative 
mathematical models to describe the real world phenomenons.

An important concept in the graph model is the adjacent matrix, usually 
noted as A = (Aij)

   Aij = 
1,
0, otherwise

i j⎧
⎨
⎩

∼
   (2.1.2)
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Here, the sign i ~ j means there is an edge between the two nodes. The 
adjacent matrix contains the structural information of the whole network, 
moreover, it has a matrix format fitting in both simple and complex 
mathematical analysis. For a general case extended, we have A defi ned 
as

   Aij = 
,

0, otherwise
ijw i j⎧

⎨
⎩

∼
   (2.1.3) 

in which wij is the weight parameter of the edge between i and j. The basic 
point of this generalization is the quantifi cation on the strength of the edges 
in different positions.

Another important matrix involved is the Laplacian matrix L = D–A. 
Here, D = Diag(d1, · · · , dn) is the diagonal degree matrix where di = Σn

j=1 Aij is 
the degree of the node i. Scientists use this matrix to explore the structure, 
like communities or synchronization behaviors, of graphs with appropriate 
mathematical tools.

Notice that if the graph is undirected, we have Aij= Aij, or on the other 
side, two nodes share different infl uence from each other, which form a 
directed graph.

Among those specifi c graph models, trees and forests are the most 
studied and applied. An acyclic graph, one not containing any cycles, is 
called a forest. A connected forest is called a tree. (Thus, a forest is a graph 
whose components are trees.) The vertices of degree 1 in a tree are its 
leaves.

Another important model is called Bipartite graphs. The vertices in a 
Bipartite graph can be divided into two disjoint sets U and V such that every 
edge connects a vertex in U to one in V; that is, U and V are independent 
sets. Equivalently, a bipartite graph is a graph that does not contain any 
odd-length cycles. Figure 2.1.2 shows an example of a Bipartite graph:

Figure 2.1.2: Example of Bipartite graph



The two sets U and V may be thought of as of two colors: if one colors 
all nodes in U blue, and all nodes in V green, each edge has endpoints of 
differing colors, as is required in the graph coloring problem. In contrast, 
such a coloring is impossible in the case of a non-bipartite graph, such 
as a triangle: after one node is colored blue and another green, the third 
vertex of the triangle is connected to vertices of both colors, preventing it 
from being assigned either color. One often writes G = (U, V, E) to denote 
a Bipartite graph whose partition has the parts U and V. If |U| = |V |, 
that is, if the two subsets have equal cardinality, then G is called a Balanced 
Bipartite graph.

Also, scientists have established the Vicsek model to describe swarm 
behavior. A swarm is modeled in this graph by a collection of particles 
that move with a constant speed but respond to a random perturbation by 
adopting at each time increment the average direction of motion of the other 
particles in their local neighborhood. Vicsek model predicts that swarming 
animals share certain properties at the group level, regardless of the type of 
animals in the swarm. Swarming systems give rise to emergent behaviors 
which occur at many different scales, some of which are turning out to be 
both universal and robust, as well an important data representation.

PageRank [2] is a link analysis algorithm, used by the Google 
Internet search engine, that assigns a numerical weight to each element 
of a hyperlinked set of documents, such as the World Wide Web, with the 
purpose of “measuring” its relative importance within the set. The algorithm 
may be applied to any collection of entities with reciprocal quotations and 
references. A PageRank results from a mathematical algorithm based on the 
web-graph, created by all World Wide Web pages as nodes and hyperlinks 
as edges, taking into consideration authority hubs such as cnn.com or 
usa.gov. The rank value indicates an importance of a particular page. A 
hyperlink to a page counts as a vote of support. The PageRank of a page is 
defi ned recursively and depends on the number and PageRank metric of 
all pages that link to it (“incoming links”). A page that is linked by many 
pages with high PageRank receives a high rank itself. If there are no links 
to a web page there is no support for that page. The following Fig. 2.1.3 
shows an example of a PageRank:
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2.1.4 Other Data Structures

Besides relational data schemas, there are many other kinds of data that have 
versatile forms and structures and rather different semantic meanings. Such 
kinds of data can be seen in many applications: time-related or sequence data 
(e.g., historical records, stock exchange data, and time-series and biological 
sequence data), data streams (e.g., video surveillance and sensor data, 
which are continuously transmitted), spatial data (e.g., maps), engineering 
design data (e.g., the design of buildings, system components, or inter-rated 
circuits), hypertext and multimedia data (including text, image, video, 
and audio data). These applications bring about new challenges, like how 
to handle data carrying special structures (e.g., sequences, trees, graphs, 
and networks) and specifi c semantics (such as ordering, image, audio and 
video contents, and connectivity), and how to mine patterns that carry rich 
structures and semantics.

It is important to keep in mind that, in many applications, multiple 
types of data are present. For example, in informatics, genomic sequences, 
biological networks, and 3-D spatial structures of genomes may co-exist 
for certain biological objects. Mining multiple data sources of complex 
data often leads to fruitful findings due to the mutual enhancement 
and consolidation of such multiple sources. On the other hand, it is also 
challenging because of the diffi culties in data cleaning and data integration, 
as well as the complex interactions among the multiple sources of such data. 
While such data require sophisticated facilities for effi cient storage, retrieval, 

Figure 2.1.3: Example of PageRank execution
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and updating, they also provide fertile ground and raise challenging 
research and implementation issues for data mining. Data mining on such 
data is an advanced topic.

2.2 Data Distribution

2.2.1 Univariate Distribution

In probability and statistics, a univariate distribution [3] is a probability 
distribution of only one random variable. This is in contrast to a multivariate 
distribution, the probability distribution of a random vector.

A random variable or stochastic variable is a variable whose value is 
subject to variations due to chance (i.e., randomness, in a mathematical 
sense). As opposed to other mathematical variables, a random variable 
conceptually does not have a single, fi xed value (even if unknown); rather, 
it can take on a set of possible different values, each with an associated 
probability. The interpretation of a random variable depends on the 
interpretation of probability:

 •  The objectivist viewpoint: As the outcome of an experiment or event 
where randomness is involved (e.g., the result of rolling a dice, which 
is a number between 1 and 6, all with equal probability; or the sum of 
the results of rolling two dices, which is a number between 2 and 12, 
with some numbers more likely than others).

 •  The subjectivist viewpoint: The formal encoding of one’s beliefs about the 
various potential values of a quantity that is not known with certainty 
(e.g., a particular person’s belief about the net worth of someone like 
Bill Gates after Internet research on the subject, which might have 
possible values ranging between 50 billion and 100 billion, with values 
near the center more likely).

 •  Random variables can be classifi ed as either discrete (i.e., it may assume 
any of a specifi ed list of exact values) or continuous (i.e., it may assume 
any numerical value in an interval or collection of intervals). The 
mathematical function describing the possible values of a random 
variable and their associated probabilities is known as a probability 
distribution. The realizations of a random variable, i.e., the results 
of randomly choosing values according to the variable’s probability 
distribution are called random variates.

A random variable’s possible values might represent the possible 
outcomes of a yet-to-be-performed experiment or an event that has 
not happened yet, or the potential values of a past experiment or event 
whose already-existing value is uncertain (e.g., as a result of incomplete 
information or imprecise measurements). They may also conceptually 
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represent either the results of an “objectively” random process (e.g., rolling 
a dice), or the “subjective” randomness that results from incomplete 
knowledge of a quantity. The meaning of the probabilities assigned to the 
potential values of a random variable is not part of probability theory itself, 
but instead related to philosophical arguments over the interpretation of 
probability. The mathematics works the same regardless of the particular 
interpretation in use.

The basic concept of “random variable” in statistics is real-valued. 
However, one can consider arbitrary types such as boolean values, 
complex numbers, vectors, matrices, sequences, trees, sets, shapes, 
manifolds, functions, and processes. The term “random element” is used 
to encompass all such related concepts. A related concept is the stochastic 
process, a set of indexed random variables (typically indexed by time or 
space). This more general concept is particularly useful in fi elds such as 
computer science and natural language processing where many of the basic 
elements of analysis are non-numerical. These general random variables 
are typically parameterized as sets of real-valued random variables often 
more specifi cally as random vectors.

2.2.2 Multivariate Distribution

In probability theory and statistics, the multivariate normal distribution 
or other multivariate distribution model [4], such as multivariate complex 
Gaussian distribution, is a generalization of the one-dimensional (univariate) 
normal distribution to higher dimensions. One possible defi nition is that 
a random vector is said to be p-variate normally distributed if every linear 
combination of its p components has a univariate normal distribution. 
However, its importance derives mainly from the multivariate central limit 
theorem. The multivariate normal distribution is often used to describe, at 
least approximately, any set of (possibly) correlated real-valued random 
variables each of which clusters around a mean value.

The multivariate normal distribution is undoubtedly one of the most 
well-known and useful distributions in statistics, playing a predominant 
role in many areas of applications. In multivariate analysis, for example, 
most of the existing inference procedures for analyzing vector-valued data 
have been developed under the assumption of normality. In linear model 
problems, such as the analysis of variance and regression analysis, the error 
vector is often assumed to be normally distributed so that statistical analysis 
can be performed using distributions derived from the normal distribution. 
In addition to appearing in these areas, the multivariate normal distribution 
also appears in multiple comparisons, in the studies of dependence of 
random variables, and in many other related areas.



There are, of course, many reasons for the predominance of the 
multivariate normal distribution in statistics. These result from some of its 
most desirable properties as listed below:

 1.  It represents a natural extension of the univariate normal distribution 
and provides a suitable model for many real-life problems concerning 
vector-valued data.

 2.  Even if in an experiment, the original data cannot be fi tted satisfactorily 
with a multivariate normal distribution (as is the case when the 
measurements are discrete random vectors), by the central limit 
theorem, the distribution of the sample mean vector is asymptotically 
normal. Thus the multivariate normal distribution can be used for 
approximating the distribution of the same mean vector in the large 
sample case.

 3.  The density function of a multivariate normal distribution is uniquely 
determined by the mean vector and the covariance matrix of the 
random variable.

 4.  Zero correlations imply independence; that is, if all the correlation 
coeffi cients between two sets of components of a multivariate normal 
variable are zero, then the two sets of components are independent.

 5.  The family of multivariate normal distributions is closed under 
linear transformations and linear combinations. In other words, the 
distributions of linear transformations or linear combinations of 
multivariate normal variables are again multivariate normal.

 6.  The marginal distribution of any subset of components of a multivariate 
normal variable is also multivariate normal.

 7.  The conditional distribution in a multivariate normal distribution 
is multivariate normal. Furthermore, the conditional mean vector 
is a linear function and the conditional covariance matrix depends 
only on the covariance matrix of the joint distribution. This property 
yields simple and useful results in regression analysis and correlation 
analysis.

 8.  For the bivariate normal distribution, positive and negative dependence 
properties of the components of a random vector are completely 
determined by the sign and the size of the correlation coeffi cient. 
Similar results also exist for the multivariate normal distribution. Thus 
it is often chosen as an ideal model for studying the dependence of 
random variables.

2.3 Distance Measures
We now take a short detour to study the general notion of distance 
measures [5].
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2.3.1 Jaccard distance

The Jaccard similarity is a measure of how close sets are, although it is not 
really a distance measure. That is, the closer the sets are, the higher the 
Jaccard similarity, which is

   J(A,B) = 
| | .
| |
A B
A B
∩
∩

   (2.3.1)

Rather, 1 minus the Jaccard similarity is a distance measure, as we shall 
see; it is called the Jaccard distance:

        Jδ(A, B) = 1 − J(A, B) =
| | | | .

| |
A B A B

A B
∪ − ∩

∪
   (2.3.2)

However, Jaccard distance is not the only measure of closeness that 
makes sense. We shall examine in this section some other distance measures 
that have applications.

2.3.2 Euclidean Distance

The most familiar distance measure is the one we normally think of as 
“distance”. An n-dimensional Euclidean space is one where points are 
vectors of n real numbers. The conventional distance measure in this space, 
which we shall refer to as the L2-norm, is defi ned:

 d ([x1, x2, · · · , xn], [y1, y2, · · · , yn]) = 2

1
( ) .

n

i i
i

x y
=

−∑   (2.3.3)

That is, we square the distance in each dimension, sum the squares, 
and take the positive square root.

It is easy to verify that the fi rst three requirements for a distance 
measure are satisfi ed. The Euclidean distance between two points cannot 
be negative, because the positive square root is intended. Since all squares 
of real numbers are nonnegative, any i such that xi = yi forces the distance 
to be strictly positive. On the other hand, if xi = yi for all i, then the distance 
is clearly 0. Symmetry follows because (xi − yi)

2 = (yi − xi)
2. The triangle 

inequality requires a good deal of algebra to verify. However, it is well 
understood to be a property of Euclidean space: the sum of the lengths of 
any two sides of a triangle is no less than the length of the third side.

There are other distance measures that have been used for Euclidean 
spaces. For any constant r, we can defi ne the Lr-norm to be the distance 
measure defi ned by:



d ([x1, x2, · · · , xn] , [y1, y2, · · · , yn]) = 

1/

1
| | .

r
n

r
i i

i
x y

=

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (2.3.4)

The case r = 2 is the usual L2-norm just mentioned. Another common 
distance measure is the L1-norm, or Manhattan distance. There, the distance 
between two points is the sum of the magnitudes of the differences in each 
dimension. It is called “Manhattan distance” because it is the distance one 
would have to travel between points if one were constrained to travel along 
grid lines, as on the streets of a city such as Manhattan.

Another interesting distance measure is the L∞ -norm, which is the limit 
as r approaches infi nity of the Lr-norm. As r gets larger, only the dimension 
with the largest difference matters, so formally, the L∞ -norm is defi ned as 
the maximum of|xi − yi|over all dimensions i.

2.3.3 Minkowski Distance

The Minkowski distance is a metric on Euclidean space which can be 
considered as a generalization of the Euclidean distance. The Minkowski 
distance of order p between two points

  P = (x1, x2, · · · , xn) and Q = (y1, y2, · · · , yn)  Rn  (2.3.5)

is defi ned as:

   1/

1
( | | )

n
p p

i i
i

x y
=

−∑    (2.3.6)

The Minkowski distance is a metric as a result of the Minkowski 
inequality. Minkowski distance is typically used with p being 1 or 2. The 
latter is the Euclidean distance, while the former is sometimes known as 
the Manhattan distance. In the limiting case of p reaching infi nity we obtain 
the Chebyshev distance:

     

1/

11
lim ( | | ) max | |

n n
p p

i i i ip ii
x y x y

→∞ ==

− = −∑
  (2.3.7)

Similarly, when p reaches negative infi nity we have

  
1/

11
lim ( | | ) min | |

n n
p p

i i i ip ii
x y x y

→−∞ =
=

− = −∑
 (2.3.8)

The Minkowski distance is often used when variables are measured 
on ratio scales with an absolute zero value. Variables with a wider range 
can overpower the result. Even a few outliers with high values bias the 
result and disregard the alikeness given by a couple of variables with a 
lower upper bound.
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2.3.4 Chebyshev Distance

In mathematics, Chebyshev distance is a metric defi ned on a vector space 
where the distance between two vectors is the greatest of their differences 
along any coordinate dimension. It is also known as chessboard distance, 
since in the game of chess the minimum number of moves needed by 
the king to go from one square on a Chessboard to another equals the 
Chebyshev distance between the centers of the squares. The Chebyshev 
distance between two vectors or points p and q, with standard coordinates 
pi and qi, respectively, is

   DChebyshev(p, q) = max | |i ii
p q−    (2.3.9)

This equals the limit of the Lp metrics. In one dimension, all Lp metrics 
are equal—they are just the absolute value of the difference:

   1/

1
lim( | | ) .

n
k k

i ik i
p q

→∞
=

−∑    (2.3.10)

Mathematically, the Chebyshev distance is a metric induced by the 
supremum norm or uniform norm. It is an example of an injective metric. 
In two dimensions, i.e., plane geometry, if the points p and q have Cartesian 
coordinates (x1, y1) and (x2, y2) , their Chebyshev distance is

   DChess = max(|x2 − x1|, |y2 − y1|).  (2.3.11)

In fact, Manhattan distance, Euclidean distance above and Chebyshev 
distance are Minkowski distance in special conditions.

2.3.5 Mahalanobis Distance

In statistics, Mahalanobis distance is another distance measure. It is based 
on correlations between variables by which different patterns can be 
identifi ed and analyzed. It gauges similarity of an unknown sample set to 
a known one. It differs from Euclidean distance in that it takes into account 
the correlations of the data set and is scale-invariant. In other words, it is a 
multivariate effect size. Formally, the Mahalanobis distance of a multivariate 
vector x = (x1, x2, x3, · · · , xN)T from a group of values with mean µ = (µ1, µ2, 
µ3, · · · , µN)T and covariance matrix S is defi ned as:

   DM(x) = 1( ) ( ).Tx S xμ μ−− − μμ    (2.3.12)

Mahalanobis distance can also be defi ned as a dissimilarity measure 

between two random vectors x  and y  of the same distribution with the 
covariance matrix S:



   1( , ) ( ) ( ).Td x y x y S x y−= − −
� �� � �� � ��

  (2.3.13)

If the covariance matrix is the identity matrix, the Mahalanobis distance 
reduces to the Euclidean distance. If the covariance matrix is diagonal, 
then the resulting distance measure is called the normalized Euclidean 
distance:
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2
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i i

i i

x yd x y
s=

−
= ∑

� ��    (2.3.14)

where si is the standard deviation of the xi and yi over the sample set. 
Mahalanobis’ discovery was prompted by the problem of identifying the 
similarities of skulls based on measurements. And now, it is widely used 
in cluster analysis and classifi cation techniques.

2.4 Similarity Measures

2.4.1 Cosine Similarity

In some applications, the classic vector space model is used generally, 
such as Relevance rankings of documents in a keyword search. It can be 
calculated, using the assumptions of document similarities theory, by 
comparing the deviation of angles between each document vector and the 
original query vector where the query is represented as same kind of vector 
as the documents.

An important problem that arises when we search for similar items of 
any kind is that there may be far too many pairs of items to test each pair 
for their degree of similarity, even if computing the similarity of any one 
pair can be made very easy. Finally, we explore notions of “similarity” that 
are not expressible as inter-section of sets. This study leads us to consider 
the theory of distance measures in arbitrary spaces. Cosine similarity is 
often used to compare documents in text mining.

In addition, it is used to measure cohesion within clusters in the 
fi eld of data mining. The cosine distance makes sense in spaces that have 
dimensions, including Euclidean spaces and discrete versions of Euclidean 
spaces, such as spaces where points are vectors with integer components or 
boolean (0 or 1) components. In such a space, points may be thought of as 
directions. We do not distinguish between a vector and a multiple of that 
vector. Then the cosine distance between two points is the angle that the 
vectors to those points make. This angle will be in the range of 0º to 180º, 
regardless of how many dimensions the space has.

We can calculate the cosine distance by fi rst computing the cosine of the 
angle, and then applying the arc-cosine function to translate to an angle in 
the 0–180º range. Given two vectors x and y, the cosine of the angle between 
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them is the dot product of x and y divided by the L2-norms of x and y (i.e., 
their Euclidean distances from the origin). Recall that the dot product of 

vectors x  = [x1, x2, · · · , xn] and y  = [y1, y2, · · · , yn] is 
1

n

i i
i

x y
=

∗∑ , the cosine 
similarity is defi ned as:

   CosSim ( , )
|| || || ||

x yx y
x y

⋅
=

∗

� ��
� ��

� ��    (2.4.1)

We must show that the cosine similarity is indeed a distance measure. 
We have defi ned that the angle of two vector is in the range of 0 to 180, no 
negative similarity value is possible. Two vectors have an angle of zero if 
and only if they are along the same direction but with possible different 
length magnitude. Symmetry is obvious: the angle between x and y is the 
same as the angle between y and x. The triangle inequality is best argued 
by physical reasoning.

One way to rotate from x to y is to rotate to z and thence to y. The sum of 
those two rotations cannot be less than the rotation directly from x to y.

2.4.2 Adjusted Cosine Similarity

Although the prejudices of individuals can be certainly amended by Cosine 
similarity, but only to distinguish the individual differences between the 
different dimensional cannot measure the value of each dimension, it would 
lead to such a situation, for example, the content ratings by 5 stars, two user 
X and Y, on the two resources ratings are respectively (1, 2) and (4, 5), using 
the results of the cosine similarity is 0.98, both are very similar. But with 
the score of X, it seems X don’t like these two resources, and Y. The reason 
for this situation is that likes it more the distance metric is a measure of 
space between each points’ absolute distance with each location coordinates 
directly; and the cosine similarity measure relies on space vector angle and is 
refl ected in the direction of the difference, not location. So the adjust cosine 
similarity appeared. All dimension values are subtracted from an average 
value, such as X and Y scoring average is 3, so after adjustment for (-2, -1) 
and (1,2), then the cosine similarity calculation, -0.8, similarity is negative 
and the difference is not small, but clearly more in line with the reality. 
Based on the above exposition, computing similarity using basic cosine 
measure in item-based case has one important drawback—the difference in 
rating scale between different users are not taken into account. The adjusted 
cosine similarity offsets this drawback by subtracting the corresponding 
user average from each co-rated pair. Formally, the similarity between items 
i and j using this scheme is given by



    sim(i, j) = , ,

2 2
, ,

( ) ( )
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   (2.4.2)

Here –R  is the average of the u-th user’s ratings.

2.4.3 Kullback-Leibler Divergence

In probability theory and information theory, the Kullback-Leibler 
divergence is a nonsymmetric measure of the difference between two 
probability distributions P and Q. KL measures the expected number of extra 
bits required to code samples from P when using a code based on Q, rather 
than using a code based on P. Typically P represents the “true” distribution 
of data, observations, or a precisely calculated theoretical distribution. 
The measure Q typically represents a theory, model, description, or 
approximation of P.

Although it is often intuited as a metric or distance, the KL divergence 
is not a true metric—for example, it is not symmetric: the KL from P to Q 
is generally not the same as the KL from Q to P. However, its infi nitesimal 
form, specifi cally its Hessian, is a metric tensor: it is the Fisher information 
metric.

For probability distributions P and Q of a discrete random variable 
their KL divergence is defi ned to be

      DKL(P   Q) = 
( )( ) In .
( )i

P iP i
Q i∑    (2.4.3)

In words, it is the average of the logarithmic difference between the 
probabilities P and Q, where the average is taken using the probabilities P. 
The KL divergence is only defi ned if P and Q both sum up to 1 and if Q(i) > 
0 for any i is such that P(i) > 0. If the quantity 0 ln 0 appears in the formula, 
it is interpreted as zero. For distributions P and Q of a continuous random 
variable, KL divergence is defi ned to be the integral:

  DKL(P   Q) = ∫ –∞

∞

  
( )( ) In ,
( )

p xp x dx
q x

   (2.4.4)

where p and q denote the densities of P and Q. More generally, if P and Q 
are probability measures over a set X, and Q is absolutely continuous with 
respect to P, then the Kullback-Leibler divergence from P to Q is defi ned 
as

   DKL(P   Q) = ∫X In ,dQdP
dP

   (2.4.5)
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where 
dQ
dp  is the Radon-Nikodym derivative of Q with respect to P, and 

provided the expression on the right-hand side exists. Likewise, if P is 
absolutely continuous with respect  to Q, then

 DKL(P   Q) = ∫X In In .
X

dP dP dPdP dQ
dQ dQ dQ

= ∫    (2.4.6)

which we recognize as the entropy of P relative to Q. Continuing in this 

case, if µ is any measure on X for which p = dP
dµ

 and q = 
dQ
dµ  exist, then the 

Kullback-Leibler divergence from P to Q is given as

   DKL(P   Q) = ∫X 
In pp

q
dµ.  (2.4.7)

The logarithms in these formulae are taken to base 2 if information is 
measured in units of bits, or to base e if information is measured in nats. 
Most formulas involving the KL divergence hold irrespective of log base. 
For probability distributions P and Q of a discrete random variable, their 
KL divergence is defi ned as

   DKL(P   Q) = 
( )( ) In .
( )i

P ip i
Q i∑    (2.4.8)

In other words, it is the average of the logarithmic difference between 
the probabilities P and Q, where the average is taken using the probabilities 
P. The KL divergence is only defi ned if P and Q both sum up to 1 and if 
Q(i) > 0 for any i is such that P(i) > 0. If the quantity 0 ln 0 appears in the 
formula, it is interpreted as zero. For distributions P and Q of a continuous 
random variable, KL divergence is defi ned to be the integral:

   DKL(P   Q) = ∫ –∞

∞

  p(x) ln 
( ) ,
( )

p x dx
q x

   (2.4.9)

where p and q denote the densities of P and Q. More generally, if P and Q 
are probability measures over a set X, and Q is absolutely continuous with 
respect to P, then the Kullback-Leibler divergence from P to Q is defi ned 
as

   DKL(P   Q) = –∫X ln 
dQ dP
dP

,  (2.4.10)

where dQ
dP  is the Radon-Nikodym derivative of Q with respect to P, and 

provided the expression on the right-hand side exists. Likewise, if P is 
absolutely continuous with respect to Q, then

       DKL(P   Q) = ∫X ln
dP dP
dQ

 ∫X 
In ,dP dP dQ

dQ dQ  (2.4.11)



which we recognize as the entropy of P relative to Q. Continuing in this 
case, if µ is any measure on X for which p = dP

dµ  and q = dQ
dµ  exist, then the 

Kullback-Leibler divergence from P to Q is given as

   DKL(P   Q) = ∫X  p ln 
p
q

dµ,   (2.4.12)

The logarithms in these formulae are taken to base 2 if information is 
measured in units of bits, or to base e if information is measured in nats. 
Most formulas involving the KL divergence hold irrespective of log base. 
The Kullback-Leibler divergence is a widely used tool in statistics and 
pattern recognition. In Bayesian statistics the KL divergence can be used 
as a measure of the information gain in moving from a prior distribution 
to a posterior distribution. And the KL divergence between two Gaussian 
Mixture Models (GMMs) is frequently needed in the fi elds of speech and 
image recognition.

2.4.4 Model-based Measures

Distance or similarity functions play a central role in all clustering algorithms. 
Numerous distance functions have been reported in the literature and used 
in applications. Different distance functions are also used for different 
types of attributes (also called variables). A most commonly used distance 
functions for numeric attributes is Manhattan (city block) distance. This 
distance measures in special cases of a more general distance function is 
called the Minkowski distance. But the above distance measures are only 
appropriate for numeric attributes. For binary and nominal attributes (also 
called unordered categorical attributes), we need different functions. Thus, 
an algorithm might be required to test the similarity functions for their 
appropriation on different specifi c models or attributes. Below is a popular 
method to establish the accuracy level of similarity functions.

Consider a graph G(V, E) with the same defi nition mentioned above. 
The multiple links and self-connections are not allowed. For each pair 
of nodes, x, y  V, we assign a score, sxy, according to a given similarity 
measure. Higher score means higher similarity between x and y, and vice 
versa. Suppose G is undirected, the score is also supposed to be symmetry 
as the adjacent matrix, say sxy = syx. All the nonexistent links are sorted in 
a descending order according to their scores, and the links at the top are 
most likely to exist. To test the algorithm’s accuracy, the observed links, E, 
is randomly divided into two parts: the training set, ET, is treated as known 
information, while the probe set, EP, is used for testing and no information 
therein is allowed to be used for prediction. Clearly, E = ET EP and ET  
EP = . We can choose different portion rate of these two sets for the test. To 
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quantify the prediction accuracy, we use a standard metric called precision, 
which is defi ned as the ratio of relevant items selected to the number of items 
selected. We focus on the top L predicted links, if there are Lr relevant links 
(i.e., the links in the probe set), the precision equals Lr/L. Clearly, higher 
precision means higher prediction accuracy, or that the similarity is quite 
convincingly reasonable.

2.5 Dimensionality Reduction
High dimensional datasets present many mathematical challenges as 
well as some opportunities, and are bound to give rise to new theoretical 
developments. One of the problems with high dimensional datasets is 
that, in many cases, not all the measured variables are “important” for 
understanding the underlying phenomena of interest. While certain 
methods can construct predictive models with high accuracy from high 
dimensional data, it is still of interest in many applications to reduce the 
dimension of the original data prior to any modeling of the data.

 In machine learning, dimensionality reduction is the process of 
reducing the number of random variables under consideration, and can 
be divided into feature selection and feature extraction.

Feature selection approaches try to fi nd a subset of the original variables 
(also called features or attributes). Two strategies are fi lter and wrapper 
approaches. See also combinatorial optimization problems. In some cases, 
data analysis such as regression or classifi cation can be done in the reduced 
space more accurately than in the original space.

Feature extraction transforms the data in the high-dimensional space to 
a space of fewer dimensions. The data transformation may be linear, as in 
principal component analysis (PCA), but many nonlinear dimensionality 
reduction techniques also exist.

2.5.1 Principal Component Analysis

Principal component analysis (PCA) is a mathematical procedure that uses 
an orthogonal transformation to convert a set of observations of possibly 
correlated variables into a set of values of linearly uncorrelated variables 
called principal components. The number of principal components is less 
than or equal to the number of original variables. This transformation is 
defi ned in such a way that the fi rst principal component has the largest 
possible variance (that is, accounts for as much of the variability in the data 
as possible), and each succeeding component in turn has the highest variance 
possible under the constraint that it be orthogonal to (i.e., uncorrelated 
with) the preceding components. Principal components are guaranteed to 



be independent only if the data set is jointly normally distributed. PCA is 
sensitive to the relative scaling of the original variables.

Defi ne a data matrix, XT, with zero empirical mean (the empirical 
(sample) mean of the distribution has been subtracted from the data set), 
where each of the n rows represents a different repetition of the experiment, 
and each of the m columns gives a particular kind of datum (say, the results 
from a particular probe). (Note that XT is defi ned here and not X itself, and 
what we are calling XT is often alternatively denoted as X itself.) The singular 
value decomposition of X is X = W VT, where the m × m matrix W is the 
matrix of eigenvectors of the covariance matrix XXT , the matrix  is an 
m × n rectangular diagonal matrix with nonnegative real numbers on the 
diagonal, and the n × n matrix V is the matrix of eigenvectors of XTX. The 
PCA transformation that preserves dimensionality (that is, gives the same 
number of principal components as original variables) is then given by:

YT = XTW = V TWTW = V T,

V is not uniquely defi ned in the usual case when m < n−1, but Y will 
usually still be uniquely defi ned. Since W (by defi nition of the SVD of a real 
matrix) is an orthogonal matrix, each row of YT is simply a rotation of the 
corresponding row of XT . The fi rst column of YT  is made up of the “scores” 
of the cases with respect to the “principal” component, the next column has 
the scores with respect to the “second principal” component, and so on. 
If we want a reduced-dimensionality representation, we can project X down 
into the reduced space defi ned by only the fi rst L singular vectors, WL:

Y = WT
L X = LV

T,

where L = IL×m  with IL×m the L × m rectangular identity matrix. The matrix 
W of singular vectors of X is equivalently the matrix W of eigenvectors of 
the matrix of observed covariances C = XXT,

XXT = W TWT,

Given a set of points in Euclidean space, the fi rst principal component 
corresponds to a line that passes through the multidimensional mean and 
minimizes the sum of squares of the distances of the points from the line. 
The second principal component corresponds to the same concept after all 
correlation with the fi rst principal component has been subtracted from the 
points. The singular values (in ) are the square roots of the eigenvalues 
of the matrix XXT. Each eigenvalue is proportional to the portion of the 
“variance” (more correctly of the sum of the squared distances of the points 
from their multidimensional mean) that is correlated with each eigenvector. 
The sum of all the eigenvalues is equal to the sum of the squared distances 
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of the points from their multidimensional mean. PCA essentially rotates 
the set of points around their mean in order to align with the principal 
components. This moves as much of the variance as possible (using an 
orthogonal transformation) into the fi rst few dimensions. The values in 
the remaining dimensions, therefore, tend to be small and may be dropped 
with minimal loss of information. PCA is often used in this manner for 
dimensionality reduction PCA is sensitive to the scaling of the variables. If 
we have just two variables and they have the same sample variance and are 
positively correlated, then the PCA will entail a rotation by 45 degrees and 
the “loadings” for the two variables with respect to the principal component 
will be equal. But if we multiply all values of the fi rst variable by 100, then 
the principal component will be almost the same as that variable, with a 
small contribution from the other variable, whereas the second component 
will be almost aligned with the second original variable. This means that 
whenever the different variables have different units (like temperature and 
mass), PCA is a somewhat arbitrary method of analysis.

2.5.2 Independent Component Analysis

Independent component analysis (ICA) is a computational method for 
separating a multivariate signal into additive subcomponents supposing 
the mutual statistical independence of the non-Gaussian source signals. 
When the independence assumption is correct, blind ICA separation of 
a mixed signal gives very good results. It is also used for signals that are 
not supposed to be generated by a mixing for analysis purposes. A simple 
application of ICA is the “cocktail party problem”, where the underlying 
speech signals are separated from a sample data consisting of people talking 
simultaneously in a room. Usually the problem is simplifi ed by assuming 
no time delays or echoes. An important note to consider is that if N sources 
are present, at least N observations (e.g., microphones) are needed to get 
the original signals. This constitutes the square case (J = D, where D is the 
input dimension of the data and J is the dimension of the model). Other 
cases of under-determined (J < D) and overdetermined (J > D) have been 
investigated. Linear independent component analysis can be divided into 
noiseless and noisy cases, where noiseless ICA is a special case of noisy 
ICA. Nonlinear ICA should be considered as a separate case.

So the general defi nition is as follows: the data is represented by the 
random vector x = (x1, · · · , xm)T and the components as the random vector 
s = (s1, · · · , sn)

T. The task is to transform the observed data x using a linear 
static transformation W as s = Wx into maximally independent components s 
measured by some function F(s1, · · · , sn) of independence. In Linear noiseless 
ICA model, the components of the observed random vector x = (x1, · · · , xm)T 
are generated as a sum of the independent components sk, k = 1, · · · , n:



xi = ai,1s1 + · · · + ai,ksk + · · · + ai,nsn

weighted by the mixing weights ai,k. The same generative model can be 
written in vectorial form as x = n

k=1 skak, where the observed random vector 
x is represented by the basis vectors ak = (a1,k, · · · , am,k)

T. The basis vectors ak 
form the columns of the mixing matrix A = (a1, · · · , an) and the generative 
formula can be written as x = As, where s = (s1, · · · , sn)

T. Given the model 
and realizations (samples) x1, · · · , xN of the random vector x, the task is 
to estimate both the mixing matrix A and the sources s. This is done by 
adaptively calculating the vectors  and setting up a cost function which 
either maximizes the non-gaussianity of the calculated sk = ( T × x) or 
minimizes the mutual information. In some cases, a prior knowledge of the 
probability distributions of the sources can be used in the cost function. The 
original sources s can be recovered by multiplying the observed signals x 
with the inverse of the mixing matrix W = A−1, also known as the unmixing 
matrix. Here it is assumed that the mixing matrix is square (n = m). If the 
number of basis vectors is greater than the dimensionality of the observed 
vectors, n > m, the task is overcomplete but is still solvable with the pseudo 
inverse. In Linear noisy ICA model, with the added assumption of zeromean 
and uncorrelated Gaussian noise n ~ N(0, diag( )), the ICA model takes the 
form x = As + n. And in Non-linear ICA model, the mixing of the sources 
does not need to be linear. Using a nonlinear mixing function f(·|θ) with 
parameters θ, non-linear ICA model is x = f(s|θ) + n.

2.5.3 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) is a group of algorithms in 
multivariate analysis and linear algebra where a matrix, X, is factorized 
into (usually) two matrices, W and H: nmf(X)  WH.

Factorization of matrices is generally non-unique, and a number 
of different methods of doing so have been developed (e.g., principal 
component analysis and singular value decomposition) by incorporating 
different constraints; non-negative matrix factorization differs from these 
methods in that it enforces the constraint that the factors W and H must be 
non-negative, i.e., all elements must be equal to or greater than zero.

Let matrix V be the product of the matrices W and H such that:

WH = V

Matrix multiplication can be implemented as linear combinations of 
column vectors in W with coeffi cients supplied by cell values in H. Each 
column in V can be computed as follows:

vi = 
1

N

ji j
j

H w
=
∑
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where N is the number of columns in W, vi is the ith column vector of the 
product matrix V, Hji is the cell value in the jth row and ith column of the 
matrix H, wj is the jth column of the matrix W. When multiplying matrices 
the factor matrices can be of signifi cantly lower rank than the product matrix 
and it is this property that forms the basis of NMF. If we can factorize a 
matrix into factors of signifi cantly lower rank than the original matrix, then 
the column vectors of the fi rst factor matrix can be considered as spanning 
vectors of the vector space defi ned by the original matrix.

Here is an example based on a text-mining application:

 •  Let the input matrix (the matrix to be factored) be V with 10000 rows 
and 500 columns where words are in rows and documents are in 
columns. In other words, we have 500 documents indexed by 10000 
words. It follows that a column vector v in V represents a document.

 •  Assume we ask the algorithm to fi nd 10 features in order to generate a 
features matrix W with 10000 rows and 10 columns and a coeffi cients 
matrix H with 10 rows and 500 columns.

 •  The product of W and H is a matrix with 10000 rows and 500 columns, 
the same shape as the input matrix V and, if the factorization worked, 
also a reasonable approximation to the input matrix V.

 •  From the treatment of matrix multiplication above it follows that each 
column in the product matrix WH is a linear combination of the 10 
column vectors in the features matrix W with coeffi cients supplied by 
the coeffi cients matrix H.

This last point is the basis of NMF because we can consider each original 
document in our example as being built from a small set of hidden features. 
NMF generates these features.

It is useful to think of each feature (column vector) in the features matrix 
W as a document archetype comprising a set of words where each word’s 
cell value defi nes the word’s rank in the feature: The higher a word’s cell 
value the higher the word’s rank in the feature. A column in the coeffi cients 
matrix H represents an original document with a cell value defi ning the 
document’s rank for a feature. This follows because each row in H represents 
a feature. We can now reconstruct a document (column vector) from our 
input matrix by a linear combination of our features (column vectors in 
W) where each feature is weighted by the feature’s cell value from the 
document’s column in H.

2.5.4 Singular Value Decomposition

A number of data sets are naturally described in matrix form. Examples 
range from microarrays to collaborative fi ltering data, to the set of pairwise 



distances of a cloud of points. In many of these examples, singular value 
decomposition (SVD) provides an effi cient way to construct a low-rank 
approximation thus achieving both dimensionality reduction, and effective 
denoizing. SVD is also an important tool in the design of approximate linear 
algebra algorithms for massive data sets. 

In linear algebra, the singular value decomposition (SVD) is a 
factorization of a real or complex matrix, with many useful applications in 
signal processing and statistics. Formally, the singular value decomposition 
of an mn real or complex matrix M is a factorization of the form

M = U V*,

where U is an m × m real or complex unitary matrix,  is an m × n rectangular 
diagonal matrix with non-negative real numbers on the diagonal, and V* 
(the conjugate transpose of V) is an n × n real or complex unitary matrix. 
The diagonal entries i,i of  are known as the singular values of M. The 
m columns of U and the n columns of V are called the left-singular vectors 
and right-singular vectors of M, respectively.

The singular value decomposition and the eigendecomposition are 
closely related. Namely:

 •  The left-singular vectors of M are eigenvectors of MM*
 •  The right-singular vectors of M are eigenvectors of MM*
 •  The non-zero-singular values of M (found on the diagonal entries of 

) are the square roots of the non-zero eigenvalues of both M*M and 
MM*.

Applications which employ the SVD include computing the pseudo 
inverse, least squares fi tting of data, matrix approximation, and determining 
the rank, range and null space of a matrix.

2.6 Chapter Summary
In this chapter, we have systematically presented the mathematical 
foundations used in this book. We start with data organization and 
distribution followed by the intensive discussion on distance and similarity 
measures. This chapter also covers the important issue of dimensionality 
reduction approaches that is commonly used in vector space models. The 
aim of this chapter is to lay down a solid foundation for readers to better 
understand the techniques and algorithms mentioned in later chapters.
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CHAPTER 3

Data Preparation

Data preparation is the start of the data mining process. The data mining 
results heavily rely on the data quality prepared before the mining process. 
It is a process that involves many different tasks and which cannot be fully 
automated. Many of the data preparation activities are routine, tedious, and 
time consuming. It has been estimated that data preparation accounts for 
60 percent to 80 percent of the time spent on a data mining project. Figure 
3.0.1 shows the main steps of data mining. From the fi gure, we can see that 
the data preparation takes an important role in data mining.

Data preparation is essential for successful data mining. Poor quality 
data typically result in incorrect and unreliable data mining results. Data 
preparation improves the quality of data and consequently helps improve 
the quality of data mining results. The well known saying “garbage-in 
garbage-out” is very relevant to this domain. This chapter contributes to the 
related topics with respect to data preparation, covering attribute selection, 
data cleaning and integrity, multiple model integration and so on.

Cleaned 
Data

Prepared
Data

Cleaning 
Integration 

Prepared
Data

Data
Mining 

Patterns

Evaluation 

Knowledge

Figure 3.0.1: Main steps of data mining
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3.1 Attribute Selection

3.1.1 Feature Selection

Feature selection, also known as variable selection, attribute reduction, 
feature selection or variable subset selection, is the technique of selecting 
a subset of relevant features for building robust learning models. Attribute 
selection is a particularly important step in analyzing the data from many 
experimental techniques in biology, such as DNA microarrays, because 
they often entail a large number of measured variables (features) but a 
very low number of samples. By removing most irrelevant and redundant 
features from the data, feature selection helps improve the performance of 
learning models by:

 •  Alleviating the effect of the curse of dimensionality
 •  Enhancing generalization capability
 •  Speeding up learning process
 •  Improving model interpretability.

Feature selection also helps people to acquire better understanding 
about their data by telling them which are the important features and how 
they are related with each other.

Simple feature selection algorithms are ad hoc, but there are also more 
methodical approaches. From a theoretical perspective, it can be shown 
that optimal feature selection for supervised learning problems requires an 
exhaustive search of all possible subsets of features of the chosen cardinality. 
If large numbers of features are available, this is impractical. For practical 
supervised learning algorithms, the search is for a satisfactory set of features 
instead of an optimal set. Feature selection algorithms typically fall into 
two categories: feature ranking and subset selection. Feature ranking ranks 
the features by a metric and eliminates all features that do not achieve an 
adequate score. Subset selection searches the set of possible features for the 
optimal subset. In statistics, the most popular form of feature selection is 
stepwise regression. It is a greedy algorithm that adds the best feature (or 
deletes the worst feature) at each round. The main control issue is deciding 
when to stop the algorithm. In machine learning, this is typically done by 
cross-validation. In statistics, some criteria are optimized. This leads to the 
inherent problem of nesting. More robust methods have been explored, 
such as branch and bound and piecewise linear network.

3.1.1.1 Subset Selection

Subset selection evaluates a subset of features as a group for suitability. 
Subset selection algorithms can be broken into Wrappers, Filters and 



Embedded. Wrappers use a search algorithm to search through the space of 
possible features and evaluate each subset by running a model on the subset. 
Wrappers can be computationally expensive and have a risk of over fi tting to 
the model. Filters are similar to Wrappers in the search approach, but instead 
of evaluating against a model, a simpler fi lter is evaluated. Embedded 
techniques are embedded in and specifi c to a model. Many popular search 
approaches use greedy hill climbing, which iteratively evaluates a candidate 
subset of features, then modifi es the subset and evaluates if the new subset 
is an improvement over the old. Evaluation of the subsets requires a scoring 
metric that grades a subset of features. Exhaustive search is generally 
impractical, so at some implementor (or operator) defi ned stopping point, 
the subset of features with the highest score discovered up to that point is 
selected as the satisfactory feature subset. The stopping criterion varies by 
algorithm; possible criteria include: a subset score exceeds a threshold, a 
program’s maximum allowed run time has been surpassed, etc. Alternative 
search-based techniques are based on targeted projection pursuit which 
fi nds low-dimensional projections of the data that score highly: the features 
that have the largest projections in the lower dimensional space are then 
selected. Search approaches include:

 •  Exhaustive
 •  Best fi rst
 •  Simulated annealing
 •  Genetic algorithm
 •  Greedy forward selection
 •  Greedy backward elimination
 •  Targeted projection pursuit
 •  Scatter search
 •  Variable neighborhood search.

Two popular fi lter metrics for classifi cation problems are correlation and 
mutual information, although neither are true metrics or ’distance measures’ 
in the mathematical sense, since they fail to obey the triangle inequality and 
thus do not compute any actual ’distance’—they should rather be regarded 
as ’scores’. These scores are computed between a candidate feature (or 
set of features) and the desired output category. There are, however, true 
metrics that are a simple function of the mutual information; see here. Other 
available fi lter metrics include:

 •  Class reparability
 •  Error probability
 •  Inter-class distance
 •  Probabilistic distance
 •  Entropy
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 •  Consistency-based feature selection
 •  Correlation-based feature selection.

3.1.1.2 Optimality Criteria

There are a variety of optimality criteria that can be used for controlling 
feature selection. The oldest are Mallows’ Cp statistic and Akaike 
information criterion (AIC). These add variables if the t-statistic is bigger 
than 2. Other criteria are Bayesian information criterion (BIC) which 
uses log n , minimum description length (MDL) which asymptotically 
uses log n , Bonnferroni/RIC which use 2log p, maximum dependency 
feature selection, and a variety of new criteria that are motivated by false 

discovery rate (FDR) which use something close to 2log p
q

.

3.1.1.3 Correlation Feature Selection

The Correlation Feature Selection (CFS) measure evaluates subsets of 
features on the basis of the following hypothesis: “Good feature subsets 
contain features highly correlated with the classifi cation, yet uncorrelated 
to each other [2]. The following equation gives the merit of a feature subset 

S consisting of k features:MeritSK
 = 
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of all feature-classifi cation correlations, and rff is the average value of all 
feature-feature correlations.
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 variables are referred to as correlations, but are not necessarily 
Pearson’s correlation coeffi cient or Spearman’s. Dr Mark Hall’s dissertation 
uses neither of these, but uses three different measures of relatedness, 
minimum description length (MDL), symmetrical uncertainty, and relief.

Let xi be the set membership indicator function for feature 
fi; then the above can be rewritten as an optimization problem: 
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. The combinatorial problems above are, in 

fact, mixed 0–1 linear programming problems that can be solved by using 
branch-and-bound algorithms.



3.1.1.4 Software for Feature Selection

Many standard data analysis software systems are often used for feature 
selection, such as SciLab, NumPy and the R language. Other software 
systems are tailored specifi cally to the feature-selection task [1]:

 • Weka—freely available and open-source software in Java.
 • Feature Selection Toolbox 3—freely available and open-source software 

in C++.
 • RapidMiner—freely available and open-source software.
 • Orange—freely available and open-source software (module 

orngFSS).
 • TOOLDIAG Pattern recognition toolbox - freely available C toolbox.
 • Minimum redundancy feature selection tool - freely available C/Matlab 

codes for selecting minimum redundant features.
 • A C# Implementation of greedy forward feature subset selection for 

various classifi ers (e.g., LibLinear, SVM-light).
 • MCFS-ID (Monte Carlo Feature Selection and Interdependency 

Discovery) is a Monte Carlo method-based tool for feature selection. 
It also allows for the discovery of interdependencies between the 
relevant features. MCFS-ID is particularly suitable for the analysis of 
high-dimensional, ill-defi ned transactional and biological data.

 • RRF is an R package for feature selection and can be installed from 
R. RRF stands for Regularized Random Forest, which is a type of 
Regularized Trees. By building a regularized random forest, a compact 
set of non-redundant features can be selected without loss of predictive 
information. Regularized trees can capture non-linear interactions 
between variables, and naturally handle different scales, and numerical 
and categorical variables.

3.1.2 Discretizing Numeric Attributes

We can turn a numeric attribute into a nominal/categorical one by using 
some sort of discretization. This involves dividing the range of possible 
values into sub-ranges called buckets or bins. For example: an age attribute 
could be divided into these bins:
child: 0–12
teen: 12–17
young: 18–35
middle: 36–59
senior: 60–
What if we don’t know which sub-ranges make sense? [5, 7, 6]
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 •  Equal-width binning divides the range of possible values into 
N subranges of the same size and bin width = (max value - min 
value)/N

For example: if the observed values are all between 0 and 100, we could 
create 5 bins as follows:

 (1) width = (100–0)/5 = 20
 (2) bins: [0–20], (20–40], (40–60], (60–80], (80–100] [ or ] means the endpoint 

is included (or) means the endpoint is not included
 (3) typically, the fi rst and last bins are extended to allow for values outside 

the range of observed values (-infi nity-20], (20–40], (40–60], (60–80], 
(80-infi nity).

 • Equal-frequency or equal-height binning divides the range of possible 
values into N bins, each of which holds the same number of training 
instances.

For example: let’s say we have 10 training examples with the following 
values for the attribute that we are discrediting: 5, 7, 12, 35, 65, 82, 84, 88, 90, 
95 to create 5 bins, we would divide up the range of values so that each bin 
holds 2 of the training examples: 5–7, 12–35, 65–82, 84–88, 90–95. To select 
the boundary values for the bins, this method typically chooses a value 
halfway between the training examples on either side of the boundary. For 
example: (7 + 12)/2 = 9.5 (35 + 65)/2 = 50

3.2 Data Cleaning and Integrity

3.2.1 Missing Values

Imagine that you need to analyze All Electronics sales and customer data. 
You note that many tuples have no recorded value for several attributes, 
such as customer income. How can you go about fi lling in the missing values 
for this attribute? Let’s look at the following methods [9, 8]:

 • Ignore the tuple: This is usually done when the class label is missing 
(assuming the mining task involves classifi cation or description). This 
method is not very effective, unless the tuple contains several attributes 
with missing values. It is especially poor when the percentage of 
missing values per attribute varies considerably.

 • Fill in the missing value manually: In general, this approach is time-
consuming and may not be feasible given a large data set with many 
missing values.

 • Use a global constant to fi ll in the missing value: Replace all missing 
attribute values by the same constant, such as a label like “Unknown”. 
If missing values are replaced by, say, “Unknown”, then the mining 



program may mistakenly think that they form an interesting concept, 
since they all have a value in common—that of “Unknown”. Hence, 
although this method is simple, it is not recommended.

 • Use the attribute mean to fi ll in the missing value: For example, suppose 
that the average income of All Electronics customers is $28,000. Use 
this value to replace the missing value for income.

 • Use the attribute mean for all samples belonging to the same class as 
the given tuple: For example, if classifying customers according to 
credit_risk, replace the missing value with the average income value 
for customers in the same credit_risk category as that of the given 
tuple.

 • Use the most probable value to fi ll in the missing value: This may be 
determined with inference-based tools using a Bayesian formalism or 
decision tree induction. For example, sing the other customer attributes 
in your data set, you may construct a decision tree to predict the missing 
values for income.

Methods 3 to 6 bias the data. The fi lled-in value may not be correct. 
Method 6, however, is a popular strategy. In comparison to the other 
methods, it uses the most information from the present data to predict 
missing values.

3.2.2 Detecting Anomalies

Anomaly detection, also referred to as outlier detection [2], refers to detecting 
patterns in a given data set that do not conform to an established normal 
behavior. The patterns thus detected are called anomalies and often translate 
to critical and actionable information in several application domains. 
Anomalies are also referred to as outliers, change, deviation, surprise, 
aberrant, peculiarity, intrusion, etc. In particular in the context of abuse 
and network intrusion detection, the interesting objects are often not rare 
objects, but unexpected bursts of activity. This pattern does not adhere to the 
common statistical defi nition of an outlier as a rare object, and many outlier 
detection methods (in particular unsupervised methods) will fail on such 
data, unless it has been aggregated appropriately. Instead, a cluster analysis 
algorithm may be able to detect the micro clusters formed by these patterns. 
Three broad categories of anomaly detection techniques exist. Unsupervised 
anomaly detection techniques detect anomalies in an unlabeled test data set 
under the assumption that the majority of the instances in the data set are 
normal by looking for instances that seem to fi t least to the remainder of the 
data set. Supervised anomaly detection techniques require a data set that has 
been labeled as ”normal” and ”abnormal” and involves training a classifi er 
(the key difference to many other statistical classifi cation problems is the 
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inherent unbalanced nature of outlier detection). Semi-supervised anomaly 
detection techniques construct a model representing normal behavior from 
a given normal training data set, and then testing the likelihood of a test 
instance to be generated by the learnt model.

3.2.3 Applications

Anomaly detection is applicable in a variety of domains, such as intrusion 
detection, fraud detection, fault detection, system health monitoring, event 
detection in sensor networks, and detecting eco-system disturbances. It is 
often used in preprocessing to remove anomalous data from the dataset. In 
supervised learning, removing the anomalous data from the dataset often 
results in a statistically signifi cant increase in accuracy.

(1) Popular techniques

Several anomaly detection techniques have been proposed in literature. 
Some of the popular techniques are:

 • Distance based techniques (k-nearest neighbor, Local Outlier Factor)
 • One class support vector machines
 • Replicator neural networks
 • Cluster analysis based outlier detection
 • Pointing at records that deviate from association rules
 • Conditional anomaly concept.

(2) Application to data security

Anomaly detection was proposed for Intrusion Detection Systems (IDS) 
by Dorothy Denning in 1986. Anomaly detection for IDS is normally 
accomplished with thresholds and statistics, but can also be done with soft 
computing and inductive learning. Types of statistics proposed by 1999 
included profi les of users, workstations, networks, remote hosts, groups of 
users, and programs based on frequencies, means, variances, covariances, 
and standard deviations. The counterpart of Anomaly Detection in Intrusion 
Detection is Misuse Detection.

(3) Time series outlier detection

Parametric tests to fi nd outliers in time series are implemented in almost 
all statistical packages: Demetra+, for example, uses the most popular ones. 
One way to detect anomalies in time series is a simple non-parametric 
method called washer. It uses a non-parametric test to fi nd one or more 
outliers in a group of even very short time series. The group must have 
a similar behaviour, as explained more fully below. An example is that of 
municipalities cited in the work of Dahlberg and Johanssen (2000). Swedish 



municipalities expenditures between 1979 and 1987 represent 256 time 
series. If you consider three years such as, for example, 1981,1982 and 1983, 
you have 256 simple polygonal chains made of two lines segments. Every 
couple of segments can approximate a straight line or a convex downward 
(or convex upward) simple polygonal chain. The idea is to fi nd outliers 
among the couples of segments that performs in a too much different way 
from the other couples. In the washer procedure every couple of segments 
is represented by an index and a non-parametric test (Sprent test) is applied 
to the unknown distribution of those indices. For implementing washer 
methodology you can download an open source R (programming language) 
function with a simple numeric example.

3.3 Multiple Model Integration

3.3.1 Data Federation

Data federation is a brand new idea for integration of data from many 
diffract sources. Many organizations and companies store their data in 
different ways, like transactional databases, data warehouses, business 
intelligence systems, legacy systems and so on. The problem arises, when 
someone needs to access data from some of these sources [8, 4, 3]. There 
is no easy way to retrieve the data, because every storage system has its 
own way of accessing it. In order to help getting to the data from many 
sources, there are some ways to integrate the data, and the most advanced of 
them is data federation. To integrate the data it has to be copied and moved, 
because the integrated data need to be kept together. Of course it has its 
defects, like the time needed to copy and move the data, and some copyright 
infringements during copying. The data also occupied more disk space 
than it actually needed, because it was kept in few instances. There were 
also some problems with data refreshing, because if there was more than 
one instance of the data, only the modifi ed instance was up to date, so all 
others instances of the data has to be refreshed. Of course it slowed down 
the integration system. In response to these problems, the IT specialists 
created a new data integration system called data federation. The idea of 
data federation is to integrate data from many individual sources and make 
access to them as easy as possible. The target has to be reached without 
moving or copying the data. In fact, the data sources can be in any location. 
It only has to be online. Also, every data source can be made using different 
technology, standard and architecture. For the end user it will feel like one 
big data storage system. The data federation supports many data storage 
standards. From the SQL relational databases like Mysql, PostgreSQL, 
InterBase, IBM DB2, Firebird and Oracle through directory services and 
object-based databases like LDAP and OpenLDAP, to data warehouses 
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and Business-Intelligence systems. The goal is to make the data federation 
system work with every standard that is used to store data in companies 
and other organizations. The data that is already integrated with the data 
federation system is called a federated database or a virtual database. 
Federated database allows users to read and write the data without even 
knowing that it comes from many different sources. The user doesn’t need 
to know how to use a database system, or how to access data in a directory 
service. All he needs is to know is how to use the unifi ed front-end of the 
data federation system. The data federation system in many cases might 
be the best way to unify the data kept in different places in many different 
ways. It’s simple, easy for the end users, and an effi cient solution that will 
make accessing the data a lot easier.

3.3.2 Bagging and Boosting

(1) Bagging

The concept of bagging (voting for classifi cation, averaging for regression-
type problems with continuous dependent variables of interest) applies to 
the area of predictive data mining, to combine the predicted classifi cations 
(prediction) from multiple models, or from the same type of model for 
different learning data. It is also used to address the inherent instability of 
results when applying complex models to relatively small data sets. Suppose 
your data mining task is to build a model for predictive classifi cation, 
and the dataset from which to train the model (learning data set, which 
contains observed classifi cations) is relatively small. You could repeatedly 
sub-sample (with replacement) from the dataset, and apply, for example, 
a tree classifi er (e.g., C&RT and CHAID) to the successive samples. In 
practice, very different trees will often be grown for the different samples, 
illustrating the instability of models often evident with small datasets. One 
method of deriving a single prediction (for new observations) is to use all 
trees found in the different samples, and to apply some simple voting: The 
fi nal classifi cation is the one most often predicted by the different trees. Note 
that some weighted combination of predictions (weighted vote, weighted 
average) is also possible, and commonly used. A sophisticated (machine 
learning) algorithm for generating weights for weighted prediction or voting 
is the Boosting procedure.

(2) Boosting

The concept of boosting applies to the area of predictive data mining, to 
generate multiple models or classifi ers (for prediction or classifi cation), 
and to derive weights to combine the predictions from those models into 
a single prediction or predicted classifi cation (see also Bagging). A simple 



algorithm for boosting works like this: Start by applying some method 
(e.g., a tree classifi er such as C&RT or CHAID) to the learning data, where 
each observation is assigned an equal weight. Compute the predicted 
classifi cations, and apply weights to the observations in the learning sample 
that are inversely proportional to the accuracy of the classifi cation. In other 
words, assign greater weight to those observations that were diffi cult to 
classify (where the misclassifi cation rate was high), and lower weights to 
those that were easy to classify (where the misclassifi cation rate was low). 
In the context of C&RT for example, different misclassifi cation costs (for 
the different classes) can be applied, inversely proportional to the accuracy 
of prediction in each class. Then apply the classifi er again to the weighted 
data (or with different misclassifi cation costs), and continue with the next 
iteration (application of the analysis method for classifi cation to the re-
weighted data). Boosting will generate a sequence of classifi ers, where 
each consecutive classifi er in the sequence is an “expert” in classifying 
observations that were not well classifi ed by those preceding it. During 
deployment (for prediction or classifi cation of new cases), the predictions 
from the different classifi ers can then be combined (e.g., via voting, or 
some weighted voting procedure) to derive a single best prediction or 
classifi cation. Note that boosting can also be applied to learning methods 
that do not explicitly support weights or misclassifi cation costs. In that case, 
random sub-sampling can be applied to the learning data in the successive 
steps of the iterative boosting procedure, where the probability for selection 
of an observation into the subsample is inversely proportional to the 
accuracy of the prediction for that observation in the previous iteration (in 
the sequence of iterations of the boosting procedure).

3.4 Chapter Summary
In this section, we summarize the techniques involved in data preparation, 
which is an essential step for the success of data mining. Particularly, we 
discuss the issues of feature selection, data cleaning, missing values and 
data federation.
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CHAPTER 4

Clustering Analysis

4.1 Clustering Analysis
Clustering analysis is an important learning method which doesn’t need any 
prior knowledge. Clustering is usually performed when no information is 
available concerning the membership of data items to predefi ned classes. For 
this reason, clustering is traditionally seen as part of unsupervised learning. 
We nevertheless speak here of unsupervised clustering to distinguish it from 
a more recent and less common approach that makes use of a small amount 
of supervision to “guide” or “adjust” clustering. In this chapter, we focus 
on discussing this unsupervised learning method. The aim of clustering 
analysis is to divide data into groups (clusters) that are meaningful, useful 
or both. For meaningful groups, the goal of clustering is to capture the 
natural structure of data. In some cases, however, clustering is only a useful 
starting point for other purposes, such as data summarization. Whether for 
understanding or utility, clustering analysis has played an important role in 
a wide variety of fi elds: computer science, pattern recognition, information 
retrieval, machine learning, biology, data mining etc. Many data mining 
queries are concerned either with how the data objects are grouped or which 
objects could be considered remote from natural groupings. There have been 
many works on cluster analysis, but we are now witnessing a signifi cant 
resurgence of interest in new clustering techniques. Scalability and high 
dimensionality are not the only focus of the recent research in clustering 
analysis. Indeed, it is getting diffi cult to keep track of all the new clustering 
strategies, their advantages and shortcomings. The following are the typical 
requirements for a good clustering technique in data mining [30, 29]:

 • Scalability: The cluster method should be applicable to huge databases 
and performance should decrease linearly with data size increase.

 • Versatility: Clustering objects could be of different types—numerical 
data, boolean data or categorical data. Ideally a clustering method 
should be suitable for all different types of data objects.



58 Applied Data Mining

 • Ability to discover clusters with different shapes: This is an important 
requirement for spatial data clustering. Many clustering algorithms 
can only discover clusters with spherical shapes.

 • Minimal input parameter: This method should require a minimum 
amount of domain knowledge for correct clustering. However, most 
current clustering algorithms have several key parameters and are 
thus not practical for use in real world applications.

 • Robust with regard to noise: This is important because noise exists 
everywhere in practical problems. A good clustering algorithm should 
be able to perform successfully even in the presence of a great deal of 
noise.

 • Insensitive to the data input order: The clustering method should give 
consistent results irrespective of the order the data is presented.

 • Scaleable to high dimensionality: The ability to handle high dimensionality 
is very challenging but real data sets are often multidimensional. 

There is no single algorithm that can fully satisfy all the above requirements. 
It is important to understand the characteristics of each algorithm so that 
the proper algorithm can be selected for the clustering problem at hand. 
Recently, there are several new clustering techniques offering useful 
advances, possibly even complete solutions. During the past decades, 
clustering analysis has been used to deal with practical problems in many 
applications, as summed up by Han [30, 29]. Biology. Biologists have spent 
many years creating a taxonomy (hierarchical classifi cation) of all living 
things: kingdom, class, order, family, genus and species. More recently, 
biologists have applied clustering to analyze the large amounts of genetic 
information that are now available. For example, clustering has been used 
to fi nd groups of genes that have similar functions from high dimensional 
genes data. 

It has been used for Information Retrieval. The World Wide Web consists 
of billions of Web pages, and the results of a query to a search engine can 
return thousands of pages. Clustering can be used to group these search 
results into a small number of clusters, each of which captures a particular 
aspect of the query. 

Climate. Understanding the earth’s climate requires fi nding patterns in the 
atmosphere and ocean. To that end, clustering analysis has been applied 
to fi nd patterns in the atmospheric pressure of polar regions and areas of 
the ocean that have a signifi cant impact on land climate.

Psychology and Medicine. All illness or condition frequently has a number 
of variations, and cluster analysis can be used to identify these different 
subcategories. For example, clustering has been used to identify types of 



depression. Cluster analysis can also be used to detect patterns in the spatial 
or temporal distribution of a disease.

Business. Businesses collect large amounts of information on current and 
potential customers. Clustering can be used to segment customers into a 
small number of groups for additional analysis and marketing activities.

This chapter provides an introduction to clustering analysis. We 
begin with the discussion of data types which have been met in clustering 
analysis, and then, we will introduce some traditional clustering algorithms 
which have the ability to deal with low dimension data clustering. High- 
dimensional problem is a new challenge for clustering analysis, and lots of 
high-dimensional clustering algorithms have been proposed by researchers. 
Constraint-based clustering algorithm is a kind of semi-supervised 
learning method, and it will be briefl y discussed in this chapter as well. 
Consensus cluster algorithm focuses on the clustering results derived by 
other traditional clustering algorithms. It is a new method to improve the 
quality of clustering result.

4.2 Types of Data in Clustering Analysis
As we know, clustering analysis methods could be used in different 
application areas. So for clustering, different types of data sets will be 
met. Data sets are made up of data objects (also referred to as samples, 
examples, instance, data points, or objects) and a data object represents 
an entity. For example, in a sales database, the objects may be customers, 
store items and sales; in a medical database, the objects may be patients; in 
a university database, the objects may be students, course, professor, salary; 
in a webpage database, the objects maybe the users, links and pages; in a 
tagging database, the objects may be users, tags and resources, and so on. 
In clustering scenario, there have two traditional ways to organize the data 
objects: Data Matrix and Proximity Matrix.

4.2.1 Data Matrix

A set of objects is represented as an m by n matrix, where there are m rows, 
one for each object, and n columns, one for each attribute. This matrix 
has different names, e.g., pattern matrix or data matrix, depending on 
the particular fi eld. Figure 4.2.1 below, provides a concrete example of 
web usage data objects and their corresponding data matrix, where si, 
i=1,...,m  indicates m user sessions and pj, j=1,...,n indicates n pages, aij=1 
indicates si has visited pj, otherwise, aij=0. Because different attributes may 
be measured on different scales, e.g., centimeter and kilogram, the data 
is sometimes transformed before being used. In cases where the range of 
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values differs widely from attribute to attribute, these differing attribute 
scales can dominate the results of the cluster analysis and it is common to 
standardize the data so that all attributes are on the same scale. In order 
to introduce these approaches clearly, we denote that xi is the i-th data 
object, xij is the value of the j-th attribute of the i-th object, and xij' is the 
standardized attribute value. There have some common approaches for 
data standardization as follows:

 (1)  x'ij = 
max | |

ij

iji

x
x

. Divide each attribute value of an object by the

maximum observed absolute value of that attribute. This restricts all 
attribute values to lie between -1 and 1. If all the values are positive, 
all transformed values lie between 0 and 1. This approach may not 
produce good results unless the attributes are uniformly distributed, 
and this approach is also sensitive to outliers.

 (2)  
x'ij = xij−µj' 

j

. For each attribute value subtract off the mean of that 

attribute and then divide it by the standard deviation of the attribute, 

where µj = 1

1 m
iji

x
m =∑  is the mean of the j-th feature, and j = 

1
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2
1
( )m

ij ji
x μ

=
−∑ μ    is the standard deviation of the j-th feature. 

Kaufman et al. indicate that if the data are normally distributed, then 
most transformed attribute values will be lie between -1 and 1. This 
approach has no request for the data distribution, but it is also sensitive 
to the outliers like the fi rst approach.

 (3)  x'ij = xij−µj' 
A

j

. For each attribute value subtract off the mean of that 

attribute and divide i+  by the attribute’s absolute deviation (KR 90), 

where A
j = 1

1 | |m
ij ji

x
m

μ
=

−∑ μ  is the absolute standard deviation of the 

j-th attribute. Typically, most attribute values will lie between -1 and 
1. This approach is the most robust in the presence of outliers among 
three approaches.

Figure 4.2.1: An example of data matrix
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4.2.2 The Proximity Matrix

While cluster analysis sometimes uses the original data matrix, many 
clustering algorithms use a similarity matrix, S, or a dissimilarity matrix, 
D. For convenience, both matrices are commonly referred to as a proximity 
matrix, P. A proximity matrix, P, is an m by m matrix containing all the 
pairwise dissimilarities or similarities between the objects being considered. 
If xi and xj are the i-th and j-th objects respectively, then the entry of pij 
is the similarity, sij, or the dissimilarity, dij, between xi and xj, where, pij 
denotes the element at the i-th row and j-th column of the proximity matrix 
P. For simplicity, we will use pij to represent either sij or dij. Figure 4.2.2 
gives an example of proximity matrix in social tagging mining, where the 
element in the matrix represents the cosine similarity between tags. From 
the description of data objects, we could see the fact that data objects 

1     

0.41 1    

0 0.5 1   

0.58 0 0 1  

0.41 0.50 0.50 0.71 1 

Figure 4.2.2: An example of Proximity Matrix

are typically described by attribute. An attributes is a data fi eld which 
represents a characteristic or a feature of a data object. In the proposed 
literature, the nouns attribute, dimension, feature, and variable are often 
used interchangeably. The term “dimension” is commonly used in data 
warehousing, while the term “feature” is tended to be used in machine 
learning. For the term “variable”, it used to be occurred in statisticians. In 
data mining and database area, the researchers prefer the term “attribute”. 
For example, attributes describing a user object in a webpage database can 
include, userID, page1, page2, · · · , pagen. A set of attributes used to describe a 
given object is called an attribute vector or feature vector. The distribution of 
data involving one attribute is called univariate, and a bivariate distribution 
involves two attributes, and so on. The type of an attribute is determined 
by the possible values, that is, nominal, binary, ordinal or numeric. 

Nominal Attributes. The values of enumerations attribute are symbols 
or names of things, that is, enumerations is related to names. Each value 
represents some kind of category, code, or state. There is no meaningful 
order for the value of these kind of attributes. As we know, in some cases, 
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the values are also known as enumeration attributes. For example, suppose 
that course is an attribute describing student objects in a university database. 
The possible values for course are software engineering, mathematics, 
English writing, and so on. Another example of an enumeration attributes 
is the color attribute, the possible values of it are red, black, blue, and so 
on. As we said earlier, the values of enumeration attributes are symbols, 
however, it is possible to represent such symbols with numbers. In order 
to achieve this goal, we can assign a code of 0 to red, 1 to black, 2 to blue, 
and so on.

Binary Attributes. During the application, some binary attributes will be 
accounted. A binary attribute is a nominal attribute with only two states: 0 
or 1, where 0 indicates the attribute is absent and 1 means that it is present. 
In some sense, binary attributes are referred to as Boolean if the two states 
correspond to false and true. There are two types of binary attributes: 
symmetric and asymmetric. For symmetric binary attributes, the states 
are equally valuable and can carry the same weight, that is, there is no 
preference on which outcome should be coded as 0 or 1. For instance, the 
attribute gender having the states male and female. For asymmetric binary 
attributes, the outcomes of the states are not equally important, such as the 
positive and negative outcomes of a medical test for HIV.

Ordinal Attributes. An ordinal attribute is an attribute with possible values 
that have a meaningful order among them, but the magnitude between 
successive values is not known [30, 29]. Take for example, the grade attribute 
for a student’s test score. The possible values of grade could be A+, A, 
A-, B+ and so on. Ordinal attributes are useful for registering subjective 
assessments of qualities that cannot be measured objectively. Thus, ordinal 
attributes are often used in surveys for rating. For example, in social network 
area, the participants were asked to rate how good was a movie which they 
have seen. The rating of the movie had the following categories: 0: excellent, 
1: good, 2: normal, 3: bad, 4: very bad. In some cases, ordinal attributes may 
also be obtained from the discrimination of numeric quantities by splitting 
the value range into a fi nite number of ordered categories.

Numeric Attributes. A numeric attribute is represented in integer or real 
value and it is quantitative. There are two types of numeric attributes: 
interval-scaled and ratio-scaled. Interval-scaled attributes are measured on a 
scale of equal size units. The values of interval-scaled attributes have order 
and can be positive, 0, or negative. In other words, such attributes allow us 
to compare and quantify the difference between values. For instance, height 
is a numeric attribute of a person, the height value of Tom is 175 cm and that 
of Jack is 185 cm. We can then  say that Jack is taller than Tom. Ratio-scaled 
attribute is numeric attribute with the chrematistic that a value as being a 



multiple (or ratio) of another value. For example, you are 100 times richer 
with 100thanwith1. Data scales and types are important since the type of 
clustering used often depends on the data scale and type.

4.3 Traditional Clustering Algorithms
As clustering is an important technology related to applications, researchers 
use different models to defi ne clustering problem and propose different 
ways to deal with the models. According to facts, in this chapter, we category 
the clustering algorithms into Partitional methods, Hierarchical methods, 
Density-methods, Grid-based methods and Model-based methods.

4.3.1 Partitional methods

Partitional methods have the following defi nition:

Defi nition 1: Given a set of input data set D = {x1, x2, · · · , xN}, where xi 
Rd, i = 1, ...N. Partitional methods attempt to seek K partitions of D, C 

= {C1, C2, · · · ,CK}, (K ≤ N), such that the quality measure function Q(C) = 

1 ,
( , )

i k j k

K
i jk x C x C

dist x x
= ∈ ∈∑ ∑  is minimized, where dist() is the distance function 

between the data objects.
Partitional methods create a one-level partitioning of the data objects. 

If K is the desired number of clusters, then partitional methods fi nd all K 
clusters at once. Drineas et al. have proved that this problem is NP-hard 
[13]. In order to deal with the clustering problem described in defi nition 
1, a number of partitional methods have been proposed. However, in this 
chapter, we shall only describe two approaches: K-means and K-medoid. 
Both these partitional methods are based on the idea that a center point 
can represent a cluster. However, there have been differences about the 
defi nition of ‘center’: For K-means we use the notion of a centroid which 
is the mean or median object of a group of data objects. In this case, the 
centroid almost never corresponds to an actual data object. For K-medoid 
we use the notion of a medoid which is the most central data object of a 
group of objects. According to the defi nition of a medoid, it is required to 
be an actual data object.

4.3.1.1 K-means

 •  The Framework of K-means.
  The K-means clustering algorithm, a top-ten algorithm in data mining 

area, is a very simple and widely used method. We immediately begin 
with a description of the framework of K-means, and then discuss 
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the details of each step in the framework. Algorithm 4.1 gives the 
framework of K-means [40]. Algorithm 4.1 gives a common framework 
of K-means. In the following:

 Algorithm 4.1: K-means

 Input: Data set D, Cluster number K

 Output: Clustering result C

 (1)  Select K objects as the initial centroids
 (2)  Assign all data objects to the closest centroid
 (3)  Recompute the centroid of each cluster
 (4)  Repeat steps 2 and 3 until the centroids don’t change to generate the cluster 

result C
 (5)  Return the cluster result C

we will discuss the details of each step in the framework.

 •  Initialization
  The fi rst step of K-means is the initialization that choosing the K 

proper initial centroids, in this chapter, we call them as the seed 
objects. Seed objects can be the fi rst K objects or K objects chosen 
randomly from the data set. A set of K objects that are separated from 
each other can be obtained by taking the centroid of the data as the 
fi rst seed object and selecting successive seed objects which are at 
least a certain distance from the seed object already chosen [37]. The 
initial clustering result is formed by assigning each data object to the 
closest seed object. Different selection of the K seed objects could be 
introduced to different clustering results. This phenomenon is called as 
initialization sensitivity problem. There are two common ways to deal 
with the problem: the fi rst one is to perform multiple runs, each with a 
different set of randomly chosen initial centroids, and the second one is 
based on the application knowledge. We will discuss the initialization 
sensitivity problem in Section 5.

 •  Updating partition
  Steps 2 and 3 in the framework are the updating partition part of 

K-means. Partitions are updated by reassigning objects to the clusters 
in an attempt to reduce the value. McQueen [37] defi ned a K-means 
pass as an assignment of all data objects to the closest cluster centroid, 
while the term ’pass’ refers to the process of examining the cluster label 
of every object. The centroid of the gaining cluster is to re-computer 
after each new assignment. Otherwise, Forgy’s [37] re-computering 
the cluster centroid after all patterns have been examined. In K-means, 
steps 2 and 3 are iteratively run until the Q(C) value cannot be 
improved.



 •  Time and Space Complexity
  Since only the vectors are stored, the space requirements are basically 

O(m*n), where m is the number of the data objects and n is the number 
of attributes. The time cost are O(I*K*m*n), where I is the number of 
iterations required for convergence, K is the number of clusters and 
I¡¡m, K¡¡m. Thus, K-means is linear in m, the number of points and is 
effi cient, as well as simple.

 •  Adjusting the cluster number K
  The selection of the cluster number K is one of the biggest drawbacks 

of K-means. When performing K-means, it is important to run 
diagnostic checks for determining the number of clusters in the 
data set at fi rst. However, for real application, people cannot know 
how many clusters embedded in the data set. Adjusting the cluster 
number K is an acceptable way for dealing the selection of the cluster 
number K problem. Some clustering algorithms adjust the cluster 
number K by creating new clusters or by merging existing clusters if 
certain conditions are met. In one of the popular partitional clustering 
algorithms called ISODATA [37], these conditions are determined from 
parameters by the user of the program, for example, if a cluster has too 
many objects, it will be split; two clusters are merged if their cluster 
centroids are suffi ciently close. Algorithm 4.2 shows the framework 
of ISODATA.

4.3.1.2 K-medoid Clustering

The K-medoid algorithm is a clustering algorithm related to the K-means 
algorithm and the medoid shift algorithm. The objective of K-medoid 
clustering is to fi nd a non-overlapping set of clusters such that each cluster 
has a most representative object, i.e., an object that is most centrally located 
with respect to some measure, such as distance. These representative objects 
are called medoids and a medoid can be defi ned as the object of a cluster, 
whose average dissimilarity to all the objects in the cluster is minimal, 
i.e., it is a most centrally located point in the cluster. The most common 
realization of K-medoids clustering is the Partitioning Around Medoids 
(PAM) algorithm and as shows in Algorithm 4.3. It is more robust to noise  
and outliers as compared to K-means because it minimizes a sum of pairwise 
dissimilarities instead of a sum of squared Euclidean distances. However, 
fi nding a better medoid requires trying all points that are currently not 
medoids and are computationally expensive, it costs O(K(m − K)2).
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Algorithm 4.2: the framework of ISODATA  

Input: Data set D, Cluster number K

Output: Clustering result C

 (1)  Objects are assigned to the closest centroid and cluster centroids are re-
computered. Iteratively repeated until no objects change clusters

 (2)  Clusters with “two few” objects are discarded
 (3)  Clusters are merged or split

 (a) If there are “too few” clusters compared to the number desired, then 
clusters are split;

 (b) If there are “too many” clusters compared to the number desired, then 
clusters are merged.

 (c) Otherwise the cluster splitting and merging phases alternate: clusters are 
merged if their centroids are close, while clusters are split if it contains 
“too many” objects.

Algorithm 4.3: Partitioning Around Medoids (PAM)

Input: Data Set D, Cluster number K
Output: Clustering result C

 (1)  Initialize: randomly select K of the m data objects as the mediods;
 (2)  Associate each data object to the closest medoid;
 (3)  for each medoid k

(a) for each non-medoid data object o;
               (i) swap k and o and compute the total cost of the confi guration;
 (4)  Select the confi guration with the lowest cost;
 (5)  repeat steps 2 to 4 until there is no change in the medoid.

4.3.1.3 CLARA

CLARA (Clustering LARge Applications) is an adaptation of PAM for 
handling larger data sets, which was designed by Kaufman and Rousseeum 
in 1990. Instead of fi nding representative objects for the whole data set, 
CLARA, fi rstly, draws a sample of the data set by using sampling method; 
and then, applies PAM on the sample to fi nd the medoids of the sample. 
The point is that, if the sample is drawn in a suffi ciently random way, 
the medoids of the sample would approximate the medoids of the entire 
data set. To come up with better approximations, CLARA draws multiple 
samples and gives the best clustering as the output. In the accuracy case, 
the quality of a clustering is measured based on the average dissimilarity of 
all objects in the entire data set, and not only of the objects in the samples. 
Experiments results which reported in [46] indicate that fi ve samples of 



size 40+2K give satisfactory results. Algorithm 4.4 shows the framework 
of CLARA algorithm. CLARA performs satisfactorily for large data sets by 
using PAM algorithm. Recall from Section 4.3.2 that each iteration of PAM 
is of O(K(m − K)2). But, for CLARA, by applying PAM just to the samples, 
each iteration is of O(K(40+K)2 +K(m−K)). This explains why CLARA is 
more effi cient than PAM for large values of m.

Algorithm 4.4: CLARA

Input: Data set D, Cluster number K;

Output: Clustering result C;

 (1)  i=1;
 (2)  while i<5

(a) Draw a sample of 40 + 2K objects randomly from the entire data set, and 
call PAM algorithm to fi nd K medoids of the sample.

(b) For each object Oj in the entire data set, determine which of the K medoids 
is the most similar to Oj;

(c) Calculate the average dissimilarity of the clustering obtained in the 
previous step. If this value is less than the current minimum, use this 
value as the current minimum, and retain the K medoids found in step 2 
as the best set of medoids obtained so far;

 (3)  i=i+1;
 (4)  Return clustering result C

4.3.1.4 CLARANS

CLARANS uses a randomized search approach to improve on both CLARA 
and PAM. Algorithm 4.5 gives the conceptual description of CLARANS. 
From algorithm 4.5, we can see the difference between CLARANS and PAM: 
For a given current confi guration, CLARANS algorithm does not consider 
all possible swaps of medoid and non-medoid objects, but rather, only a 
random selection of them and only until it fi nds a better confi guration. Also, 
we can see the difference between CLARANS and CLARA: CLARANS 
works with all the data objects, however, CLARA only works with part 
of the entire data set. SD(CLARANS) and NSD(CLARAN) are two spatial 
data mining tools which contain CLARANS as a base algorithm. These 
tools added some capabilities related to cluster analysis.
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Algorithm 4.5: CLARANS

Input: Data set D, Cluster number K;

Output: Clustering result C.

 (1)  Randomly select K candidate medoids;
 (2)  Randomly consider a swap of one of the selected medoid for a non-selected 

object;
 (3)  If the new confi guration is better, then repeat step 2 with a new confi guration;
 (4)  Otherwise, repeat step 2 with the current confi guration unless a parameterized 

limit has been exceeded;
 (5)  Compare the current solution with any previous solutions and keep track of 

the best;
 (6)  Return to step 1 unless a parameterized limit has been exceeded;
 (7)  Return to the clustering result C

4.3.2 Hierarchical Methods

In hierarchical clustering, the goal is to produce a hierarchical series of 
nested clusters, ranging from clusters of individual points at the bottom 
to an all-inclusive cluster at the top. A diagram is used to graphically 
represent this hierarchy and is an inverted tree that describes the order in 
which objects are merged or clusters are split. The mathematical structure 
which a hierarchical clustering imposes on data is described as following. 
Give m objects which need to be clustered are denoted by the set D=x1,...,xm, 
where xi is the i-th object. A partition C of D breaks D into subsets C1,C2,...,CK 
satisfying the following: Ci Cj = , i, j = 1, . . .K, i  j and C1 C2...CK = 
D, where  stands for set intersection,  stands for set union, and  is the 
empty set. A clustering is a partition and the components of the partition 
are called clusters. Partition C is nested into partition C' if every component 
of C is a subset of a component of C'. That is, C' is formed by merging 
components of C.

For example, if the clustering C’ with three clusters and clustering C 
with fi ve clusters are defi ned as follows, then C is nested into C'. Both C 
and C’ are the clustering of the set of objects x1,x2,...,x10 C=(x1,x3), (x5,x7), 
(x2), (x4,x6,x8), (x9,x10) C'=(x1,x3,x5,x7), (x2,x4,x6,x8), (x9,x10). Clusters 
(x1,x3), (x5,x7) in C are merged into cluster (x1,x3,x5,x7) in C’. In the same 
way, clusters (x2), (x4,x6,x8) in C are merged into cluster (x2,x4,x6,x8) in 
C'. However, cluster (x9,x10) in C does not merge with any other clusters. 
But for partition C”=(x1,x2,x3,x4), (x5,x6,x7,x8), (x9,x10), neither C nor C' 
is nested into it.



4.3.2.1 Agglomerative and Divisive algorithm

There are two basic approaches to generating a hierarchical clustering: 
agglomerative and divisive algorithms. An agglomerative algorithm for 
hierarchical clustering:

 (1)  assigns each of the m objects into an individual cluster to form the fi rst 
clustering result;

 (2)  merges two or more of these trivial clusters according to the similarity 
measure, thus nesting the trivial clustering into a second partition;

 (3)  iteratively run step 2 until a single cluster containing all m objects or 
some requirements are achieved. A divisive algorithm performs the 
task in the reverse order: Start with one all-inclusive cluster and, at 
each step, split a cluster until only singleton cluster of individual point 
remains.

Figure 4.3.1 shows the steps of these two kinds of methods. From the 
diagram aspect, the agglomerative clustering algorithms are working in a 
bottom-up manner, on the contrary, the divisive clustering algorithms are 
working in a top-down manner.

a

b

c

d

e

a,b

c,d

e

a,b

c,d,e

a,b,c,d,e

Agglomerative 

Divisive 

Figure 4.3.1: An example of Agglomeration and Division

4.3.2.2 Cluster Dissimilarity

In order to decide which clusters should be combined (for agglomerative), 
or where a cluster should be split (for divisive), a measure of dissimilarity 
between sets of observations is required. In most methods of hierarchical 
clustering, this is achieved by use of an appropriate metric (a measure of 
distance between pairs of observations), and a linkage criterion which 
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specifi es the dissimilarity of sets as a function of the pairwise distances of 
observations in the sets. The choice of an appropriate metric will infl uence 
the shape of the clusters, as some elements may be close to one another 
according to one distance and farther away according to another. For 
example, in a 2-dimensional space, the distance between the point (1,0) 
and the origin (0,0) is always 1 according to the usual norms, but the 
distance between the point (1,1) and the origin (0,0) can be 2, or 1 under 
Manhattan distance, Euclidean distance or maximum distance respectively. 
Some commonly used metrics for hierarchical clustering are described as 
follows:

 • Euclidean distance:||xi − xj||2 = 2
1
( )n

il jll
x x

=
−∑  i, j = 1, ..., m

 • Squared Euclidean distance:||xi − xj||2
2 = 1

n

l=∑  (xil − xjl)
2 i, j = 1, ...,m

 • Manhattan distance:||xi − xj||1 = 1

n

l=∑ |xil − xjl|i, j = 1, ..., m

 • Maximum distance:||xi − xj||∞ = max       
l
|xil − xjl|l = 1, ..., n i, j = 1, ...,m

 • Cosine similarity: cos(xi, xj) = 
.

|| |||| ||
i j

i j

x x
x x

 i, j = 1, ...,m.

4.3.2.3 Divisive Clustering Algorithms

 •  Minimum Spanning Tree
  Let us introduce Minimum Spanning Tree, a simple divisive algorithm. 

This approach is the modifi ed version of the single-link agglomerative 
method. The following framework shows the main steps of Minimum 
Spanning Tree:

Algorithm 4.6: Minimum Spanning Tree

 (1)  Compute a minimum spanning tree for the proximity graph;
 (2)  Create a new cluster by breaking the link corresponding to the smallest 

similarity;
 (3)  Repeat step 2 until only singleton cluster remains or some requirements 

achieved.

 •  Bi-Section-K-means
  Bi-Section-K-means is a variant of K-means. It is a good and fast divisive 

clustering algorithm. It frequently outperforms standard K-means as 
well as agglomerative clustering techniques. Bi-Section-K-means is 
defi ned as an outer loop around standard K-means. In order to generate 
K clusters, Bi-section-K-means repeatedly applies K-means. Bi-Section-
K-means is initiated with the universal cluster containing all objects. 
Then it loops. It selects the cluster with the largest dissimilarity and it 
calls K-means in order to split this cluster into exactly two sub-clusters. 
The loop is repeated K-1 times such that K non-overlapping sub-



clusters are generated. Further, as Bi-Section-K-means is a randomized 
algorithm, we produce ten runs and average the obtained results. 

Traceability. Concerning traceability, bi-section-K-means shares the problem 
that similarities in high-dimensional space are diffi cult to understand. In 
contrast to agglomerative algorithms, Bi-Section-K-means may incur that 
the two most similar terms are still split into different clusters, as a wrong 
decision at the upper level of generalization may jeopardize intuitive 
clusterings at the lower level. 

Effi ciency. The time complexity of Bi-Section-K-means the algorithm is O(mK) 
where m is the number of objects and K is the number of clusters.

 •  DIANA
  DIANA is a hierarchical clustering technique and it works as follows: 

At fi rst, there is one large cluster consisting of all m objects. And then, 
at each subsequent step, the largest available cluster is split into two 
clusters until fi nally all clusters comprise single objects. Thus, the 
hierarchy is built in n–1 steps. In the fi rst step of an agglomerative 
method, all possible fusions of two objects are considered leading 
to ( 1)

2
m m −  combinations. In the divisive method based on the same 

principle, there are possibilities to split the data into two clusters. This 
number is considerably larger than that in the case of an agglomerative 
method. To avoid considering all possibilities, the algorithm proceeds 
as follows:

 (1)  Find the object, which has the highest average dissimilarity to all other 
objects. This object initiates a new cluster—a sort of a splinter group;

 (2)  For each object i outside the splinter group compute;
 (3)  Di = [average d(i,j) j  Rsplinter group]-[average d(i,j) j Rsplinter group]

 (4)  Find an object h for which the difference Dh is the largest. If Dh is 
positive, then h is, on the average close to the splinter group.

 (5)  Repeat Steps 2 and 3 until all differences Dh are negative. The data set 
is then split into two clusters.

 (6)  Select the cluster with the largest diameter. The diameter of a cluster 
is the largest dissimilarity between any two of its objects. Then divide 
this cluster, following steps 1–4.

 (7)  Repeat Step 5 until all clusters contain only a single object.

4.3.2.4 Agglomerative Clustering Algorithms

Given a set of m items to be clustered, and an m x m distance (or similarity) 
matrix, the basic process of agglomerative hierarchical clustering is as 
follows:
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 (1)  Start by assigning each item to its own cluster, so that if you have m 
items, you now have m clusters, each containing just one item. Let 
the distances (similarities) between the clusters equal the distances 
(similarities) between the items they contain.

 (2)  Find the closest (most similar) pair of clusters and merge them into a 
single cluster, so that now you have one less cluster.

 (3)  Compute distances (similarities) between the new cluster and each of 
the old clusters.

 (4)  Repeat steps 2 and 3 until all items are clustered into a single cluster 
of size N. Thus, the agglomerative clustering algorithm will result in 
a binary cluster tree with single article clusters as its leaf nodes and a 
root node containing all the articles.

 •  Single Link
  For the single link or MIN version of hierarchical clustering, the 

proximity of two clusters is defi ned as minimum of the distance 
between any two objects in the different clusters. Single link is good 
at handling non-elliptical shapes, but is sensitive to noise and outliers. 
Figure 4.3.2(a) gives a sample similarity matrix for fi ve objects and the 
dendrogram shows the series of merges derived by using the single 
link clustering method [Fig. 4.3.2(b)].

 x1 x2 x3 x4 x5

x1 1 0.92 0.09 0.65 0.21

x2 0.92 1 0.72 0.61 0.50

x3 0.09 0.72 1 0.45 0.30

x4 0.65 0.61 0.45 1. 0.84

x5 0.21 0.50 0.30 0.84 1 
x1 x2 x3 x4 x5

(a) similarity matrix for five objects (b) Dendogram of single link

Figure 4.3.2: An example of Single Link

 •  Complete Link Clustering
  For the complete link version of hierarchical clustering, the proximity 

of two clusters is defi ned to be maximum of the distance (minimum 
of the similarity) between any two points in the different clusters. 
(The technique is called complete link because, if you start with all 
points as singleton clusters, and add links between points, strongest 
links fi rst, then a group of points is not a cluster until all the points 
in it are completely linked.) Complete link is less susceptible to noise 
and outliers, but can break large clusters, and has trouble with convex 
shapes. The following table gives a sample similarity matrix and the 

S



dendrogram shows the series of merges that result from using the 
complete link technique. Figure 4.3.3(a) gives a sample similarity 
matrix for fi ve objects and the dendrogram shows the series of merges 
derived by using the single link clustering method [Fig. 4.3.3(b)].

 x1 x2 x3 x4 x5

x1 1 0.92 0.09 0.65 0.21

x2 0.92 1 0.72 0.61 0.50

x3 0.09 0.72 1 0.45 0.30

x4 0.65 0.61 0.45 1. 0.84

x5 0.21 0.50 0.30 0.84 1 x1 x2 x3 x4 x5

(a) Similarity matrix for five objects (b) Dendogram of single link

Figure 4.3.3: An example of Complete Link Clustering

 •  Average Link Clustering
  For the group average version of hierarchical clustering, the proximity 

of two clusters is defi ned to be the average of the pairwise proximities 
between all pairs of points in the different clusters. Notice that 
this is an intermediate approach between MIN and MAX. This is 
expressed by the following equation: similarity (cluster1, cluster2) = 

1 1, 2 2
similarity( 1, 2)

|| 1|| || 2 ||
p cluster p cluster

p p

cluster cluster
∈ ∈

∗
∑ .

Figure 4.3.4 gives a sample similarity matrix and the dendrogram shows 
the series of merges that result from using the group average approach. 
The hierarchical clustering in this simple case is the same as produced by 
MIN.

 •  Ward’s method
  Ward’s method says that the distance between two clusters, and , is 

how much the sum of squares will increase when we merge them:

O(Ck,Ck’) = xi Ck Ck’||xi − centroidCk Ck’
||2 − xi Ck||xi − centroidCk

||2 −

xi Ck’||xi − centroidCk’
||2 

= 2num num
|| centroid centroid ||

num +num
k k

k k

k k

C C
C C

C C

′

′

′

−

where centroidk is the center of cluster k, and numk is the number of objects 
in it. O is called the merging cost of combining the clusters Ck and C'k . With 
hierarchical clustering, the sum of squares starts out at zero (because every 
point is in its own cluster) and then grows as we merge clusters. Ward’s 
method keeps this growth as small as possible. This is nice if you believe 
that the sum of squares should be small. Notice that the number of points 
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shows up in O, as well as their geometric separation. Given two pairs of 
clusters whose centers are equally far apart, Ward’s method will prefer to 
merge the smaller ones. Ward’s method is both greedy, and constrained by 
previous choices as to which clusters to form. This means its sum-of-squares 
for a given number k of clusters is usually larger than the minimum for that 
k, and even larger than what k-means will achieve. If this is bothersome for 
your application, one common trick is use hierarchical clustering to pick 
K (see below), and then run k-means starting from the clusters found by 
Ward’s method to reduce the sum of squares from a good starting point.

 x1 x2 x3 x4 x5

x1 1 0.92 0.09 0.65 0.21

x2 0.92 1 0.72 0.61 0.50

x3 0.09 0.72 1 0.45 0.30

x4 0.65 0.61 0.45 1. 0.84

x5 0.21 0.50 0.30 0.84 1 x1 x2 x3 x4 x5

(a) Similarity matrix for five objects (b) Dendrogram of average link

Figure 4.3.4: An example of Average Link Clustering

4.3.3 Density-based methods

Density-based approaches apply a local cluster criterion. Clusters are 
regarded as regions in the data space in which the objects are dense, and 
which are separated by regions of low object density (noise). These regions 
may have an arbitrary shape and the points inside a region may be arbitrarily 
distributed.

4.3.3.1 DBSCAN

The most popular density based clustering method is DBSCAN [22]. In 
contrast to many newer methods, it features a well-defi ned cluster model 
called “density-reachability”. Similar to link-based clustering, it is based 
on connecting points within certain distance thresholds. DBSCAN has 
been applied to a 5-dimensional feature space created from several satellite 
images covering the area of California (5 different spectral channels: 1 
visible, 2 refl ected infrared, and 2 emitted (thermal) infrared). The images 
are taken from the roster data of the SEQUOIA 2000 Storage Benchmark. 
This kind of clustering application is one of the basic methods for automatic 
landuse detection from remote sensing data. The main idea of DBSCAN 
could be described as Fig. 4.3.5. From Fig. 4.3.5, we can fi nd that DBSCAN’s 
defi nition of a cluster is based on the notion of density reachability. Basically, 



a point q is directly density-reachable from a point p if it is not farther away 
than a given distance (i.e., is part of its neighborhood) and if p is surrounded 
by suffi ciently many points such that one may consider p and q to be part 
of a cluster. q is called density-reachable (note the distinction from “directly 
density-reachable”) from p if there is a sequence p1,...,pm of points with p1=p 
and pm =q where each pi+1 is directly density-reachable from pi. Note that 
the relation of density-reachable is not symmetric. q might lie on the edge 
of a cluster, having insuffi ciently many neighbors to count as dense itself. 
This would halt the process of fi nding a path that stops with the fi rst non-
dense point. By contrast, starting the process with q would lead to p (though 
the process would halt there, p being the fi rst non-dense point). Due to this 
asymmetry, the notion of density-connected is introduced: two points p 
and q are density-connected if there is a point o such that both p and q are 
density-reachable from o. Density-connectedness is symmetric. Algorithm 
4.7 gives the main steps of DBSCAN. DBSCAN visits each point of the 
database, possibly multiple times (e.g., as candidates to different clusters). 
For practical considerations, however, the time complexity is mostly 
governed by the number of region Query invocations. DBSCAN executes 
exactly one such query for each point, and if an indexing structure is used 
that executes such a neighborhood query in O(log n), an overall runtime 
complexity of O(v * logn) is obtained. Without the use of an accelerating 
index structure, the run time complexity is O(n2). Often the distance matrix 
of size (n2 − n)/2 is materialized to avoid distance re-computations. This 
however also needs O(n2) memory. However, it only connects points that 
satisfy a density criterion in the original variant defi ned as a minimum 
number of other objects within this radius. A cluster consists of all density-
connected objects (which can form a cluster of an arbitrary shape, in contrast 
to many other methods) plus all objects that are within these objects’ range. 

Figure 4.3.5: The basic idea of DBSCAN.
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Another interesting property of DBSCAN is that its complexity is fairly 
low—it requires a linear number of range queries on the database—and 
that it will discover essentially the same results (it is deterministic for core 
and noise points, but not for border points) in each run, therefore there is 
no need to run it multiple times.

Algorithm 4.7: DBSCAN

 (1)  select a point p
 (2)  Retrieve all points density-reachable from p wrt  and MinPts.
 (3)  If p is a core point, a cluster is formed.
 (4)  If p is a border point, no points are density-reachable from p and DBSCAN 

visits the next point of the database.
 (5)  Continue the process until all of the points have been processed.
 (6)  Return clustering results.

OPTICS [11] is a generalization of DBSCAN that removes the need 
to choose an appropriate value for the range parameter, and produces 
a hierarchical result related to that of linkage clustering. DeLi-Clu [5], 
Density-Link-Clustering combines ideas from single-link clustering and 
OPTICS, eliminating the parameter entirely and offering performance 
improvements over OPTICS by using an R-tree index. The key drawback 
of DBSCAN and OPTICS is that they expect some kind of density drop 
to detect cluster borders. Moreover they cannot detect intrinsic cluster 
structures which are prevalent in the majority of real life data. On data sets 
with, for example, overlapping Gaussian distributions—a common use case 
in artifi cial data—the cluster borders produced by these algorithms will 
often look arbitrary, because the cluster density decreases continuously. On 
a data set consisting of mixtures of Gaussians, these algorithms are nearly 
always outperformed by methods such as EM clustering that are able to 
precisely model this kind of data.

4.3.3.2 DENCLUE

DENCLUE (DENsity CLUstEring) [32] is a density clustering approach 
that takes a more formal approach to density based clustering by modeling 
the overall density of a set of points as the sum of “infl uence” functions 
associated with each point. The resulting overall density function will have 
local peaks, i.e., local density maxima, and these local peaks can be used to 
defi ne clusters in a straightforward way. Specifi cally, for each data point, a 
hill climbing procedure fi nds the nearest peak associated with that point, 
and the set of all data points associated with a particular peak (called a local 
density attractor) becomes a (center-defi ned) cluster. However, if the density 
at a local peak is too low, then the points in the associated cluster are classifi ed 



as noise and discarded. Also, if a local peak can be connected to a second 
local peak by a path of data points, and the density at each point on the path 
is above a minimum density threshold, then the clusters associated with 
these local peaks are merged. Thus, clusters of any shape can be discovered. 
DENCLUE is based on a well-developed area of statistics and pattern 
recognition which is known as “kernel density estimation” [18]. The goal 
of kernel density estimation (and many other statistical techniques as well) 
is to describe the distribution of the data by a function. For kernel density 
estimation, the contribution of each point to the overall density function is 
expressed by an “infl uence” (kernel) function. The overall density is then 
merely the sum of the infl uence functions associated with each point. The 
DENCLUE algorithm has two steps: a preprocessing step and a clustering 
step. In the pre-clustering step, a grid for the data is created by dividing 
the minimal bounding hyper-rectangle into d-dimensional hyper-rectangles 
with edge length 2σ. The rectangles that contain points are then determined. 
(Actually, only the occupied hyper-rectangles are constructed.) The hyper-
rectangles are numbered with respect to a particular origin (at one edge of 
the bounding hyper-rectangle and these keys are stored in a search tree to 
provide effi cient access in later processing. For each stored cell, the number 
of points, the sum of the points in the cell, and connections to neighboring 
population cubes are also stored. DENCLUE can be parameterized so that 
it behaves much like DBSCAN, but is much more effi cient that DBSCAN. 
DENCLUE can also behave like K-means by choosing σ appropriately and 
by omitting the step that merges center-defi ned clusters into arbitrary 
shaped clusters. Finally, by doing repeated clusterings for different values 
of σ, a hierarchical clustering can be obtained.

4.3.4 Grid-based Methods

Grid-based clustering methods have been used in some data mining tasks 
of very large databases [29]. In the grid-based clustering, the feature space 
is divided into a fi nite number of rectangular cells, which form a grid. In 
this grid structure, all the clustering operations are performed. The grid can 
be formed in multiple resolutions by changing the size of the rectangular 
cells. Figure 4.3.6 presents a simple example of a hierarchical grid structure 
in three levels that is applied to a two-dimensional feature space. In the case 
of d-dimensional space, hyper rectangles (rectangular shaped cube [50]) 
of d-dimensions correspond to the cells. In the hierarchical grid structure, 
the cell size in the grid can be decreased in order to achieve a more precise 
cell structure. As in Fig. 4.3.6, the hierarchical structure can be divided into 
several levels of resolution. Each cell at the high level k is partitioned to 
form a number of cells at the next lower level k+1. The cells at the level k+1 
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are formed by splitting the cell at level k into smaller subcells. In the case 
of Fig. 1, each cell produces four subcells at the next lower level.

Figure 4.3.6: An example of a Grid-based structure

Grid-based clustering methods make it possible to form arbitrarily 
shaped, distance independent clusters. In these methods, the feature space is 
quantized into cells using a grid structure. The cells can be merged together 
to form clusters. Grid-based clustering was originally based on the idea of 
Warnekar and Krishna [58] to organize the feature space containing patterns. 
Erich [50] has used topological neighbor search algorithm to combine the 
grid cells to form clusters. Agrawal et al. [1] have presented a density-based 
clustering method using grid which named CLIQUE. In this chapter, we will 
discuss STING and WaveCluster algorithms, and CLIQUE will be detailed 
in the section “High dimensional clustering algorithm”.

4.3.4.1 STING

A new statistical information grid-based method (STING) was proposed 
in [57] to effi ciently process many common “region oriented” queries on a 
set of points. Region oriented queries are defi ned later more precisely but 
informally, they ask for the selection of regions satisfying certain conditions 
on density, total area, etc. Algorithm 4.8 shows the framework of STING.

In the above algorithm, Step 1 takes constant time. Steps 2 and 3 require 
a constant time for each cell to calculate the confi dence interval or estimate 
proportion range and also a constant time to label the cell as relevant or 
not relevant. This means that we need constant time to process each cell 
in Steps 2 and 3. The total time is less than or equal to the total number of 
cells in our hierarchical structure. Notice that the total number of cells is 
1.33K, where K is the number of cells at bottom layer. We obtain the factor 
1.33 because the number of cells of a layer is always one-fourth of the 

1st level

2nd level

3rd level



number of cells of the layer one level lower. So the overall computation 
complexity on the grid hierarchy structure is O(K). Usually, the number of 
cells needed to be examined is much less, especially when many cells at 
high layers are not relevant. In Step 8, the time it takes to form the regions 
is linearly proportional to the number of cells. The reason is that for a given 
cell, the number of cells need to be examined is constant because both the 
specifi ed density and the granularity can be regarded as constants during 
the execution of a query and in turn the distance is also a constant since it 
is determined by the specifi ed density. Since we assume each cell at bottom 
layer usually has several dozens to several thousands objects, K<<N. So, 
the total complexity is still O(K). Usually, we do not need to do Step 7 and 
the overall computational complexity is O(K). In the extreme case that we 
need to go to Step 7, we still do not need to retrieve all data from database. 
Therefore, the time required in this step is still less than linear. So, this 
algorithm outperforms other approaches greatly.

WaveCluster [52] is a clustering technique that interprets the original 
data as a two-dimensional signal and then applies signal processing 
techniques (the wavelet transform) to map the original data to a new space 
where cluster identifi cation is more straightforward. More specifi cally, 
WaveCluster defi nes a uniform two-dimensional grid on the data and 
represents the points in each grid cell by the number of points. Thus, 
a collection of two-dimensional data points becomes an image, i.e., a 
set of “gray-scale” pixels, and the problem of fi nding clusters becomes 
one of image segmentation. While there are a number of techniques for 
image segmentation, wavelets have a couple of features that make them 
an attractive choice. First, the wavelet approach naturally allows for a 

Algorithm 4.8: STING
Input: Data set D;
Output: Clustering results

 1.  Determine a layer to begin with.
 2.  For each cell of this layer, we calculate the confi dence interval (or estimated 

range) of probability that this cell is relevant to the query.
 3.  From the interval calculated above, we label the cell as relevant or not 

relevant.
 4.  If this layer is the bottom layer, go to Step 6; otherwise, go to Step 5.
 5.  We go down the hierarchy structure by one level. Go to Step 2 for those cells 

that form the relevant cells of the higher level layer.
 6.  If the specifi cation of the query is met, go to Step 8; otherwise, go to Step 7.
 7.  Retrieve those data that fall into the relevant cells and do further processing. 

Return the result that meets the requirement of the query. Go to Step 9.
 8.  Find the regions of relevant cells. Return those regions that meet the requirement 

of the query. Go to Step 9.
 9.  Stop and return clustering results.
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multiscale analysis, i.e., the wavelet transform allows features, and hence, 
clusters, to be detected at different scales, e.g., fi ne, medium, and coarse. 
Secondly, the wavelet transform naturally lends itself to noise elimination. 
Algorithm 4.9 shows the framework of WaveCluster. In summary, the 
key features of WaveCluster are order independence, there is no need to 
specify a number of clusters (although it is helpful to know this in order 
to fi gure out the right scale to look at), speed (linear), the elimination of 
noise and outliers, and the ability to fi nd arbitrarily shaped clusters. While 
the WaveCluster approach can theoretically be extended to more than two 
dimensions, it seems unlikely that WaveCluster will work well (effi ciently 
and effectively) for medium or high dimensions.

Algorithm 4.9: WaveCluster
Input: Data set D
Output: Clustering results

 (1)  Create a grid and assign each data object to a cell in the grid. The grid is 
uniform, but the grid size will vary for different scales of analysis. Each grid 
cell keeps track of the statistical properties of the points in that cell, but for 
wave clustering only the number of points in the cell is used.

 (2)  Transform the data to a new space by applying the wavelet transform. This 
results in 4 “subimages” at several different levels of resolutionan “average” 
image, an image that emphasizes the horizontal features, an image that 
emphasizes vertical features and an image that emphasizes corners.

 (3)  Find the connected components in the transformed space. The average 
subimage is used to fi nd connected clusters, which are just groups of connected 
“pixels,” i.e., pixels which are connected to one another horizontally, vertically, 
or diagonally.

 (4)  Map the clusters labels of points in the transformed space back to points in the 
original space. WaveCluster creates a lookup table that associates each point 
in the original with a point in the transformed space. Assignment of cluster 
labels to the original points is then straightforward. 

4.3.5 Model-based Methods

It was realized early on that cluster analysis can be based on probabilistic 
or stochastic models. This realization has provided insight into when a 
particular clustering method can be expected to work well (i.e., when 
the data conform to the model) and has led to the development of 
new clustering methods. It has also been shown that some of the most 
popular heuristic clustering methods, such as the k-means algorithm, are 
approximate estimation methods for particular probabilistic models [26]. 
Finite mixture models are a fl exible and powerful probabilistic modeling 
tool for univariate and multivariate data. It is assumed that the data are 
generated by a mixture of underlying probability distributions for multiple 
components where each component represents a different group or cluster. 



Given data D with independent multivariate observations x1,x2, . . . ,xm, the 
joint likelihood of D is:

P(D|Θ) = 
11 1

( | ) ( | )
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== =

Θ = ∑∏ ∏ θτ

Where Θ = {θ1, θ2, ..., θK, τ1, τ2, ..., τK} represents the set of all model parameters 
for the mixture model. τK is the probability that an observation belongs to 
the kth component (τK > 0, 1

K

k=∑  τK = 1). Model parameter learning amounts 
to fi nding the maximum a posteriori (MAP) parameter estimate, given the 
data set D, i.e., �Θ = arg max[P(D|Θ)P(Θ)]. If we take a noninformative prior 
on Θ, learning degenerates to maximum likelihood estimation (MLE), i.e., 
�Θ = argmax  P(D|Θ).

4.3.5.1 EM Algorithm

The expectation-maximization (EM) algorithm [20] is a general approach 
to MLE problems in which the data can be viewed as consisting of m 
multivariate observations (xi, zi), where xi is observed object but zi is 
unobserved.

 (1)  Basic EM If (xi, zi) are independent and identically distributed according 
to a probability distribution P with parameter θ, then the complete-data 
likelihood is:

LC(D, Z|θ) = 
1

( , | )
m

i i
i

P x z θ
=
∏ θ

The observed data likelihood can be obtained by integrating out Z 
from the complete-data likelihood, LO(D|θ) = Ú  LC(D, Z|θ)dZ. The MLE 
for θ based on the observed data maximizes LO(D|θ) with respect to θ. 
Without knowing the missing data, the EM algorithm alternates between 
two steps. In the E-step, the conditional expectation of the complete-data 
log-likelihood, given the observed data and the current parameter estimates 
is computed. In the M-step, the parameters that maximize the expected 
log-likelihood from E-step are determined.

 (2)  EM algorithm for Mixture models. In the EM algorithm for mixture 

models, Equation  P(D|Θ) = 
11 1
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i i i k
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P x P xτ θ
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Θ = ∑∏ ∏ θτ  can be rewritten

as a log-likelihood function of parameter for given observed data D:ℓ(Θ; 

D) = 
1 1

log[ ( | )]
m K

k i k
i k

P xτ θ
= =
∑ ∑ θτ . The “complete-data” are considered to be

(xi, zi), where zi = (zi1, . . . , ziK) is the unobserved binary K-dimensional 
vectors such that zik = 1 if and only if xi arises from the k-th component[60]. 
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Assuming that each zi is independent and identically distributed according 
to multinomial distribution with probabilities τ1, τ2, ..., τK for the K clusters, 

and the density of an observation x_i given z_i is given by 
1

( | )
K

i k
k

P x θ
=
∏ θ zik,

the resulting complete-data log-likelihood is ℓC(Θ ;  D)  = 

1 1
log[ ( | )]

m K

ik k i k
i k

z P xτ θ
= =
∑∑ θτ , which is also known as the classifi cation

log-likelihood in the clustering literature. The EM algorithm can 
then be viewed as operating in two steps. In the E-step, we calculate 
the class-conditional probability P(zi|xi, Θ) for each sequence under 
each of the K clusters using the current parameter. In the M-step, we 
update by weighing each sequence according to its class-conditional 
probability. Thus the EM algorithm is guaranteed to lead to a sequence 
of Θ’s which have non-decreasing likelihood, i.e., under fairly broad 
conditions it will fi nd at least a local maximum. Algorithm 4.10 shows 
the main steps of EM algorithm and The implement of EM clustering 
was embedded in MCLUST R package (http://www.stat.washington.
edu/mclust/).

Algorithm 4.10: EM clustering

Input: Data set D

Output: Clustering result

 (1) First, initialize the parameters θ to some random values.
 (2)  Compute the best value for Z given these parameter values.
 (3) Then, use the just-computed values of Z to compute a better estimate for the 

parameters θ. Parameters associated with a particular value of Z will use only 
those data points whose associated latent variable has that value.

 (4)  iterate steps 2 and 3 until convergence.
 (5)  Return clustering result.

4.3.5.2 Extensions of EM Algorithm

The EM algorithm for clustering has a number of limitations. First, the rate 
of convergence can be very slow. This does not appear to be a problem in 
practice for well-separated mixtures when started with reasonable values. 
Second, the number of conditional probabilities associated with each 
observation is equal to the number of components in the mixture, so that the 
EM algorithm for clustering may not be practical for models with very large 
number of clusters. Finally, EM breaks down when the covariance matrix 
corresponding to one or more components becomes ill-conditioned (singular 
or nearly singular). If EM for a model with a certain number of components 
is applied to a mixture with fewer groups than the number of mixture 
components, then it may fail due to ill-conditioning. A number of variants 



of the EM algorithm have been proposed for model-based clustering, some 
of which can avoid the limitations of the EM algorithm. CEM and SEM 
[19] are two widely used variants. The classifi cation EM (CEM) algorithm 
can be regarded as a classifi cation version of the EM algorithm, where the 
complete log-likelihood is maximized. It incorporates a classifi cation step 
(C-step) between the E-step and the M-step of the standard EM algorithm 
by using a MAP principle. In the C-step, each object xi is assigned to the 
cluster which provides the maximum posterior probability. It has been 
shown that the k-means algorithm is exactly the CEM algorithm for a 
Gaussian mixture with equal proportions and a common covariance matrix 
of the form. Since most of the classical clustering criteria can be analyzed as 
classifi cation maximum likelihood criteria, the CEM algorithm turns out to 
be quite a general clustering algorithm. However, from the practical point 
of view, the solution provided by the CEM algorithm does depend on its 
initial position, especially when the clusters are not well separated. Celeux 
et al. considered a stochastic version of EM as well as the CEM algorithm 
in the context of computing the MLE for fi nite mixture models. They call 
it the stochastic EM (SEM) algorithm. With the SEM algorithm, the current 
posterior probabilities are used in a stochastic E-step (Sstep), wherein each 
observation object xi is assigned to one of the K clusters according to the 
posterior probability distributions for all clusters. Numerical experiments 
have shown that SEM performs well and can overcome some of the 
limitations of the EM algorithm.

4.4 High-dimensional clustering algorithm
Data collected in the world are so large that it is becoming increasingly 
diffi cult for users to access them. Knowledge Discovery in Databases (KDD) 
is the non-trivial process of identifying valid, novel, potentially useful 
and ultimately understandable patterns in data [23]. The KDD process is 
interactive and iterative, involving numerous steps. Data mining is one such 
step in the KDD process. In this section, we focus on the high-dimensional 
clustering problem, which is one of the most useful tasks in data mining for 
discovering groups and identifying interesting distributions and patterns 
in the underlying data. Thus, the goal of clustering is to partition a data 
set into subgroups such that objects in each particular group are similar 
and objects in different groups are dissimilar [15]. According to [31], four 
problems need to be overcome for high-dimensional clustering:

 (1)  Multiple dimensions are hard to think in, impossible to visualize, 
and due to the exponential growth of the number of possible values 
with each dimension, complete enumeration of all subspaces becomes 
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intractable with increasing dimensionality. This problem is referred to 
as the curse of dimensionality.

 (2)  The concept of distance becomes less precise as the number of 
dimensions grows, since the distance between any two points in a 
given dataset converges. The discrimination of the nearest and farthest 
point in particular becomes meaningless: max min

min

lim 0
d

dist dist
dist→∞

−
→ .

 (3)  A cluster is intended to group objects that are related, based on 
observations of their attribute’s values. However, given a large number 
of attributes some of the attributes will usually not be meaningful for a 
given cluster. For example, in newborn screening, a cluster of samples 
might identify newborns that share similar blood values, which might 
lead to insights about the relevance of certain blood values for a disease. 
But for different diseases, different blood values might form a cluster, 
and other values might be uncorrelated. This is known as the local 
feature relevance problem: different clusters might be found in different 
subspaces, so a global fi ltering of attributes is not suffi cient. 

 (4)  Given a large number of attributes, it is likely that some attributes are 
correlated. Hence, clusters might exist in arbitrarily oriented affi ne 
subspaces. Recent research by Houle et al. [42] indicates that the 
discrimination problems only occur when there is a high number of 
irrelevant dimensions, and that shared-nearest-neighbor approaches 
can improve results. 

Lots of clustering algorithms have been proposed to high dimensional 
clustering problem. In general, the algorithmic approaches for fi nding 
these subspaces (i.e., traversing the search space of all possible axis-parallel 
subspaces) can be divided into the following two categories: Bottom-up 
approaches and Top-down approaches. In the following sections, we will 
discuss these two different ways in detail.

4.4.1 Bottom-up Approaches

The exponential search space that needs to be traversed is equivalent to 
the search space of the frequent item set problem in market basket analysis 
in transaction databases [10]. Each attribute represents an item and each 
subspace cluster is a transaction of the items representing the attributes that 
span the corresponding subspace. Finding item sets with frequency l then 
relates to fi nding all combinations of attributes that constitute a subspace 
containing at least one cluster. This observation is the rationale of most 
bottom-up subspace clustering approaches. The subspaces that contain 
clusters are determined starting from all one-dimensional subspaces that 
accommodate at least one cluster by employing a search strategy similar to 
frequent item set mining algorithms. To apply any effi cient frequent item 



set mining algorithm, the cluster criterion must implement a downward 
closure property (also called monotonicity property): If subspace S contains 
a cluster, then any subspace T  S must also contain a cluster. The reverse 
implication, if a subspace T does not contain a cluster, then any super 
space S  T also cannot contain a cluster, can be used for pruning, that is, 
excluding specifi c subspaces from consideration. Let us note that there are 
bottom-up algorithms that do not use an APRIORI-like subspace search, 
but instead apply other search heuristics. In another way, the bottom-up 
approaches are also called as subspace clustering.

CLIQUE [1], the pioneering approach to subspace clustering, uses a 
grid-based clustering notion. The data space is partitioned by an axis-
parallel grid into equal units of width ζ. Only units which contain at least 
τ points are considered as dense. A cluster is defi ned as a maximal set 
of adjacent dense units. Since dense units satisfy the downward closure 
property, subspace clusters can be explored rather effi ciently in a bottom-
up way. Starting with all one-dimensional dense units, (k+1)-dimensional 
dense units are computed from the set of k-dimensional dense units in an 
APRIORI-like style. If a (k+1)-dimensional unit contains a projection onto 
a k-dimensional unit that is not dense, then the (k+1)-dimensional unit 
also cannot be dense. Further, a heuristic that is based on the minimum 
description length principle is introduced to discard candidate units 
within less interesting subspaces (i.e., subspaces that contain only a very 
small number of dense units). This way, the effi ciency of the algorithm is 
enhanced but at the cost of incomplete results, namely some true clusters 
are lost. There are some variants of CLIQUE. The method ENCLUS [11] also 
relies on a fi xed grid, but searches for subspaces that potentially contain 
one or more clusters rather than for dense units. Three quality criteria 
for subspaces are introduced, one implementing the downward closure 
property. The method MAFIA [45] uses an adaptive grid. The generation of 
subspace clusters is similar to CLIQUE. Another variant of CLIQUE, called 
nCluster [41], allows overlapping windows of length δ as one-dimensional 
units of the grid. In summary, all grid-based methods use a simple but rather 
effi cient cluster model. The shape of each resulting cluster corresponds to a 
polygon with axis-parallel lines in the corresponding subspace. Obviously, 
the accuracy and effi ciency of CLIQUE and its variants primarily depend 
on the granularity and the positioning of the grid. A higher grid granularity 
results in higher runtime requirements but will most likely produce more 
accurate results. SUBCLU [16] uses the DBSCAN cluster model of density 
connected sets. It is shown that density-connected sets satisfy the downward 
closure property. This enables SUBCLU to search for density based clusters 
in subspaces in an APRIORI-like style. The resulting clusters may exhibit 
an arbitrary shape and size in the corresponding subspaces. RIS [39] is 
a subspace ranking algorithm that uses a quality criterion to rate the 
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interestingness of subspaces. This criterion is based on the monotonicity 
of core points which are the central concept of the density-based clustering 
notion of DBSCAN. An Apriori-like subspace generation method (similar 
to SUBCLU) is used to compute all relevant subspaces and rank them by 
interestingness. The clusters can be computed in the generated subspaces 
using any clustering method of choice. SURFING [14] is a subspace ranking 
algorithm that does not rely on a global density threshold. It computes the 
interestingness of a subspace based on the distribution of the k-nearest 
neighbors of all data points in the corresponding projection. An effi cient, 
bottom-up subspace expansion heuristics ensures that less interesting 
subspaces are not generated for examination. More subspace clustering 
algorithms in detailed, please reference to [53, 56, 35].

4.4.2 Top-down Approaches

The rationale behind Top-down approaches is to determine the subspace 
of a cluster starting from the full-dimensional space. This is usually done 
by determining a subset of attributes for a given set of points (potential 
cluster members) such that the points meet the given cluster criterion when 
projected onto the corresponding subspace. Obviously, the dilemma is 
that for the determination of the subspace of a cluster, at least some cluster 
members must be identifi ed. On the other hand, in order to determine cluster 
memberships, the subspace of each cluster must be known. To escape from 
this circular dependency, most top-down approaches rely on a rather strict 
assumption, which we call the locality assumption. It is assumed that the 
subspace of a cluster can be derived from the local neighborhood (in the 
full-dimensional data space) of the cluster center or the cluster members. 
In other words, it is assumed that even in the full-dimensional space, the 
subspace of each cluster can be learned from the local neighborhood of 
cluster representatives or cluster members. Other top-down approaches 
that do not rely on the locality assumption use random sampling in order 
to generate a set of potential cluster members. According to the top-down 
approaches working way, it is also called as projective clustering. Projective 
clustering is an effi cient way of dealing with high dimensional clustering 
problems. Explicitly or implicitly, projective clustering algorithms assume 
the following defi nition: Give a data set D of n-dimensional data objects, 
a projected cluster is defi ned as a pair (Ck, Sk), where Ck is a subset of data 
objects and Sk is a subset of attributes such that the data objects in Ck are 
projected along each attribute in Sk onto a small range of values, compared 
to the range of values of the whole data set in Sk, and the data objects in Ck 
are uniformly distributed along every other attributes not in Sk. The task 
of projective clustering is to search and report all projective clusters in the 
search space.



PROCLUS [9] is one of the classical projective clustering algorithms. 
It discovers groups of data objects located closely in each of the related 
dimension in its associated subspace. In such case, the data objects would 
spread along certain directions which are parallel to the original data axes. 
ORCLUS [10] aims to detect arbitrarily oriented subspaces formed by any 
set of orthogonal vectors. EPCH [38] is focused on uncovering projective 
clusters with varying dimensionality, without requiring users to input 
the expected average dimensionality l of the associated subspace and the 
number of clusters K that inherently exists in the data set. The d-dimensional 
histogram created with equal width, is used to capture the dense units 
and their locations in the d-dimensional space. A compression structure is 
used to store these dense units and their locations. At last, a search method 
is used to merge similar and adjacent dense units and form subspace 
clusters. P3C [44] can effectively discover projective clusters in the data 
while minimizing the number of required parameters. P3C also does not 
need the number of projective clusters as input and can discover the true 
number of clusters. There are three steps consisted in P3C. Firstly, regions 
corresponding to the clusters on each attribute are discovered. Secondly, a 
cluster core structure described by a combination of the detected regions is 
designed to capture the dense areas in a high dimensional space. Thirdly, 
cluster cores are refi ned into projective clusters, outliers are identifi ed, 
and the relevant attributes for each cluster are determined. STATPC [43] 
uses a varying width hyper-rectangle structure to fi nd out the dense areas 
embedded in the high dimensional space. By using a spatial statistical 
method, all dense hyper-rectangles are found. A heuristic search process 
is run to merge these dense hyper-rectangles and clustering results are 
generated. The clusters of projective clustering are defi ned as the dense 
areas in corresponding subsets of attributes. In projective clustering, it is a 
common way that a hyper-rectangle structure is used to fi nd out the dense 
areas in the d-dimensional space at fi rst; and then, a search method is run 
to merge these hyper-rectangles for generating clusters. Because the dense 
area is captured by the hyper-rectangle structure, it is important to defi ne 
the structure before clustering. There are two kinds of hyper-rectangle 
structures used in projective clustering—the equal width hyper-rectangle 
structure and the varying width hyper-rectangle structure. For the equal 
width hyper-rectangle structure, each dimension is divided into equal 
width intervals, and the hyper-rectangles are constructed by these intervals, 
for instance, the d-dimensional histogram is used as the fi rst step in the 
construction of hyper-rectangle structure in EPCH.
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4.4.3 Other Methods

Hybrid clustering algorithms do not belong to bottom-up or top-down 
approaches. Algorithms that do not aim at uniquely assigning each data 
point to a cluster nor at fi nding all clusters in all subspaces are called hybrid 
algorithms. Some hybrid algorithms offer the user an optional functionality 
of a pure projected clustering algorithm. Others aim at computing only 
the subspaces of potential interest rather than the fi nal clusters. Usually, 
hybrid methods that report clusters allow overlapping clusters, but do 
not aim at computing all clusters in all subspaces. DOC [49] uses a global 
density threshold to defi ne a subspace cluster by means of hypercubes of 
fi xed side-length w containing at least α points. A random search algorithm 
is proposed to compute such subspace clusters from a starting seed of 
sampled points. A third parameter β specifi es the balance between the 
number of points and the dimensionality of a cluster. This parameter affects 
the dimensionality of the resulting clusters, and thus DOC usually also has 
problems with subspace clusters of signifi cantly different dimensionality. 
Due to the very simple clustering model, the clusters may contain additional 
noise points (if w is too large) or not all points that naturally belong to the 
cluster (if w is too small). One run of DOC may (with a certain probability) 
fi nd one subspace cluster. If k clusters need to be identifi ed, DOC has to 
be applied at least k times. If the points assigned to the clusters found so 
far are excluded from subsequent runs, DOC can be considered as a pure 
projected clustering algorithm because each point is uniquely assigned 
to one cluster or to noise (if not assigned to a cluster). On the other hand, 
if the cluster points are not excluded from subsequent runs, the resulting 
clusters of multiple runs may overlap. Usually, DOC cannot produce all 
clusters in all subspaces. MINECLUS [60] is based on a similar idea as 
DOC, but proposes a deterministic method to fi nd an optimal projected 
cluster, given a sample seed point. The authors transform the problem 
into a frequent item set mining problem and employ a modifi ed frequent 
pattern tree growth method. Further heuristics are introduced to enhance 
effi ciency and accuracy.

DiSH [6] follows a similar idea as PreDeCon but uses a hierarchical 
clustering model. This way, hierarchies of subspace clusters can be 
discovered, that is, the information that a lower-dimensional cluster is 
embedded within a higher-dimensional one. The distance between points 
and clusters refl ects the dimensionality of the subspace that is spanned by 
combining the corresponding subspace of each cluster. As in COSA, the 
weighting of attributes is learned for each object, not for entire clusters. 
The learning of weights, however, is based on single attributes, not on the 
entire feature space. DiSH uses an algorithm that is inspired by the density-
based hierarchical clustering algorithm OPTICS. However, DiSH extends 



the cluster ordering computed by OPTICS in order to fi nd hierarchies of 
subspace clusters with multiple inclusions (a lower-dimensional subspace 
cluster may be embedded in multiple higher-dimensional subspace 
clusters). SCHISM [51] mines interesting subspaces rather than subspace 
clusters, hence, it is not exactly a subspace clustering algorithm, but solves 
a related problem: fi nding subspaces to look for clusters. It employs a 
grid-like discretization of the database and applies a depthfi rst search with 
backtracking to fi nd maximally interesting subspaces. FIRES [47] computes 
one-dimensional clusters using any clustering technique the user is most 
accomplished with in a fi rst step. These one-dimensional clusters are then 
merged by applying a ”clustering of clusters.” The similarity of clusters 
is defi ned by the number of intersecting points. The resulting clusters 
represent hyper-rectangular approximations of the true subspace clusters. 
In an optional postprocessing step, these approximations can be refi ned 
by again applying any clustering algorithm to the points included in the 
approximation projected onto the corresponding subspace. Though using 
a bottom-up search strategy, FIRES is rather effi cient because it does not 
employ a worst-case exhaustive search procedure but a heuristic that is 
linear in the dimensionality of the data space. However, this performance 
boost is paid for by an expected loss of clustering accuracy. It cannot be 
specifi ed whether the subspace clusters produced by FIRES may overlap or 
not. In general, the clusters may overlap, but usually FIRES cannot produce 
all clusters in all subspaces.

4.5 Constraint-based Clustering Algorithm
In computer science, constrained clustering is a class of semi-supervised 
learning algorithms [36]. Typically, constrained clustering incorporates 
either a set of must-link constraints, cannot-link constraints, or both, with a 
data clustering algorithm. Both a must-link and a cannot-link constraint 
defi ne a relationship between two data instances. A must-link constraint is 
used to specify that the two instances in the must-link relation should be 
associated with the same cluster. A cannot-link constraint is used to specify 
that the two instances in the cannot-link relation should not be associated 
with the same cluster. These sets of constraints acts as a guide for which a 
constrained clustering algorithm will attempt to fi nd clusters in a data set 
which satisfy the specifi ed must-link and cannot-link constraints. Some 
constrained clustering algorithms will abort if no such clustering exists 
which satisfi es the specifi ed constraints. Others will try to minimize the 
amount of constraint violation should it be impossible to fi nd a clustering 
which satisfi es the constraints.

   Clustering Analysis 89



90 Applied Data Mining

4.5.1 COP K-means

In the context of partitioning algorithms, instance level constraints are a 
useful way to express a prior knowledge about which instances should or 
should not be grouped together. Consequently, we consider two types of 
pair-wise constraints: 

 • Must-link constraints specify that two instances have to be in the same 
cluster.

 • Cannot-link constraints specify that two instances must not be placed 
in the same cluster.

The must-link constraints defi ne a transitive binary relation over the 
instances. Consequently, when making use of a set of constraints (of both 
kinds), we take a transitive closure over the constraints. The full set of 
derived constraints is then presented to the clustering algorithm. In general, 
constraints may be derived from partially labeled data or from background 
knowledge about the domain or data set. 

Algorithm 4.11 gives the framework of COP K-means algorithm. The 
major modifi cation is that, when updating cluster assignments, we ensure 
that none of the specifi ed constraints are violated. We attempt to assign 
each point di to its closest cluster Cj. This will succeed unless a constraint 
would be violated. If there is another point d= that must be assigned to 
the same cluster as d, but that is already in some other cluster, or there is 
another point dF that cannot be grouped with d but is already in C, then di 
cannot be placed in C. We continue down the sorted list of clusters until 
we fi nd one that can legally host d. Constraints are never broken; if a legal 
cluster cannot be found for d, the empty partition is returned. An interactive 
demo of this algorithm can be found at http://www.cs.cornell.edu/home/
wkiri/cop-kmeans/.

4.5.2 MPCK-means

Given a set of data objects D, a set of must-link constraints M, a set of 
cannot-link constraints C, corresponding cost sets W and W , and the desired 
number of clusters K, MPCK-Mmeans fi nds a disjoint K-partitioning 1{ }K

k kC =  
of D (with each cluster having a centroid µk and a local weight matrix Ak) 
such that the objective function is (locally) minimized [17]. The algorithm 
integrates the use of constraints and metric learning. Constraints are utilized 
during cluster initialization and when assigning points to clusters, and the 
distance metric is adapted by re-estimating the weight matrices Ak during 
each iteration based on the current cluster assignments and constraint 
violations. Algorithm 4.12 gives the pseudocode of MPCK-means.

http://www.cs.cornell.edu/home/wkiri/cop-kmeans/


Algorithm 4.11: COP-K-means
Input: data set D, must-link constraints Con=  D x D, cannot-link constraints
Con  D x D
Output: Clustering result

 (1)  Let C1 ,…, Ck be the initial cluster centers.
 (2)  For each point di in D, assign it to the closest cluster Cj such that
  violate-constraints (di, Cj, Con=, Con) is false. If no such cluster exists, fail 

(return {}).
 (3)  For each cluster Ci, update its center by averaging all of the points dj that have 

been assigned to it.
 (4)  Iterate between (2) and (3) until convergence.
 (5)  Return {C1 ,…, Ck }.
  violate-constraints(data point d, cluster C, must-link constraints Con  D x D, 

cannot-link constraints Con  D x D)
 (1)  For each (d,d=) Con=: if d= C, return true.
 (2)  For each (d,d ) Con : if d  C, return true.
 (3)  Otherwise, return false

4.5.3 AFCC

AFCC is based on an iterative reallocation that partitions a data set into 
an optimal number of clusters by locally minimizing the sum of intra-
cluster distances while respecting as many as possible of the constraints 
provided. AFCC alternates between membership updating step and 
centroid estimation step while generating actively at each iteration new 
candidate pairs for constraints [28]. After the initialization step, we continue 
by computing α, the factor that will ensure a balanced infl uence from 
the constrained data and unlabeled patterns than β, the factor that will 
determine which term of the membership updating equation will dominate. 
Afterwards, memberships will be updated. In the second step, based on 
the cardinalities of different clusters, spurious clusters will be discarded, 
thus obtaining the centroids of good clusters. At this time, a data partition 
is available, AFCC will then try to identify least well defi ned cluster and 
selects in an active manner good candidates for the need of generating 
maximally informative constraints. As distance d(xi, µj) between a data 
item xi and a cluster centriod µj, one can use either the ordinary Euclidean 
distance when the clusters are assumed to be spherical or the Mahalanobis 
distance when they are assumed to be elliptical: d2(xi, µk) = |Ck|

1/n(xi − µk)
Tδk

−1 (xi − µk), where n is the dimension of the space considered and Ck is the 
covariance matrices of the cluster k:

δk = 
2

1
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Algorithm 4.12: MPCK-means
Input: Data set D, must-link set M, cannot-link set CA, cluster number K, constraint 
costs W and W
Output: Clustering result 1{ }K

k kC =

(1) Initialize clusters:
     (1.1) create the λ neighborhoods {Np}

λ
p=1 from M and CA

      (1.2) if λ  K
      Initialize {µ0

k}
K
k=1 using weighted farthest-fi rst traversal starting from the 

largest Np 
 Else if λ  K 
  Initialize {µ0

k}
K
k=1  with centroids of {Np}

λ
p=1

  Initialize remaining clusters at random
(2) Repeat until convergence
     (2.1) assign_cluster: assign each data object xi to cluster k.
      (2.2) estimate means: 

( 1)
( 1)

1 1( 1)

1{ } { }
| | t

k

t K K
k k kt x C

k

x
C

μ +
+

= =+ ∈
← ∑µ  

      (2.3) update_metrics: Ak=|Ck|( xi Ck
(xi–µk)(xi–µk)

T)

+ (xi, xj) Mk
 1
2

wij(xi–xj)(xi–xj)
T+ (xi, xj) CAk 

w
ij(xi–xj)(xi–xj)

T)–1

     (2.4) t  t +1
(3) Return Clustering result.

When the Mahalanobis distance is employed, the computation of δk 
are performed at the beginning of the main loop, right before the update 
of β. The AFCC algorithm runs in O(MK2p) time, where M is the number 
of data objects, K is the number of clusters, and p is the dimension of the 
data points.

4.6 Consensus Clustering Algorithm
Consensus clustering has emerged as an important elaboration of the 
classical clustering problem. Consensus clustering, also called aggregation 
of clustering (or partitions), refers to the situation in which a number of 
different (input) clusterings have been obtained for a particular dataset 
and it is desired to fi nd a single (consensus) clustering which is a better fi t 
in some sense than the existing clusterings. Consensus clustering is thus 
the problem of reconciling clustering information about the same data set 
coming from different sources or from different runs of the same algorithm. 
When cast as an optimization problem, consensus clustering is known 
as median partition, and has been shown to be NP-complete. Consensus 
clustering for unsupervised learning is analogous to ensemble learning in 
supervised learning.



Listed as below are some reason following for using consensus 
clustering [1].

 • There are potential shortcomings for each of the known clustering 
techniques.

 • Interpretations of results are diffi cult in a few cases.
 • When there is no knowledge about the number of clusters, it becomes 

diffi cult.
 • They are extremely sensitive to the initial settings.
 • Some algorithms can never undo what was done previously.
 • Iterative descent clustering methods, such as the SOM and K-Means 

clustering circumvent some of the shortcomings of hierarchical 
clustering by providing for univocally defi ned clusters and cluster 
boundaries. However, they lack the intuitive and visual appeal of 
hierarchical clustering, and the number of clusters must be chosen a 
priori.

 • An extremely important issue in cluster analysis is the validation of the 
clustering results, that is, how to gain confi dence about the signifi cance 
of the clusters provided by the clustering technique (cluster numbers 
and cluster assignments). Lacking an external objective criterion (the 
equivalent of a known class label in supervised learning) this validation 
becomes somewhat elusive.

The advantages of consensus clustering are listed as below:

 • Provides for a method to represent the consensus across multiple runs 
of a clustering algorithm, to determine the number of clusters in the 
data, and to assess the stability of the discovered clusters.

 • The method can also be used to represent the consensus over multiple 
runs of a clustering algorithm with random restart (such as K-means, 
model-based Bayesian clustering, SOM, etc.), so as to account for its 
sensitivity to the initial conditions.

 • It also provides for a visualization tool to inspect cluster number, 
membership, and boundaries.

 • It is possible to extract lot of features/attributes from multiple runs of 
different clustering algorithms on the data. These features can give us 
valuable information in doing a fi nal consensus clustering.

4.6.1 Consensus Clustering Framework

We are given a set of M data objects D = {x1, x2, ..., xM} and a set of P clusterings 
= {π1, π2, ..., πP} of the data objects in D. Each clustering πP, p = 1, ..., P is a 

mapping from D to {1, ..., nπp} where nπp is the number of clusters in πP. The 
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problem of clustering consensus is to fi nd a new clustering π* of the data 
set D that best summarizes the clustering ensemble .

Algorithm 4.13 shows the framework of consensus clustering. The 
consensus function is the main step in any clustering ensemble algorithm. 
Precisely, the great challenge in clustering ensemble is the defi nition of an 
appropriate consensus function, capable of improving the results of single 
clustering algorithms. In this step, the fi nal data partition or consensus 
partition π*, which is the result of any clustering ensemble algorithm, 
is obtained. However, the consensus among a set of clusterings is not 
obtained in the same way in all cases. There are two main consensus 
function approaches: objects co-occurrence and median partition. In the 
fi rst approach, the idea is to determine which must be the cluster label 

Algorithm 4.13: the framework of consensus clustering
Input: Data set D, clustering set , desired number of clusters K
Output: the consensus clustering results.

 (1)  defi ne a consensus function
 (2)  optimize the consensus function until convergence
 (3)  return the consensus clustering result

associated to each object in the consensus partition. To do that, it is analyzed 
how many times an object belongs to one cluster or how many times two 
objects belong together to the same cluster. The consensus is obtained 
through a voting process among the objects. Somehow, each object should 
vote for the cluster to which it will belong in the consensus partition. 
This is the case, for example, of Relabeling and Voting and Co-association 
Matrix based methods. In the second consensus function approach, the 
consensus partition is obtained by the solution of an optimization problem, 
the problem of fi nding the median partition with respect to the cluster 
ensemble. Formally, the median partition is defi ned as:

π* = 
1

arg max P

pπ =∈Π
∑

π
 (π, πp ), π  πp

where () is a similarity measure between partitions. The median partition 
is defi ned as the partition that maximizes the similarity with all partitions 
in the cluster ensemble. For example, Non-Negative Matrix Factorization 
and Kernel based methods follow this approach.



4.6.2 Some Consensus Clustering Methods

4.6.2.1 Relabeling and Voting-based Methods

The Relabeling and Voting methods are based on solving as fi rst step the 
labeling correspondence problem and after that, in a voting process, the 
consensus partition is obtained. The labeling correspondence problem 
consists of the following: the label associated to each object in a partition 
is symbolic; there is no relation between the set of labels given by a 
clustering algorithm and the set of labels given by another one. The 
label correspondence is one of the main issues that make unsupervised 
combination diffi cult. The different clustering ensemble methods based 
on relabeling try to solve this problem using different heuristics such 
as bipartite matching and cumulative voting. Lots of method have been 
proposed: A general formulation for the voting problem as a multi-response 
regression problem was presented by Ayad and Kamel [13]. Plurality Voting 
(PV) [25], Voting-Merging (V-M) [59], Voting for fuzzy clusterings [21], 
Voting Active Clusters (VAC) [55], Cumulative Voting (CV) [12] and the 
methods proposed by Zhou and Tang [43] and Gordon and Vichi [27]. If a 
relation exists among the labels associated for each clustering algorithm, 
the voting defi nition of the clustering ensemble problem would be the most 
appropriate. However, the labeling correspondence problem is what makes 
the combination of clusterings diffi cult. This correspondence problem can 
only be solved, with certain accuracy, if all partitions have the same number 
of clusters. We consider this to be a strong restriction to the cluster ensemble 
problem. Then, in general, they are not recommended when the number 
of clusters in all partitions in the ensemble is not the same. Besides, very 
frequently, they could have high computational cost since the Hungarian 
algorithm to solve the label correspondence problem is O(k3), where k is 
the number of clusters in the consensus partition. On the other hand, these 
kinds of algorithms are usually easy to understand and implement.

4.6.2.2 Graph and Hyper Graph based Methods

This kind of clustering ensemble methods transform the combination 
problem into a graph or hyper graph partitioning problem. The difference 
among these methods lies on the way the (hyper)graph is built from the set 
of clusterings and how the cuts on the graph are defi ned in order to obtain 
the consensus partition. Strehl and Ghosh defi ned the consensus partition 
as the partition that most information shares with all partitions in the cluster 
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ensemble [54]. Cluster-based Similarity Partitioning Algorithm (CSPA) 
[2], Hyper Graphs Partitioning Algorithm (HGPA) [3], Meta-CLustering 
Algorithm (MCLA) [4], Hybrid Bipartite Graph Formulation (HBGF) [24]
are also the effi cient graph and hyper graph-based consensus clustering 
method in the references. We consider that the main weakness of these 
kind of clustering ensemble methods is that they are not rigourously well-
founded as a solution for the consensus clustering problem, in the sense 
that most of them are proposed as a solution for the median partition 
problem defi ned with the NMI similarity measure, but in practice, they 
are not solving this problem. These methods are more related with the 
object co-occurrence approach since in the (hyper)graph construction and 
in the partitioning algorithm, the relationship between individual objects 
are implicitly taken into account. In addition to that, these methods need 
a (hyper)graph partitioning algorithm in the fi nal step, therefore, if we 
change this algorithm, the fi nal result could change. Regardless of the fact 
that METIS and HMETIS are the most used algorithm for the (hyper)graph 
partitioning, they are not the only graph partitioning algorithm and they 
do not have to achieve the best results in all situations.

4.7 Chapter Summary
Clustering is an important data mining tools and it has been used in lots 
of application areas, such as, Biology, Information Retrieve, Climate, 
Psychology, Medicine and Business. In this chapter, we classify the proposed 
clustering algorithms into fi ve categories: traditional clustering algorithm, 
high dimensional clustering algorithm and constraint-based clustering 
algorithm and consensus clustering algorithm. The traditional data 
clustering approaches include partitioning methods, hierarchical methods, 
density-based methods, grid-based methods, and model-based methods. 
Two different kinds of high-dimensional clustering algorithms have been 
described. In the constraint-based clustering algorithm subsection, we fi rst 
discussed the concept of constraint-based clustering algorithm and then 
three traditional constraint-based clustering algorithms were introduced. 
The consensus clustering algorithm is based on the clustering results and it is 
a new way to fi nd robust clustering result. In this chapter, we introduced the 
main frame work of consensus clustering at fi rst, and then, we discussed the 
consensus function in detail. Eventually, two kinds of consensus clustering 
algorithms were introduced.
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CHAPTER 5

Classification

Two common data mining techniques for fi nding hidden patterns in 
data are clustering and classifi cation analysis. Although classifi cation 
and clustering are often mentioned in the same breath, they are different 
analytical approaches. Imaging a database of customer records, where each 
record represents a customer’s attributes. These can include identifi ers such 
as name and address, demographic information such as gender and age, 
and fi nancial attributes such as income and revenue spent. Clustering is an 
automated process to group related records together. Related records are 
grouped together on the basis of having similar values for attributes. This 
approach of segmenting the database via clustering analysis is often used
as an exploratory technique because it is not necessary for the analyst to 
specify ahead of time how records should be related together. In fact, the 
objective of the analysis is often to discover clusters, and then examine 
the attributes and values that defi ne the clusters or segments. As such, 
interesting and surprising ways of grouping customers together can become 
apparent, and this in turn can be used to drive marketing and promotion 
strategies to target specifi c types of customers. Classifi cation is a different 
technique from clustering. It is similar to clustering in that it also segments 
customer records into distinct segments called classes. But unlike clustering, 
a classifi cation analysis requires that the analyst know ahead of time how 
classes are defi ned. For example, classes can be defi ned to represent the 
likelihood that a customer defaults on a loan (Yes/No). It is necessary that 
each record in the dataset used to build the classifi er already have a value for 
the attribute used to defi ne classes. Because each record has a value for the 
attribute used to defi ne the classes, and because the end-user decides on the 
attribute to use, classifi cation is much less exploratory than clustering. 

The objective of a classifi er is not to explore the data to discover 
interesting segments, but rather to decide how new records should 
be classifi ed—i.e., is this new customer likely to default on the loan? 
Classifi cation routines in data mining also use a variety of algorithms



—and the particular algorithm used can affect the way records are classifi ed. 
A common approach for classifi ers is to use decision trees to partition and 
segment records. New records can be classifi ed by traversing the tree from 
the root through branches and nodes, to a leaf representing a class. The path 
a record takes through a decision tree can then be represented as a rule. 
For example, Income<$30,000 and age<25, and debt=High, then Default 
Class=Yes. But due to the sequential nature of the way a decision tree 
splits records (i.e., the most discriminative attribute-values [e.g., Income] 
appear early in the tree) can result in a decision tree being overly sensitive 
to initial splits. Therefore, in evaluating the goodness of fi t of a tree, it is 
important to examine the error rate for each leaf node (proportion of records 
incorrectly classifi ed). A nice property of decision tree classifi ers is that 
because paths can be expressed as rules, then it becomes possible to use 
measures for evaluating the usefulness of rules such as Support, Confi dence 
and Lift to also evaluate the usefulness of the tree. Although clustering and 
classifi cation are often used for purposes of segmenting data records, they 
have different objectives and achieve their segmentations through different 
ways. Knowing which approach to use is important for decision-making.

5.1 Classifi cation Defi nition and Related Issues
The data analysis task classifi cation is where a model or classifi er is 
constructed to predict categorical labels (the class label attribute). For 
example, Categorical labels include ”safe” or ”risky” for the loan application 
data. In general, data classifi cation includes the following two-step process. 
Step 1: A classifi er is built describing a predetermined set of data classes or 
concepts. This is the learning step (or training phase), where a classifi cation 
algorithm builds the classifi er by analyzing or ”learning from” a training 
set made up of database tuples and their associated class labels. Each tuple, 
is assumed to belong to a predefi ned class called the class label attribute. 
Because the class label of each training tuple is provided, this step is also 
known as supervised learning. The fi rst step can also be viewed as the 
learning of a mapping or function, y = f (X), that can predict the associated 
class label y of a given tuple X. Typically, this mapping is represented in 
the form of classifi cation rules, decision trees, or mathematical formulae. 
In step 2, the model is used for classifi cation.

The predictive accuracy of the classifi er is very important and should 
be estimated at fi rst. If we were to use the training set to measure the 
accuracy of the classifi er, this estimate would likely be optimistic, because 
the classifi er tends to overfi t the data. Therefore, a test set is used, made 
up of test tuples and their associated class labels. The associated class label 
of each test tuple is compared with the learned classifi er’s class prediction 
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for that tuple. If the accuracy of the classifi er is considered acceptable, the 
classifi er can be used to classify future data tuples for which the class label 
is not known. For example, the classifi cation rules learned in Fig. from the 
analysis of data from previous loan applications can be used to approve 
or reject new or future loan applicants. The preparing of the data and the 
quality of a classifi er are two important regarding issues of classifi cation. The 
following preprocessing steps may be applied to the data to help improve 
the accuracy, effi ciency, and scalability of the classifi cation process.

Data cleaning: This refers to the preprocessing of data in order to remove or 
reduce noise and the treatment of missing values. This step can help reduce 
confusion during learning.

Relevance analysis: Many of the attributes in the data may be redundant. A 
database may also contain irrelevant attributes. Hence, relevance analysis 
in the form of correlation analysis and attribute subset selection, can be 
used to detect attributes that do not contribute to the classifi cation or 
prediction task.

Data transformation and reduction: Normalization involves scaling all values 
for a given attribute so that they fall within a small specifi ed range, such 
as 0:0 to 1:0.

The data can also be transformed by generalizing it to higher-level 
concepts. Concept hierarchies may be used for this purpose. Data can 
also be reduced by applying many other methods, ranging from wavelet 
transformation and principle components analysis to discretization 
techniques, such as binning, histogram analysis, and clustering. Ideally, 
the time spent on relevance analysis, when added to the time spent on 
learning from the resulting ”reduced” attribute subset, should be less than 
the time that would have been spent on learning from the original set of 
attributes. Hence, such analysis can help improve classifi cation effi ciency 
and scalability.

Classifi cation methods can be compared and evaluated according to the 
following criteria:

 • Accuracy: The accuracy of a classifi er refers to the ability of a given 
classifi er to correctly predict the class label of new or previously unseen 
data. Estimation techniques are cross-validation and bootstrapping. 
Because the accuracy computed is only an estimate of how well the 
classifi er or predictor will do on new data tuples, confi dence limits 
can be computed to help gauge this estimate.

 • Speed: This refers to the computational costs involved in generating 
and using the given classifi er. 



 • Robustness: This is the ability of the classifi er to make correct predictions 
given noisy data or data with missing values. 

 • Scalability: This refers to the ability to construct the classifi er effi ciently 
given large amounts of data. 

 • Interpretability: This refers to the level of understanding and insight 
that is provided by the classifi er.

 • End nodes: represented by triangles.

5.2 Decision Tree and Classifi cation
This section introduces decision tree fi rst, and then discusses a decision 
tree classifi er.

5.2.1 Decision Tree

A decision tree is a decision support tool that uses a tree-like graph or 
model of decisions and their possible consequences, including chance event 
outcomes, resource costs, and utility. It is one way to display an algorithm. 
Decision trees are commonly used in operations research, specifi cally in 
decision analysis, to help identify a strategy most likely to reach a goal. If in 
practice decisions have to be taken online with no recall under incomplete 
knowledge, a decision tree should be paralleled by a probability model 
as a best choice model or online selection model algorithm. Another use 
of decision trees is as a descriptive means for calculating conditional 
probabilities. In general, a “decision tree” is used as a visual and analytical 
decision support tool, where the expected values (or expected utility) of 
competing alternatives are calculated. A decision tree consists of three 
types of nodes:

 •  Decision nodes—commonly represented by squares.
 •  Chance nodes—represented by circles.
 •  End nodes—represented by triangles.

Commonly, a decision tree is drawn using fl ow chart symbols as it is easier 
for many to read and understand. Figure 5.2.1 shows a decision tree which 
is drawn using fl ow chart symbols. A decision tree has only burst nodes 
(splitting paths) but no sink nodes (converging paths). Therefore, used 
manually, they can grow very big and are then often hard to draw fully by 
hand. Traditionally, decision trees have been created manually—as the aside 
example shows—although increasingly, specialized software is employed. 
Decision trees have several advantages:

   Classifi cation 103



104 Applied Data Mining

 • Are simple to understand and interpret. People are able to understand 
decision tree models after a brief explanation.

 • Have value even with little hard data. Important insights can be 
generated based on experts describing a situation (its alternatives, 
probabilities, and costs) and their preferences for outcomes.

 • Possible scenarios can be added.
 • Worst, best and expected values can be determined for different 

scenarios. Use a white box model. If a given result is provided by a 
model.

 • Can be combined with other decision techniques. 

Like other methods, decision tree also has some disadvantages. These 
include:

 • For data including categorical variables with different number of 
levels, information gain in decision trees are biased in favor of those 
attributes with more levels [10].

 • Calculations can get very complex particularly if many values are 
uncertain and/or if many outcomes are linked.

Figure 5.2.1: An example of a decision tree.
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5.2.2 Decision Tree Classifi cation

Decision tree classifi cation uses a decision tree as a predictive model which 
maps observations about an item to conclusions about the item’s target 
value. More descriptive names for such tree models are classifi cation trees 
or regression trees. In these tree structures, leaves represent class labels and 
branches represent conjunctions of features that lead to those class labels. 
In decision analysis, a decision tree can be used to visually and explicitly 
represent decisions and decision making. In data mining, a decision tree 
describes data but not decisions; rather the resulting classifi cation tree can 
be an input for decision making. This page deals with decision trees in data 
mining. Decision tree learning is a method commonly used in data mining. 
The goal is to create a model that predicts the value of a target variable 
based on several input variables. An example is shown on the right. Each 
interior node corresponds to one of the input variables; there are edges 
to children for each of the possible values of that input variable. Each 
leaf represents a value of the target variable given the values of the input 
variables represented by the path from the root to the leaf. A tree can be 
“learned” by splitting the source set into subsets based on an attribute value 
test. This process is repeated on each derived subset in a recursive manner 
called recursive partitioning. The recursion is completed when the subset 
at a node has all the same value of the target variable, or when splitting no 
longer adds value to the predictions. This process of top-down induction of 
decision trees (TDIDT) [14] is an example of a greedy algorithm, and it is by 
far the most common strategy for learning decision trees from data, but it is 
not the only strategy. In fact, some approaches have been developed recently 
allowing tree induction to be performed in a bottom-up fashion [4].

In classifi cation, there have three different nodes in decision tree which are 
described as following:

 • A root node that has no incoming edges and zero or more outgoing 
edges.

 • Internal nodes, each of which has exactly one incoming edge and two 
or more outgoing edges.

 • Leaf or terminal nodes, each of which has exactly one incoming edge 
and no outgoing edges.

Figure 5.2.2 shows the decision tree for the survival passengers on 
the Titanic classifi cation problem. In the fi gure, “sibsp” is the number of 
spouses or siblings aboard. Each interior node corresponds to one of the 
input variables; there are edges to children for each of the possible values 
of that input variable. Each leaf represents a value of the target variable 
given the values of the input variables represented by the path from the 
root to the leaf.
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5.2.3 Hunt’s Algorithm

To build an optimal decision tree is the key problem in a decision tree 
classifi er. In general, decision trees can be constructed from a given set of 
attributes. While some of the trees are more accurate than others, fi nding 
the optimal tree is computationally infeasible because of the exponential 
size of the search space. However, various effi cient algorithms have been 
developed to construct a reasonably accurate, albeit suboptimal, decision 
tree in a reasonable amount of time. These algorithms usually employ a 
greedy strategy that grows a decision tree by making a series of locally 
optimum decisions about which attribute to use for partitioning the data. 
Hunt’s algorithm is one of the effi cient method for constructing a decision 
tree. It grows a decision tree in a recursive fashion by partitioning the 
training records into successively purer subsets. Let Dt be the set of training 
records that reach a node t. The general recursive procedure is defi ned as 
algorithm 5.1 [17]. It recursively applies the procedure to each subset until 
all the records in the subset belong to the same class. Hunt’s algorithm 
assumes that each combination of attribute sets has a unique class label 
during the procedure. If all the records associated with Dt have identical 
attribute values except for the class label, then it is not possible to split these 
records any further. In that case, the node is declared a leaf node with the 
same class label as the majority class of training records associated with 
this node.

Is sex male? 

Is age>9.5? Survived

Died Is sibsp>2.5? 

Died Survived

Y N 

Y
N

Y N 

0.73  36% 

0.89  2% 0.05  2% 

0.17  61% 

Root node 
Internal node 

Leaf node 

Leaf node 

Figure 5.2.2: An example of decision tree classifi cation for Titanic



Algorithm 5.1: Hunt’s algorithm

 (1)  If Dt contains records that belong the same class yt, then t is a leaf node labeled 
as yt

 (2)  If Dt is an empty set, then t is a leaf node labeled by the default class, yd
 (3)  If Dt contains records that belong to more than one class, use an attribute test 

to split the data into smaller subsets.

5.3 Bayesian Network and Classifi cation

5.3.1 Bayesian Network

Bayesian network theory can be thought of as a fusion of incidence 
diagrams and Bayes’ theorem. A Bayesian network, or belief network, shows 
conditional probability and causality relationships between variables. For 
example, a Bayesian network could represent the probabilistic relationships 
between diseases and symptoms. Given the symptoms, the network can 
be used to compute the probabilities of the presence of various diseases. 
The probability of an event occurring given that another event has already 
occurred is called conditional probability. The probabilistic model is described 
qualitatively by a directed acyclic graph, or DAG. The vertices of the graph, 
which represent variables, are called nodes. The nodes are represented as 
circles containing the variable name. The connections between the nodes 
are called arcs, or edges. The edges are drawn as arrows between the 
nodes, and represent dependence between the variables. Therefore, any 
pair of nodes indicates that one node is the parent of the other so there are 
no independent assumptions. Independent assumptions are implied in 
Bayesian networks by the absence of a link. Figure 5.3.1 shows an example of 
DAG. The node where the arc originates is called the parent, while the node 
where the arc ends is called the child. In this case, V0 is a parent of V1 and 
V2, V2 has parents V0 and V1. Nodes that can be reached from other nodes 
are called descendants. Nodes that lead a path to a specifi c node are called 
ancestors. For example, V1 and V2 are descendants of V0, and V1 is ancestors 
of V2 and V3. Since no child can be its own ancestor or descendent, there 
are no loops in Bayesian networks. Bayesian networks will generally also 
include a set of probability tables, stating the probabilities for the true/false 
values of the variables. The main point of Bayesian Networks is to allow 
for probabilistic inference to be performed. This means that the probability 
of each value of a node in the Bayesian network can be computed when 
the values of the other variables are known. Also, because independence 
among the variables is easy to recognize since conditional relationships are 
clearly defi ned by a graph edge, not all joint probabilities in the Bayesian 
system need to be calculated in order to make a decision. Classifi cation 
with Bayesian network.
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V3

V0 V1

V2

Figure 5.3.1: An example of DAG

Figure 5.3.2 depicts the possible structure of a Bayesian network used 
for classifi cation. The dotted lines denote potential links, and the blue box 
indicates that additional nodes and links can be added to the model, usually 
between the input and output nodes.

In order to perform classifi cation with a Bayesian network such as the 
one depicted in Fig. 5.3.2, fi rst evidence must be set on the input nodes, 
and then the output nodes can be queried using standard Bayesian network 
inference. The result will be a distribution for each output node, so that you 
can not only determine the most probable state for each output, but also 
see the probability assigned to each output state. Figure 5.3.3 shows the 
structure of a Naive Bayes classifi er, which is the simplest form of useful 
Bayesian network classifi er. The links in a Naive Bayes model are directed 
from output to input, which gives the model its simplicity, as there are 
no interactions between the inputs, except indirectly via the output. Note 
however that directing links from output to input, is not a requirement for 
all Bayesian network classifi ers.

Input2 

Input3 

Input4 

Input1 

Output2 

Output1 

Figure 5.3.2: Generic structure of a Bayesian network classifi er



One of the most effective classifi ers, in the sense that its predictive 
performance is competitive with state-of-the-art classifi ers, is the so-called 
naive Bayesian classifi er described, for example, by Duda and Hart [9] and 
by Langley et al. [12]. This classifi er learns from training data the conditional 
probability of each attribute Ai given the class label C. Classifi cation is then 
done by applying Bayes rule to compute the probability of C given the 
particular instance of A1,...,An, and then predicting the class with the highest 
posterior probability. This computation is rendered feasible by making a 
strong independence assumption: all the attributes Ai are conditionally 
independent given the value of the class C.

5.3.2 Backpropagation and Classifi cation

5.3.2.1 Backpropagation Method

Backpropagation [1] is a common method of training artifi cial neural 
networks so as to minimize the objective function. Arthur E. Bryson and Yu-
Chi Ho described it as a multi-stage dynamic system optimization method 
in 1969 [15, 6]. It wasn’t until 1974 and later, when applied in the context 
of neural networks and through the work of Paul Werbos [19], Rumelhart 
and Kubat [16, 11], that it gained recognition, and it led to a “renaissance” 
in the fi eld of artifi cial neural network research. It is a supervised learning 
method, and is a generalization of the delta rule. It requires a dataset of the 
desired output for many inputs, making up the training set. It is most useful 
for feed-forward networks (networks that have no feedback, or simply, that 
have no connections that loop). The term is an abbreviation for “backward 
propagation of errors”. Backpropagation requires that the activation 

Input2 

Input3 

Input4 

Input1 

Output1

Figure 5.3.3: Naive Bayes model
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function used by the artifi cial neurons (or “nodes”) be differentiable. The 
main framework of Backpropagation could be described as Algorithm 5.2. 
In step 2.2, the ratio infl uences the speed and quality of learning; it is called 
the learning rate. The sign of the gradient of a weight indicates where the 
error is increasing; this is why the weight must be updated in the opposite 
direction. 

Algorithm 5.2: Backpropagation

(1) Propagation
(1.1) Forward propagation of a training pattern’s input through the neural 

network in order to generate the propagation’s output activations.
  (1.2) Backward propagation of the propagation’s output activations through 

the neural network using the training pattern’s target in order to generate the 
deltas of all output and hidden neurons.

(2) Weight update
(2.1) Multiply its output delta and input activation to get the gradient of the 

weight.
(2.2) Bring the weight in the opposite direction of the gradient by subtracting 

a ratio of it from the weight.
(3) Repeat phases 1 and 2 until the performance of the network is satisfactory. 

5.3.2.2 Classifi er with Backpropagation

The model structure of BP (backpropagation) classifi cation algorithm 
uses full connection each layers and nodes from input layer to output 
layer. Obviously, it needs a lot of calculation. However, we are not still 
satisfi ed with standard neural network or back-propagation model based 
decision support system because we want to get better quality of decision 
performance and less computing iteration when we want to develop in a 
specifi c domain area.

5.3.3 Association-based Classifi cation

Association rule mining is an important and highly active area of data 
mining research. Recently, data mining techniques have been developed 
that apply concepts used in association rule mining to the problem of 
classifi cation. In this section, we study three methods in historical order. 
The fi rst two, ARCS_ORCS [2] and associative classifi cation [18], use 
association rules for classifi cation. The third method, CAEP [8], mines 
“emerging patterns” that consider the concept of support used in mining 
associations. The fi rst method mines association rules based on clustering 
and then employs the rules for classifi cation. The ARCS or Association Rule 
Clustering System, mines association rules of the form Aquan1... Aquan2 =¿ 



Acat where Aquan1 and Aquan2 are tests on quantitative attributive ranges 
(where the ranges are dynamically determined), and Acat assigns a class 
label for a categorical attribute from the given training data. Association 
rules are plotted on a 2-D grid. The algorithm scans the grid, searching for 
rectangular clusters of rules. In this way, adjacent ranges of the quantitative 
attributes occurring within a rule cluster may be combined. The clustered 
association rules generated by ARCS were empirically found to be slightly 
more accurate than C4.5 when there are outliers in the data. The accuracy of 
ARCS is related to the degree of discretization used. In terms of scalability, 
ARCS requires “a constant amount of memory”, regardless of the database 
size. C4.5 has exponentially higher execution times than ARCS, requiring the 
entire database, multiplied by some factor, to fi t entirely in main memory. 
The second method is referred to as associative classifi cation. It mines 
rules of the form condset=  >y, where condset is a set of items (or attribute-
value pairs) and y is a class label. Rules that satisfy pre-specifi ed minimum 
supports are frequent, where a rule has support s. if s% of the samples in 
the given data set contain consent and belong to class y. A rule satisfying 
minimum confi dence is called accurate, where a rule has confi dence c, if c% 
of the samples in the given data set that contain consent belong to class y. If 
a set of rules has the same consent, then the rule with the highest confi dence 
is selected as the possible rule (PR) to represent the set.

The association classifi cation method consists of two steps. The fi rst 
step fi nds the set of all PRs that are both frequent and accurate. It uses an 
iterative approach, where prior knowledge is used to prune the rule search. 
The second step uses a heuristic method to construct the classifi er, where the 
discovered rules are organized according to decreasing precedence based
on their confi dence and support. The algorithm may require several passes 
over the data set, depending on the length of the longest rule found. 
When classifying a new sample, the fi rst rule satisfying the sample is 
used to classify it. The classifi er also contains a default rule, having lowest 
precedence, which specifi es a default class for any new sample that is 
not satisfi ed by any other rule in the classifi er. In general, the associative 
classifi cation method was empirically found to be more accurate than C4.5 
on several data sets. Each of the above two steps was shown to have linear 
scale-up.

The third method, CAEP (classifi cation by aggregating emerging 
patterns), uses the notion of itemset supports to mine emerging patterns 
(EPs), which are used to construct a classifi er. Roughly speaking, an EP is 
an itemset (or set of items) whose support increases signifi cantly from one 
class of data to another. The ratio of the two supports is called the growth 
rate of the EP. For example, suppose that we have a data set of customers 
with the classes buysc�omputer = “yes”, or C1, and buys computer = “no”, 
or C2, the itemset age = “≤30”, student = “no” is a typical EP, whose support 
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increases from 0.2% in C1 to 57.6% in C2 at a growth rate of EP = 288. Note 
that an item is either a simple equality test; on a categorical attribute is 
in an interval. Each EP is a multi-attribute test and can be very strong at 
differentiating instances of one class from another. For instance, if a new 
sample X contains the above EP, then with odds of 99.6% we can claim that 
X belongs to C2. In general, the differentiating power of an EP is roughly 
proportional to its growth rate and its support in the target class.

For each class C, CAEP fi nd EPs satisfying given support and growth 
rate thresholds, where growth rate I computed with respect to the set of 
all non-C samples versus the target set of all C samples, “Borderbased” 
algorithms can be used for this purpose. Where classifying a new sample, 
X, for each class C, the differentiating power of the EPs of class C that 
occur in X are aggregated to derive a score for C that is then normalized. 
The class with the largest normalized score determines the class label of X. 
CAEP has been found to be more accurate than C4.5 and association0-based 
classifi cation on several data sets. It also performs well on data sets where 
the mail class of interest is in the minority. It scales up on data volume 
and dimensionality. An alternative classifi er, called the JEP-classifi er, was 
proposed based on jumping emerging patterns (JEPs). A JEP is a special 
type of EP, defi ned as an itemset whose support increases abruptly from 
zero in one data set to nonzero in another data set. The two classifi ers are 
considered complementary.

5.3.4 Support Vector Machines and Classifi cation

5.3.4.1 Support Vector Machines

In machine learning, support vector machines [7] are supervised learning 
models with associated learning algorithms that analyze data and recognize 
patterns, used for classifi cation and regression analysis. The basic SVM 
takes a set of input data and predicts, for each given input, which of two 
possible classes forms the output, making it a non-probabilistic binary 
linear classifi er. Given a set of training examples, each marked as belonging 
to one of two categories, an SVM training algorithm builds a model that 
assigns new examples into one category or the other. An SVM model is 
a representation of the examples as points in space, mapped so that the 
examples of the separate categories are divided by a clear gap that is as 
wide as possible. New examples are then mapped into that same space and 
predicted to belong to a category based on which side of the gap they fall on. 
In addition to performing linear classifi cation, SVMs can effi ciently perform 
non-linear classifi cation using what is called the kernel trick, implicitly 
mapping their inputs into high-dimensional feature spaces. More formally, 
a support vector machine constructs a hyperplane or set of hyperplanes in 



a high or infi nite-dimensional space, which can be used for classifi cation, 
regression, or other tasks. Intuitively, a good separation is achieved by 
the hyperplane that has the largest distance to the nearest training data 
point of any class (so-called functional margin), since in general the larger 
the margin the lower the generalization error of the classifi er. Whereas 
the original problem may be stated in a fi nite dimensional space, it often 
happens that the sets to discriminate are not linearly separable in that space. 
For this reason, it was proposed that the original fi nite-dimensional space 
be mapped into a much higher-dimensional space, presumably making the 
separation easier in that space. To keep the computational load reasonable, 
the mappings used by SVM schemes are designed to ensure that dot 
products may be computed easily in terms of the variables in the original 
space, by defi ning them in terms of a kernel function K(x, y) selected to 
suit the problem [20]. The hyperplanes in the higher-dimensional space are 
defi ned as the set of points whose inner product with a vector in that space 
is constant. The vectors defi ning the hyperplanes can be chosen to be linear 
combinations with parameters of images of feature vectors that occur in the 
data base. With this choice of a hyperplane, the points in the feature space 
that are mapped into the hyperplane are defi ned by the relation: i αiK(xi, x) 
= constant. Note that if K(x, y) becomes small as y grows further away from 
x, each element in the sum measures the degree of closeness of the test point 
x to the corresponding data base point xi. In this way, the sum of kernels 
above can be used to measure the relative nearness of each test point to the 
data points originating in one or the other of the sets to be discriminated. 
Note the fact that the set of points x mapped into any hyperplane can be 
quite convoluted as a result, allowing much more complex discrimination 
between sets which are not convex at all in the original space.

5.3.4.2 Classifi er with Support Vector Machines

The original optimal hyperplane algorithm proposed by Vapnik in 1963 was 
a linear classifi er. However, in 1992, Bernhard E. Boser, Isabelle M. Guyon 
and Vladimir N. Vapniks suggested a way to create nonlinear classifi ers 
by applying the kernel trick (originally proposed by Aizerman et al. [3]) 
to maximum-margin hyperplanes [5]. The resulting algorithm is formally 
similar, except that every dot product is replaced by a nonlinear kernel 
function. This allows the algorithm to fi t the maximum-margin hyperplane 
in a transformed feature space. The transformation may be nonlinear and 
the transformed space high dimensional; thus though the classifi er is a 
hyperplane in the high-dimensional feature space, it may be nonlinear in the 
original input space. If the kernel used is a Gaussian radial basis function, 
the corresponding feature space is a Hilbert space of infi nite dimensions. 
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Maximum margin classifi ers are well regularized, so the infi nite dimensions 
do not spoil the results. Some common kernels include:

 • Polynomial (homogeneous): K(xi, xj) = (xi · xj)
d.

 • Polynomial (inhomogeneous): K(xi, xj) = (xi · xj + 1)d.
 • Gaussian radial basis function: K(xi, xj) = exp(−γ ·||xi–xj||2), for γ > 0.
 • Hyperbolic tangent: k(xi, xj) = tanh(Kxi · xj+ c), for k > 0 c < 0.

The classifi er with SVM has the following properties. SVMs belong 
to a family of generalized linear classifi ers and can be interpreted as an 
extension of the perception. They can also be considered a special case of 
Tikhonov regularization. A special property is that they simultaneously 
minimize the empirical classifi cation error and maximize the geometric 
margin; hence they are also known as maximum margin classifi ers. A 
comparison of the SVM to other classifi ers has been made by Meyer, Leisch 
and Hornik [13].

 Simple feature selection algorithms are ad hoc, but there are also more 
methodical approaches. From a theoretical perspective, it can be shown 
that optimal feature selection for supervised learning problems requires an 
exhaustive search of all possible subsets of features of the chosen cardinality. 
If large numbers of features are available, this is impractical. For practical 
supervised learning algorithms, the search is for a satisfactory set of features 
instead of an optimal set. Feature selection algorithms typically fall into 
two categories: feature ranking and subset selection. Feature ranking ranks 
the features by a metric and eliminates all features that do not achieve an 
adequate score. Subset selection searches the set of possible features for the 
optimal subset. In statistics, the most popular form of feature selection is 
stepwise regression. It is a greedy algorithm that adds the best feature (or 
deletes the worst feature) at each round. The main control issue is deciding 
when to stop the algorithm. In machine learning, this is typically done by 
cross-validation. In statistics, some criteria are optimized. This leads to the 
inherent problem of nesting. More robust methods have been explored, 
such as branch and bound and piecewise linear network. Subset selection 
evaluates a subset of features as a group for suitability. Subset selection 
algorithms can be broken into Wrappers, Filters and Embedded. Wrappers 
use a search algorithm to search through the space of possible features 
and evaluate each subset by running a model on the subset. Wrappers 
can be computationally expensive and have a risk of over fi tting to the 
model. Filters are similar to Wrappers in the search approach, but instead 
of evaluating against a model, a simpler fi lter is evaluated. Embedded 
techniques are embedded in and specifi c to a model. Many popular search 
approaches use greedy hill climbing, which iteratively evaluates a candidate 
subset of features, then modifi es the subset and evaluates if the new subset 



is an improvement over the old. Evaluation of the subsets requires a scoring 
metric that grades a subset of features. Exhaustive search is generally 
impractical, so at some implementor (or operator) defi ned stopping point, 
the subset of features with the highest score discovered up to that point is 
selected as the satisfactory feature subset. The stopping criterion varies by 
algorithm; possible criteria include: a subset score exceeds a threshold, a 
program’s maximum allowed run time has been surpassed, etc. Alternative 
search-based techniques are based on targeted projection pursuit which 
fi nds low-dimensional projections of the data that score highly: the features 
that have the largest projections in the lower dimensional space are then 
selected. The classifi cation problem can be restricted to consideration of 
the two-class problem without loss of generality. In this problem the goal 
is to separate the two classes by a function which is induced from available 
examples. The goal is to produce a classifi er that will work well on unseen 
examples.

5.4 Chapter Summary
In this chapter, we’ve talk about some methods which are proposed in 
classifi cation. Decision trees and Bayesian Network (BN) generally have 
different operational profi les, when one is very accurate the other is not 
and vice versa. On the contrary, decision trees and rule classifi ers have 
a similar operational profi le. The goal of classifi cation result integration 
algorithms is to generate more certain, precise and accurate system results. 
Numerous methods have been suggested for the creation of an ensemble 
of classifi ers. Although or perhaps because many methods of ensemble 
creation have been proposed, there is as yet no clear picture of which method 
is best. Classifi cation methods are typically strong in modeling interactions. 
Several of the classifi cation methods produce a set of interacting loci that 
best predict the phenotype. However, a straightforward application of 
classifi cation methods to large numbers of markers has a potential risk 
picking up randomly associated markers.
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CHAPTER 6

Frequent Pattern Mining

Frequent pattern mining is one of the most fundamental research issues in 
data mining, which aims to mine useful information from huge volume of 
data. The purpose of searching such frequent patterns (i.e., association rules) 
is to explore the historical supermarket transaction data, which is indeed to 
discover the customer behavior based on the purchased items. Association 
rules present the fact that how frequently items are bought together. For 
example, an association rule “beer->diaper (75%)” indicates that 75% of 
the customers that bought beer also bought diaper. Such rules can be used 
to make prediction and recommendation for customers and store layout. 
Stemmed from the basic itemset data, rule discovery on more general and 
complex data (i.e., sequence, tree, graph) has been thoroughly explored 
in the past decade. In this chapter, we introduce the basic techniques of 
frequent pattern mining on different type of data, i.e., itemset, sequence, 
tree, and graph.

In the following sections, most classic algorithms and techniques for 
data mining will be introduced. Association rule mining will be presented 
in Section 6.1. Sequential pattern mining will be introduced in Section 6.2. 
Frequent tree and graph mining will be presented in Section 6.3 and Section 
6.4, respectively. Chapter summary will be presented in Section 6.5.

6.1 Association Rule Mining
Data mining is to fi nd valid, novel, potentially useful, and ultimately 
understandable patterns in data [18]. The most fundamental and important 
issue in data mining is association rule mining [1], which was first 
introduced in the early 1990s. 

The purpose of searching association rules is to analyze the co-existence 
relation between items, which is then utilized to make appropriate 
recommendation. The issue has attracted a great deal of interest during 
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the recent surge in data mining research because it is the basis of many 
applications, such as customer behavior analysis, stock trend prediction, 
and DNA sequence analysis. For example, an association rule “bread  
milk (90%)” indicates that nine out of ten customers who bought bread also 
bought milk. These rules can be useful for store layout, stock prediction, 
DNA structure analysis, and so forth.

Table 6.1: A database

Tid Transaction

10 bread, milk

20 bread, chocolate, cookie

30 chocolate, cookie

40 milk

50 bread, cookie

6.1.1 Association Rule Mining Problem

The problem of association rule discovery can be stated as follows [1]: Let I 
= {i1, i2, . . . , ik} be a set of items. A subset of I is called an itemset. The itemset, 
tj, is denoted as {x1,x2 . . . xm}, where xk is an item, i.e., xk  I for 1 ≤ k ≤ m. 
The number of items in an itemset is called the length of the itemset. An 
itemset with length l is called an l-itemset. An itemset, ta = {a1, a2, . . . , an}, 
is contained in another itemset, tb = {b1, b2, . . . , bm}, if there exists integers 1 
≤ i1 < i2 < . . . < in ≤ m, such that a1  bi1

 , a2  bi2
 ,. . . , an  bin

. We denote ta a 
subset of tb, and tb a superset of ta.

The support of an itemset X, denoted as support(X), is the number of 
transactions in which it occurs as a subset. A k length subset of an itemset is 
called a k-subset. An itemset is frequent if its support is greater than a user-
specifi ed minimum support (minsup) value. The set of frequent k-itemsets 
is denoted by Fk.

An association rule is an expression A B, where A and B are itemsets. 
The support of the rule is given as support(A  B)=support(A B) and the 
confi dence of the rule is given as conf(A  B)=support(A B)/support(A) 
(i.e., the conditional probability that a transaction contains B, given that it 
contains A). A rule is confi dent if its confi dence is greater than a user-specifi ed 
minimum confi dence (minconf).

The associate rule mining task is to generate all the rules, whose 
supports are greater than minsup, and the confi dences of the rules are greater 
than minconf . The issue can be tackled by a two-stage strategy [2]:



 • Find all frequent itemsets. This stage is the most time consuming 
part. Given k items, there can be potentially 2k frequent itemsets. 
Therefore, almost all the works so far have focused on devising 
effi cient algorithms to discover the frequent itemsets, while avoiding 
to traverse unnecessary search space somehow. In this chapter, we 
mainly introduce the basic algorithms on fi nding frequent itemsets.

 • Generate confi dent rules. This stage is relatively straightforward and 
can be easily completed.

Almost all the association rule mining algorithms apply the two-stage 
rule discovery approach. We will discuss it in more detail in the next few 
sections. 

Example 1. Let our example database be the database D shown in Table 6.1 
with minsup=1 and minconf=30%. Table 6.2 shows all frequent itemsets in D. 

Table 6.3 illustrates all the association rules. For the sake of simplicity and 
without loss of generality, we assume that items in transactions and itemsets 
are kept sorted in the lexicographic order unless stated otherwise.

Table 6.2: Frequent itemsets

Frequent Itemset Transactions Support
bread 10, 20, 50 3
milk 10, 40 2

chocolate 20, 30 2
cookie 20, 30, 50 3

bread, milk 10 1
bread, chocolate 20 1
bread, cookie 20, 50 2

chocolate, cookie 20, 30 2
bread, chocolate, cookie 20 1

Table 6.3: Association rules

Association Rule Support Confidence
bread ⇒ cookie 2 67%
milk ⇒ bread 1 50%

chocolate ⇒ bread 1 50%
chocolate ⇒ cookie 2 100%
cookie ⇒ bread 2 67%

cookie ⇒ chocolate 2 67%
bread, chocolate ⇒ cookie 1 100%
bread, cookie ⇒ chocolate 1 50%
chocolate, cookie ⇒ bread 1 50%
chocolate ⇒ bread, cookie 1 50%
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6.1.2 Basic Algorithms for Association Rule Mining

6.1.2.1 Apriori

The fi rst algorithm was introduced by Agrawal et al. [1] to address the 
association rule mining issue. The same authors introduced another 
algorithm named Apriori in their later paper [4] by introducing the 
monotonicity property of the association rules to improve the performance. 
Mannila et al. [39] presented an independent work with a similar idea.

Apriori applies a two-stage approach to discover frequent itemsets and 
confi dent association rules.

 • Frequent Itemset Discovery. To fi nd all frequent itemsets, Apriori 
introduces a candidate generation and test strategy. The basic idea is 
that it fi rst generates the candidate k-itemsets (i.e., k is 1 at the beginning 
and is incrementd by 1 in the next cycle), then these candidates will 
be evaluated whether frequent or not.

Specifi cally, the algorithm fi rst scans the dataset and the frequent 
1-itemsets are found. To discover those frequent 2-itemsets, Apriori 
generates candidate 2-itemsets by joining 1-itemsets. These candidates 
are evaluated by scanning the original dataset again. In a similar way, all 
frequent (k+1)-itemsets can be found based on already known frequent 
k-itemsets.

To improve the performance by avoiding to generate too many yet 
unnecessary candidates, Apriori introduced a monotonicity property that 
a (k+1)-itemset becomes a candidate only if all its k-subset are frequent. 
As demonstrated by the authors [4] and many later works, this simple yet 
effi cient strategy largely reduces the candidates to be evaluated.

The frequent itemset mining of the Apriori algorithm is presented in 
Algorithm 1. The algorithm is executed in a breadth-fi rst search manner. 
To generate the candidate itemsets with length k+1, two k-itemsets with the 
same (k-1)-prefi x are joined together (lines 12–13). The joined itemset can 
be inserted into Ck+1 only if all its k-subsets are frequent (line 14).

To test the candidate k-itemsets (i.e., count their supports), the database 
is scanned sequentially and all the candidate itemsets are tested whether 
they are included in the transaction scanned. By this way, the corresponding 
support is accumulated (lines 5–9). Finally, frequent itemsets are collected 
(line 10).

 • Association Rule Mining. After discovering the frequent itemsets, we 
can fi nd the frequent and confi dent association rules straightforward. 
The approach is similar to the frequent itemset mining algorithm. 
Because the cost of fi nding frequent itemsets is high and accounts for 



most of the whole performance on discovering associate rules, almost 
all the researches so far have been focused on the frequent itemset 
generation step.

6.1.2.2 Eclat

Many algorithms had been proposed based on Apriroi idea, in which Eclat 
[64, 61] is distinct in that it is the fi rst to proposed to generate all frequent 
itemsets in a depth-fi rst manner, while employing the vertical database 
layout and uses the intersection based approach to compute the support 
of an itemset.

Figure 6.1.1 illustrates the key idea of Eclat on candidate support 
counting. While fi rst scanning of the dataset, it converts the original format 
(i.e., Table 6.1) into vertical TID list format, as shown in Fig. 6.1.1. For 
example, the TID list of itemset {bread} is {10, 20, 50}, which indicate the 
transactions that the itemset exist in the original dataset.

To count the support of k-candidate itemset, the algorithm intersects 
its two (k-1)-subset to get the result. For example, as shown in Fig. 6.1.1, to 
count the support of the itemset {bread, chocolate}, it intersects the TID lists 
of {bread} and {chocolate}, resulting in {20}. The support is therefore 1.

   Algorithm 1: Apriori—Frequent Itemset Mining [4]

Input: A transaction database D, a user specified threshold minsup

Output: Frequent itemsets F
1 C1= {1-itemsets};
2 k=1;
3 while Ck �= NULL do
4 // Test candidate itemsets
5 for transaction T ∈ D do
6 for candidate itemsets X ∈ Ck do
7 if X ⊆ T then X.support++;
8 end

9 end
10 Fk=Fk ∪X , where X.support ≥ minsup;
11 // Generate candidate itemsets
12 for all {i1, . . . ik−1, ik},{i1, . . . ik−1, i

′
k} ∈ Fk such that ik < i′k do

13 c={i1, . . . il−1, ik, i
′
k};

14 if all k-subsets of c are frequent then Ck+1 = Ck+1 ∪ c;

15 end
16 k++;

17 end

   Frequent Pattern Mining 121



122 Applied Data Mining

To reduce the memory used to count the support, Eclat proposed to 
traverse the lattice (as shown in Fig. 6.1.1) in a depth-fi rst manner. The 
pseudo code of the Eclat algorithm is presented in Algorithm 2.

The algorithm generates the frequent itemsets by intersecting the 
tid-lists of all distinct pairs of atoms and evaluating the support of the 
candidates based on the resulting tid-list (lines 5–6). It calls recursively the 
procedure with those found frequent itemsets at the current level (line 7–10). 
This process terminates when all frequent itemsets have been traversed. To 
save the memory usage, after all frequent itemsets for the next level have 
been generated, the itemsets at the current level can be deleted.

6.1.2.3 FP-growth

Han et al. [24] proposed a new strategy that mines the complete set of 
frequent itemsets based on a tree-like structure (i.e., FP-tree). The algorithm 
applies the divide and conquer approach.

FP-tree construction: FP-tree is constructed as follows [24]: Create the 
root node of the FP-tree, labeled with “null”. Then scan the database and 
obtain a list of frequent items in which items are ordered with regard to 
their supports in a descending order. Based on this order, the items in each 
transaction of the database are reordered. Note that each node n in the FP-
tree represents a unique itemset X, i.e., scanning itemset X in transactions 
can be seen as traversing in the FP-tree from the root to n. All the nodes 
except the root store a counter which keeps the number of transactions 
that share the node.

{bread} {milk} {chocolate} {cookie}

{bread,milk} {bread,chocolate} {bread,cookie} {milk,chocolate} {milk,cookie} {chocolate,cookie}

{bread,milk,chocolate} {bread,milk,cookie} {milk,chocolate,cookie}

{bread,milk,chocolate,cookie}

{ }

{bread}{milk} {chocolate}{cookie}

{bread,chocolate}{bread,cookie}
{bread,chocolate,cookie}

{bread,chocolate,cookie}

Original dataset in vertical format

Intersect {bread} & {chocolate}

Intersect {bread,chocolate} & {bread,cookie}

Figure 6.1.1: Eclat mining process (vertical dataset, support count via 
intersection) [64]



To construct the FP-tree, the algorithm scans the items in each transaction, 
one at a time, while searching the already existing nodes in FP-tree. If a 
representative node exists, then the counter of the node is incremented by 
1. Otherwise, a new node is created. Additionally, an item header table is 
built so that each item points to its occurrences in the tree via a chain of 
node-links. Each item in this header table also stores its support.

Frequent Itemset Mining (FP-growth): To obtain all frequent itemset, 
Han et al. [24] proposed a pattern growth approach by traversing in the 
FP-tree, which retains all the itemset association information. The FP-tree 
is mined by starting from each frequent length-1 pattern (as an initial 
suffi x pattern), constructing its conditional pattern base (a sub-database, 
which consists of the set of prefi x paths in the FP-tree co-occurring with 
the suffi x pattern), then constructing its conditional FP-tree and performing 
mining recursively on such a tree. The pattern growth is achieved by the 
concatenation of the suffi x pattern with the frequent patterns generated 
from a conditional FP-tree.

Example 2. Let our example database be the database shown in Table 
6.4 with minsup=2. First, the supports of all items are accumulated and 
all infrequent items are removed from the database. The items in the 
transactions are reordered according to the support in descending order, 
resulting in the transformed database shown in Table 6.4. The FP-tree for 
this database is shown in Fig. 6.1.2. The pseudo code of the FP-growth 
algorithm is presented in Algorithm 3 [24].

Although the authors of the FP-growth algorithm [24] claim that their 
algorithm does not generate any candidate itemsets, some works (e.g., [20]) 
have shown that the algorithm actually generates many candidate itemsets 
since it essentially uses the same candidate generation technique as is used 
in Apriori but without its prune step. Another issue of FP-tree is that the 
construction of the frequent pattern tree is a time consuming activity.

  Algorithm 2: Eclat—Frequent Itemset Mining [64]

Input: A transaction database D, a user specified threshold minsup, a set of atoms of a
sublattice S

Output: Frequent itemsets F
1 Procedure Elat(S):
2 for all atoms Ai ∈ S do
3 Ti=∅ ;
4 for all atoms Aj ∈ S, with j > i do
5 R=Ai ∪Aj ;
6 L(R)=L(A〉) ∩ L(A|);
7 if support(R) ≥ minsup then
8 Ti=Ti ∪ {R};
9 F|R|=F|R| ∪ {R};

10 end

11 end

12 end
13 for all Ti �= ∅ do Eclat(Ti);
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Table 6.4: An example database for FP-growth

Tid Transaction Ordered Transaction
10 {a, b, d, e, f} {b, d, f, a, e}
20 {b, f, g} {b, f, g}
30 {d, g, h, i} {d, g}
40 {a, c, e, g, j} {g, a, e}
50 {b, d, f} {b, d, f}

6.2 Sequential Pattern Mining
The sequential mining problem was fi rst introduced in [5]; two sequential 
patterns examples are: “80% of the people who buy a television also buy a 
video camera within a day”, and “Every time Microsoft stock drops by 5%, 
then IBM stock will also drop by at least 4% within three days”. The above 
patterns can be used to determine the effi cient use of shelf space for customer 
convenience, or to properly plan the next step during an economic crisis. 
Sequential pattern mining is also very important for analyzing biological 
data [8] [17], in which a very small alphabet (i.e., 4 for DNA sequences and 
20 for protein sequences) and long patterns with a typical length of few 
hundreds or even thousands, frequently appear.

Sequence discovery can be thought of as essentially an association 
discovery over a temporal database. While association rules [3, 30] discern 
only intra-event patterns (itemsets), sequential pattern mining discerns 
inter-event patterns (sequences). There are many other important tasks 
related to association rule mining, such as correlations [10], causality 
[46], episodes [38], multi-dimensional patterns [33, 29], max-patterns [9], 
partial periodicity [23], and emerging patterns [16]. Incisive exploration 
of sequential pattern mining issue will defi nitely help to get the effi cient 
solutions to the other research problems shown above.

(a) header table

item support node-link

b 3

d 3

f 3
g 3

a 2
e 2

b:3

d:2

f:2

a:1

e:1

f:1

g:1

d:1

g:1

g:1

a:1

e:1

root

(b) FP-tree

Figure 6.1.2: FP-tree of the example database [24]



Effi cient sequential pattern mining methodologies have been studied 
extensively in many related problems, including the general sequential 
pattern mining [5, 47, 62, 44, 7], constraint based sequential pattern mining 
[19], incremental sequential pattern mining [42], frequent episode mining 
[37], approximate sequential pattern mining [31], partial periodic pattern 
mining [23], temporal pattern mining in data stream [48], maximal and 
closed sequential pattern mining [34, 56, 49]. In this section, due to space 
limitation, we focus on introducing the general sequential pattern mining 
algorithm, which is the most basic one because all the others can benefi t 
from the strategies it employs, i.e., Apriori heuristic and projection-based 
pattern growth. More detail and survey on sequential pattern mining can 
be found in [51, 35]. 

6.2.1 Sequential Pattern Mining Problem

Let I = {i1, i2, . . . , ik} be a set of items. A subset of I is called an itemset or 
an element. A sequence, s, is denoted as t1, t2, . . . , tl , where tj is an itemset, 
i.e., (tj  I) for 1 ≤ j ≤ l. The itemset, tj , is denoted as (x1x2 . . . xm), where xk is 
an item, i.e., xk  I for 1 ≤ k ≤ m. For brevity, the brackets are omitted if an 
itemset has only one item. That is, itemset (x) is written as x. The number of 
items in a sequence is called the length of the sequence. A sequence with 
length l is called an l-sequence. A sequence, sa = a1, a2, . . . , an , is contained 
in another sequence, sb = b1, b2, . . . , bm , if there exists integers 1 ≤ i1 < i2 < . 
. . < in ≤ m, such that a1  bi1

 , a2  bi2
 ,. . . , an  bin. We denote sa a subsequence 

of sb, and sb a supersequence of sa. Given a sequence s = s1, s2, . . . , sl , and 
an item α, s ◊ α denotes that s concatenates with α, which has two possible 
forms, such as Itemset Extension (IE), s ◊ α= s1, s2, . . . , sl {α} , or Sequence 
Extension (SE), s ◊ α= s1, s2, . . . , sl,{α} . If s' = p ◊ s, then p is a prefi x of s' and 
s is a suffi x of s'. 

A sequence database, S, is a set of tuples sid, s , where sid is a sequence_id 
and s is a sequence. A tuple sid, s  is said to contain a sequence β, if β is a 
subsequence of s. The support of a sequence, β, in a sequence database, S, is 
the number of tuples in the database containing β, denoted as support(β). 
Given a user specifi ed positive integer, ε, a sequence, β, is called a frequent 
sequential pattern if support(β) ≥ ε.
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Algorithm 3: FP-growth [24]

Input: A transaction database D, a frequent pattern tree FP -tree, a user specified
threshold minsup

Output: Frequent itemsets F
1 Method: call FP-growth(FP -tree, null)
2 Procedure FP-growth(Tree, α):
3 if Tree contains a single prefix-path then
4 Let P be the single prefix-path part of Tree;
5 Let Q be the multipath part with the top branching node replaced by a null root;
6 for each combination β of the nodes in P do
7 Generate pattern β ∪ α with support=minimum support of nodes in β;
8 Let freq pattern set(P ) be the set of patterns generated;

9 end

10 else
11 Let Q be Tree;
12 end
13 for each item ai ∈ Q do
14 generate pattern β = ai ∪ α with support=ai.support;
15 construct β’s conditional pattern-base and then β’ conditional FT-tree Treeβ;
16 if Treeβ �= ∅ then call Fp-growth(Treeβ, β);
17 Let freq pattern set(Q) be the set of patterns generated;

18 end
19 return(freq pattern set(P ) ∪ freq pattern set(Q) ∪ (freq pattern set(P )×

freq pattern set(Q)));

A [ ]

6.2.2 Existing Sequential Pattern Mining Algorithms

There are many sequential pattern mining algorithms introduced, which 
can be classifi ed into three groups [36]. One group is Apriori-like algorithm, 
such as Apriori-all [5], GSP [47], SPADE [62], and SPAM [7], the second 
group is projection-based pattern growth, such as Prefi xSpan [44], the third 
group is early prune based strategy, such as LAPIN [58, 60].

6.2.2.1 AprioriALL

Sequential pattern mining was fi rst introduced in [5] by Agrawal, an Apriori 
based algorithm, i.e., AprioriALL, was proposed. Given the transaction 
database as illustrated in Fig. 6.2.1, the mining process can be implemented 
in fi ve steps:

 • Sort Step: The database is sorted according to the customer ID and 
the transaction time, as illustrated in Fig. 6.2.1.

 • L-itemsets Step: The sorted data is fi rst scanned to obtain those 
frequent (or large) 1-itemsets based on the user specifi ed support 



threshold. Suppose the minimal support is 70%, in this case the minimal 
support count is 2, the result of large 1-itemsets is listed in Fig. 6.2.2.

 • Transformation Step: We map the large itemsets into a series of integers 
and the original database is converted by replacing the itemsets. 
For example, with the help of the mapping table in Fig. 6.2.2, the 
transformed database is obtained, as shown in Fig. 6.2.3.

 • Sequence Step: The transformed database is scanned and mined to 
fi nd all the frequent patterns.

 • Maximal Step: We remove those patterns which are contained in other 
sequential patterns. In other words, only maximal sequential patterns 
remain.

Customer ID Customer Sequence 

10 < ac(bc)d(abc)ad >

20  < b(cd)ac(bd) >

30 < d(bc)(ac)(cd) >

<ac(bc)d(abc)ad>

<d(bc)(ac)(cd)>
<b(cd)ac(bd)>

Figure 6.2.3: Transformed Database

Figure 6.2.2: Large Itemsets

Large Itemsets Mapped To 

apple a

banana b

strawberry c

pear d

Figure 6.2.1: Database Sorted by Customer ID and Transaction Time

CID Transaction T im e Items

10 Sep. 5, 2011 bread

10 Sep. 9, 2011 cookie 

10 Sep. 10, 2011 banana, cookie

10 Sep. 12, 2011 chocolate

10 Sep. 20, 2011 bread, milk, cookie

10 Sep. 23, 2011 bread

10 Sep. 26 2011 chocolate

20 Sep. 7, 2011 milk

20 Sep. 11, 2011 cookie, chocolate

20 Sep. 13, 2011 bread

20 Sep. 16, 2011 cookie

20 Sep. 22, 2011 milk, chocolate

30 Sep. 6, 2011 chocolate

30 Sep. 9, 2011 milk, cookie

30 Sep. 11, 2011 bread, cookie

30 Sep. 15, 2011 cookie, chocolate
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Table 6.1: AprioriAll Candidate Generation L3 to C4 [5]

Large 4-sequences Candidate 5-sequences
〈b(ac)d〉 〈(bc)(ac)d〉
〈bcad〉 〈d(bc)ad〉
〈bdad〉 〈d(bc)da〉
〈bdcd〉 〈d(bc)(ad)〉
〈(bc)ad〉
〈(bc)(ac)〉
〈(bc)cd〉
〈c(ac)d〉
〈d(ac)d〉
〈dbad〉
〈d(bc)a〉
〈d(bc)d〉
〈dcad〉

b(ac)d (bc)(ac)d
d(bc)ad
d(bc)da

d(bc)(ad)

bcad
bdad
bdcd

(bc)ad
(bc)(ac)
(bc)cd
c(ac)d
d(ac)d
dbad

d(bc)a

dcad
d(bc)d

Among all these steps, the sequence step is the most time consuming 
one and therefore, researchers focused on this step. AprioriAll [5] was fi rst 
proposed based on the Apriori algorithm in association rule mining [3]. Two 
phases are utilized to mine sequential patterns, i.e., candidate generation 
and test.

The phase for generating candidates is similar to the AprioriGen in 
[3]. The Apriori property is applied to prune those candidate sequences 
whose subsequence is not frequent. The difference is that when the authors 
generate the candidate by joining the frequent patterns in the previous pass, 
different order of combination make different candidates. For example: from 
the items, a and b, three candidates ab , ba  and (ab)  can be generated. 
But in association rule mining only (ab)  is generated. The reason is that in 
association rule mining, the time order is not taken into account. Obviously 
the number of candidate sequences in sequential pattern mining are much 
larger than the size of the candidate itemsets in association rule mining 
during the generation of candidate sequences. Table 6.1 shows how to 
generate candidate 5-sequences by joining large 4-sequences. By scanning 
the large 4-itemsets, it fi nds that the fi rst itemsets (bc)ad  and second 
itemsets (bc)(ac)  share their fi rst three items, according to the join condition 
of Apriori they are joined to produce the candidate sequence (bc)(ac)d . 
Similarly other candidate 5-sequences are generated.

For the second phase, i.e., test phase, is simple and straightforward. The 
database is scanned to count the supports of those candidate sequences. As 
a result, the frequent sequential patterns can be found.

Due to the effi ciency and simplicity of the AprioriAll algorithm, which is 
the fi rst algorithm on mining sequential patterns, the core idea of AprioriAll 



is applied by many other algorithms. The problems of AprioriAll are that 
there are many candidates generated and multiple passes over the databases 
are very time consuming.

6.2.2.1.1 GSP

Srikant and Agrawal generalized the defi nition of sequential pattern mining 
problem in [47] by incorporating some new properties, i.e., time constraints, 
transaction relaxation, and taxonomy. For the time constraints, the maximum 
gap and the minimal gap are defi ned to specifi ed the gap between any two 
adjacent transactions in the sequence. When testing a candidate, if any gap 
of the candidate falls out of the range between the maximum gap and the 
minimal gap, then the candidate is not a pattern. Furthermore, the authors 
relaxed the defi nition of transaction by using a sliding window, that when 
the time range between two items is smaller than the sliding window, these 
two items are considered to be in the same transaction. The taxonomy is 
used to generate multiple level sequential patterns.

In [47], the authors proposed a new algorithm which is named GSP to 
effi ciently fi nd the generalized sequential patterns. Similar to the AprioriAll 
algorithm, there are two phases in GSP, i.e., candidate generation and 
test. 

In the candidate generation process, the candidate k-sequences are 
generated based on the frequent (k-1)-sequences. Given a sequence s = s1, 
s2, . . . , sn  and subsequence c, c is a contiguous subsequence of s if any of 
the following conditions holds: (1) c is derived from s by dropping an item 
from either s1 or sn; (2) c is derived from s by dropping an item from an 
element sj that has at least 2 items; and (3) c is a contiguous subsequence 
of ĉ, and ĉ is a contiguous subsequence of s. Specifi cally, the candidates are 
generated in two phases:

 • Joint Phase: Candidate k-sequences are generated by joining two (k-1)-
sequences that have the same contiguous subsequences. When we join 
the two sequences, the item can be inserted as a part of the element or 
as a separated element. For example, because d(bc)a  and d(bc)d  have 
the same contiguous subsequence d(bc) , then we know that candidate 
5-sequence d(bc)(ad) , d(bc)ad  and d(bc)da  can be generated.

 • Prune Phase: The algorithm removes the candidate sequences which 
have a contiguous subsequence whose support count is less than the 
minimal support. Moreover, it uses a hash-tree structure [41] to reduce 
the number of candidates.

The process for generating candidates in the example database is shown 
in Fig. 6.2. For GSP, the diffi culty is that the support of candidate sequences is 
not easy to count due to the introduced generalization rules, while this is not 
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a problem for AprioriAll. GSP devises an effi cient strategy which includes 
two phases, i.e., forward and backward phases (which are repeated until all 
the elements are found): (1) Forward Phase: It looks for successive elements 
of s in d, as long as the difference between the end-time of the element and 
the start-time of the previous element is less than the maximum gap. If the 
difference is greater than the maximum gap, it switches to the backward 
phase. If an element is not found, then s is not contained in d; (2) Backward 
Phase: It tries to pull up the previous element. Suppose si is the current 
element and end-time(si)=t. It checks whether there are some transactions 
containing si−1 and the corresponding transaction-times are larger than the 
maximum gap. Since after pulling up si−1, the difference between si−1 and 
si−2 may not satisfy the gap constraints, the backward pulls back until the 
difference of si−1 and si−2 satisfi es the maximum gap or the fi rst element has 
been pulled up. Then the algorithm switches to the forward phase. If all 
the elements can not be pulled up, then d does not contain s.

Table 6.2: GSP Candidate Generation L4 to C5 [47]

Large 4-sequences Candidate 5-sequences after joining Candidate 5-sequences after pruning
〈b(ac)d〉 〈(bc)(ac)d〉 〈(bc)(ac)d〉
〈bcad〉 〈d(bc)ad〉 〈d(bc)ad〉
〈bdad〉 〈d(bc)da〉
〈bdcd〉 〈d(bc)(ad)〉
〈(bc)ad〉
〈(bc)(ac)〉
〈(bc)cd〉
〈c(ac)d〉
〈d(ac)d〉
〈dbad〉
〈d(bc)a〉
〈d(bc)d〉
〈dcad〉

b(ac)d (bc)(ac)d
d(bc)ad
d(bc)da

d(bc)(ad)

(bc)(ac)d
d(bc)adbcad

bdad
bdcd

(bc)ad
(bc)(ac)
(bc)cd
c(ac)d
d(ac)d

d(bc)a
d(bc)d
dcad

dbad

For generalized rule, the authors [47] introduced taxonomy knowledge 
into the mining process. The taxonomies are incorporated by extending 
sequences with corresponding taxonomies. The original sequences are 
therefore, replaced by their extended versions. As a result, the number 
of rules becomes larger because the sequences become more dense and 
redundant rules are produced. To avoid uninteresting rules, the ancestors 
are fi rstly precomputed for each item and those are not in the candidates are 
removed. Moreover, the algorithm does not count the sequential patterns 
that contain both the item and its ancestors. In a summary, the generalized 
sequential patterns take more attributes into account and thus, can be 
applied to real applications easily.



6.2.2.1.2 SPADE
Zaki introduced another effi cient algorithm, i.e., SPADE [62], to fi nd 
frequent sequences using effi cient lattice search techniques and simple 
joins. To discover all the patterns, SPADE needs to scan the database three 
times. It divides the mining problem into smaller ones to conquer and at 
the same time makes it possible that all the necessary data is located in 
memory. The core idea of SPADE, is devised based on that of Eclat [64], one 
of the effi cient algorithms for association rule mining. From the extensive 
experimental evaluation [62], we can see that SPADE is very effi cient in 
fi nding sequential patterns. 

The mining process of SPADE can be illustrated through a concrete 
example. Firstly, the sequential database is transformed into a vertical 
format, i.e., id-list database, in which each id is associated with its 
corresponding customer sequence and transaction. The vertical version of 
the original database (as shown in Fig. 6.2.1) is illustrated in Fig. 6.2.4. For 
example, we know that the id-list of item a is (100, 1), (100, 5), (100, 6), (200, 
3), and (300, 3), where each pair (SID:TID) indicates the specifi c sequence 
and transaction that a locates. By scanning the vertical database, frequent 
1-sequences can be easily obtained. To fi nd the frequent 2- sequences, 
the original database is scanned again and the new vertical to horizontal 
database is constructed by grouping those items with SID and in increase 
order of TID, which is shown in Fig. 6.2.5. By scanning the database 2-length 
patterns can be discovered. A lattice is constructed based on these 2-length 
patterns, and the lattice can be further decomposed into different classes, 
where those patterns that have the same prefi x belong to the same class. 
Such kind of decomposition make it possible that the partitions are small 
enough to be loaded into the memory. SPADE then applies temporal joins 
to fi nd all other longer patterns by enumerating the lattice [62].
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Figure 6.2.4: Vertical id-List
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SID (Item , T ID) pairs

10 (a, 1) (c, 2) (b, 2) (c, 2) (d, 4) (a, 5) (b, 5) (c, 5) (a, 6) (d, 7)

20 (b, 1) (c, 2) (d, 2) (a, 3) (c, 4) (b, 5) (d, 5)

30 (d, 1) (b, 2) (c, 2) (a, 3) (c, 3) (c, 4) (d, 4)

Figure 6.2.5: Vertical to Horizontal Database

In SPADE, two strategies are introduced to traverse all the candidate 
sequences, i.e., breadth fi rst search (BFS) and depth fi rst search (DFS). For the 
fi rst strategy, i.e., BFS, the candidate sequences are generated in a recursive 
bottom up manner. For instance, to generate the 3-length patterns, all the 
2-length patterns have to be obtained. On the contrary, for the second 
strategy, i.e., DFS, it only requires that one 2-length pattern and one k-length 
pattern to generate a (k+1)-length sequence (assume that the last item 
of the k-pattern is the same as the fi rst item of the 2-pattern). Therefore, 
there is always a trade-off between BFS and DFS: while BFS needs more 
memory to store all the consecutive 2-length patterns, it has the advantage 
that more information is obtained to prune the candidate k-sequences. All 
the k-length patterns are discovered by temporal or equality joining the 
frequent (k-1)-length patterns which have the same (k-2)-length prefi x. To 
furthermore improve the effi ciency, SPADE applies the commonly used 
Apriori strategy.

To explain in detail the temporal join process of SPADE, we use a 
concrete example as shown in Fig. 6.2.6. After the 1-length patterns, i.e., a 
and b, are obtained, to join these two patterns, we can test the three candidate 
sequences, ab, ba and (ab). The joining operation is indeed to compare the 
SID, TID pairs of the two (k-1)-length patterns. For example, the pattern b 
has two pairs {100, 3}, {100, 5} which are larger than (behind) the pattern 
a’s one pair ({100, 1}), in the same customer sequence. Hence, ab  should 
exist in the same sequence. The other candidate sequences’ support can be 
accumulated in a similar way. Figure 6.2.6 shows the process.
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Figure 6.2.6: Temporal join in SPADE algorithm [62]



6.2.2.1.3 SPAM
The SAPM algorithm [7] was introduced based on the key idea of SPADE. 
The difference is that SPAM applies a bitmap representation of the database 
instead of {SID, TID} pairs used in the SPADE algorithm. Therefore by using 
bitwise operations SPAM can obtain a better performance than SPADE and 
others on longer large databases.

The mining process of SPAM can be explained as follows. When we scan 
the database for the fi rst time, a vertical bitmap is constructed for each item 
in the database, and each bitmap has a bit corresponding to each itemset 
(element) of the sequences in the database. If an item appears in an itemset, 
the bit corresponding to the itemset of the bitmap for the item is set to one; 
otherwise, the bit is set to zero. The size of a sequence is the number of 
itemsets contained in the sequence. Figure 6.2.7 shows the bitmap vertical 
table of that in Fig. 6.2.3. A sequence in the database of size between 2k+1 
and 2k+1 is considered as a 2k+1-bit sequence. The bitmap of a sequence will 
be constructed according to the bitmaps of items contained in it.

To generate and test the candidate sequences, SPAM uses two steps, 
S-step and I-step, based on the lattice concept. As a depth-fi rst approach, 
the overall process starts from S-step and then I-step. To extend a sequence, 
the S-step appends an item to it as the new last element, and the I-step 
appends the item to its last element if possible. Each bitmap partition 
of a sequence to be extended is transformed fi rst in the S-step, such that 
all bits after the fi rst bit with value one are set to one. Then the resultant 

Figure 6.2.7: Bitmap Vertical Table

SID TID {a} {b} {c} {d}

10 1 1 0 0 0

10 2 0 0 1 0

10 3 0 1 1 0

10 4 0 0 0 1

10 5 1 1 1 0

10 6 1 0 0 0

10 7 0 0 0 1

20 1 0 1 0 0

20 2 0 0 1 1

20 3 1 0 0 0

20 4 0 0 1 0

20 5 0 1 0 1

30 1 0 0 0 1

30 2 0 1 1 0

3 1 0 1 0

30 4 0 0 1 1

30
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bitmap of the S-step can be obtained by doing ANDing operation for the 
transformed bitmap and the bitmap of the appended item. Figure 6.2.8 
illustrates how to join two 1-length patterns, a and b, based on the example 
database in Fig. 6.2.3. On the other hand, the I-step just uses the bitmaps 
of the sequence and the appended item to do ANDing operation to get the 
resultant bitmap, which extend the pattern ab  to the candidate a(bc) . The 
support counting becomes a simple check how many bitmap partitions not 
containing all zeros.

The main drawback of SPAM is the huge memory consumption. For 
example, although an item, α, does not exist in a sequence, s, SPAM still 
uses one bit to represent the existence of α in s. This disadvantage restricts 
SPAM as a best algorithm on mining large datasets in limit resource 
environments.6.2.2.1.4 PreϐixSpan
Pei et al. introduced the Prefi xSpan algorithm in [43]. The key idea of the 
Prefi xSpan algorithm is to apply database projection to make the database 
smaller for next iteration and thus, improve the performance. The authors 
claimed that in Prefi xSpan there is no need for candidates generation [43].1 
It recursively projects the database by already found short length patterns. 
Different projection methods were introduced, i.e., level-by-level projection, 
bi-level projection, and pseudo projection.

The workfl ow of Prefi xSpan is presented as follows. Assume that items 
within transactions are sorted in alphabetical order (it does not affect the 
result of discovered patterns). Similar to other algorithms, the fi rst step of 
Prefi xSpan is to scan the database to get the 1-length patterns. Then the 
original database is projected into different partitions with regard to the 
frequent 1-length pattern by taking the corresponding pattern as the prefi x. 
For example, Fig. 6.2.9 (b) shows the projected databases with the frequent 
(or large) 1-length patterns as their prefi xes. The next step is to scan the 
projected database of γ, where γ could be any one of the 1-length patterns. 
After the scanning, we can obtain the frequent 1-length patterns in the 
projected database. These patterns, combined with their common prefi x γ, 
are deemed as 2-length patterns. The process will be executed recursively, 
that the projected database is partitioned by the k-length patterns, to fi nd 
those (k+1)-length patterns, until the projected database is empty or no 
more frequent patterns can be found.

1However, some works (e.g., [58, 60]) have found that Prefi xSpan also needs to test the 
candidates, which are existing in the projected database.



The introduced strategy is named level-by-level projection. The main 
computation cost is the time and space usage when constructing and 
scanning the projected databases, as shown in Fig. 6.2.9 (b). To improve 
the effi ciency, another strategy named bi-level projection was proposed to 
reduce the cost of building and scanning the projected databases [44]. The 
difference between the two projection strategies is that, in the second step 
of bi-level projection, a n × n triangle matrix (called S-matrix) is constructed 
by scanning the database again, as shown in Fig. 6.2.9 (c). This matrix 
represents all the supports of 2-length candidates. For example, M[ d , 
a ]=(3, 3, 0) indicates that the supports of da , ad , and (ad)  are 3, 3, and 

0, respectively. The original database is then projected with regard to the 
frequent 2-length patterns in the S-matrix and the projected databases are 
scanned, respectively. The process recursively follows such a projection and 
scanning manner to fi nd all the patterns. This strategy, however, seems to 
be not always optimal, as stated in [44].

A further optimization named pseudo projection was proposed in [43] 
to make the projection more effi cient when the projected database can 
be loaded into the memory. The strategy is fulfi lled by employing a pair 
of pointer and offset to indicate the position of each projection database 
instead of copying the data each time. The drawback is that the size of the 
(projected) database can not be too large.

In a brief summary, Prefi xSpan improves the performance of mining 
sequential patterns by using database projection, that it scans smaller 
projected databases in each iteration. The main problem of Prefi xSpan, 
however, is that it is time consuming on scanning the projected database, 
which may be very large if the original dataset is huge.

Figure 6.2.8: SPAM S-Step join [7]
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Customer ID Customer Sequence

10 <ac(bc)d(abc)ad>

20 <b(cd)ac(bd)>

30 <d(bc)(ac)(cd)>

(a) Example Database (b) Projected Database

0<a>

0<b> (3 2 1)

0<c> (3 3 2) (2 3 2)

0<d> (3 3 0) (3 3 1) (3 3 2)

<a> <b> <c> <d>

(c) The S-matrix

a

b

c

d

Large Itemsets Projected Database

<c(bc)d(abc)ad>

<(_c)d(abc)ad>

<c(bc)d(abc)ad>

<(abc)ad>

<c(bd)>

<(cd)ac(bd)>

<(_d)ac(bd)>

<ac(bd)>

<(_c)(cd)>

<(_c)(ac)(cd)>

<(ac)(cd)>

<(bc)(ac)(cd)>

Figure 6.2.9: Prefi xSpan Mining Process [43]

6.2.2.1.5 LAPIN
LAPIN was proposed in [58, 60]. The basic idea of LAPIN is that the last 
position of each item is important and can be utilized to improve the 
performance to count the frequency of the candidates. The main difference 
between LAPIN and previous signifi cant algorithms is the scope of the 
search space. Prefi xSpan scans the whole projected database to fi nd the 
frequent patterns. SPADE temporally joins the whole id-list of the candidates 
to get the frequent patterns of next layer. LAPIN can get the same results 
by scanning only part of the search space of Prefi xSpan and SPADE, which 
are indeed the last positions of the items.

For the same example shown in Fig. 6.2.9, LAPIN constructs the item 
a’s projected last position lists when testing the candidates whose prefi x is 
a, as illustrated in Table 6.3. We can see that to obtain the 2-length patterns 
whose prefi x is a, LAPIN only needs to scan 8 elements while Prefi xSpan 
needs to test 16 times. The reason is that redundant testing the same item 
in the projected database is useless for contribution of counting of the 



candidates. From the example, we can know that LAPIN is a prefi x growth 
algorithm with effi cient pruning strategy. It employs a depth fi rst search of 
the lexicographic tree to grow the sequences with the help of the projected 
item last position databases.

In addition, the same authors introduced some variant versions of 
LAPIN, i.e., LAPINSPAM [57] and LAPIN-Web [59]. The fi rst one is devised 
based on the SPAM algorithm [7] which utilizes bit information to further 
improve the effi ciency. The latter one, i.e., LAPIN-Web [59], is introduced 
to specifi cally extract the users’ frequent access patterns with regard to the 
log data.

Table 6.3: Item A’s Projected Last Position Lists
j

Customer ID Projected Last Position Lists

10 clast = 5, alast = 6, dlast = 7

20 clast = 5, blast = 6, dlast = 6

30 clast = 4, dlast = 4

As clarifi ed in [36], the LAPIN strategy can be deemed as one of the 
promising techniques in the sequential pattern mining literature.

6.3 Frequent Subtree Mining
Frequent subtree mining could be seen as an extension issue of frequent 
itemset and sequence mining because the data structure of the former is 
more complex than that of the latter. There are many applications based on 
the frequent tree mining, such as Web mining, bioinformatics, computer 
networks, and so forth. In this section, we will introduce the basic concepts 
and algorithms for mining frequent subtrees. In essential, most of these 
algorithms follow the same spirit of the techniques developed in frequent 
itemset mining. More detail and survey on frequent subtree mining can 
be found in [11].

6.3.1 Frequent Subtree Mining Problem

The frequent subtree mining problem is defi ned as follows [11]. Given 
a class of trees T, a threshold minsup, a transitive subtree relation P ≺ Q 
between trees P, Q  T, a fi nite data set of trees D T, the frequent tree 
mining problem is the problem of fi nding all trees P  T such that no two 
trees in P are isomorphic and for all P  P: freq(P,D) = Q D d(P, Q) ≥ minsup, 
where d is an anti-monotone function such that Q  T : d(P’, Q) ≥ d(P, Q) if 
P’ ≺ P. The simplest choice for function d is given by the indicator function: 
d(P, Q) = 1, if P ≺ Q, otherwisw d(P, Q)=0.
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For ease of exposition, in this chapter, we only consider the simple case, 
that the frequency of a pattern tree is defi ned by the number of trees in the 
data set that contains the pattern tree. The frequency defi nition is denoted 
as transaction based frequency, which is similar to that of itemset or sequence 
frequency. Because of the transitivity property of the subtree relation, the 
indicator function is anti-monotone and can be utilized to improve the 
mining effi ciency. Based on the defi nition of the pattern frequency, the 
support can be defi ned as follows: sup(P, D)=freq(P, D)/|D|, which is also 
similar to that of itemset or sequence based support.

Following the same strategy as other structure pattern mining 
algorithms applied, we can utilize the classic method, i.e., the generate 
and test [1], to discover all the frequent subtrees. The common work fl ow 
can be executed the following two steps recursively, where P is set an 
empty tree fi rstly: (1) calculate freq(P) by fi nding all Q  D with P ≺ Q; and 
(2) let P=suc(Q). Note that suc(P) is a possible approach that determines 
the successor of P tree. It should guarantee that all the possible trees are 
enumerated exactly once and only once. There are many possible methods to 
decide the concrete implementation. They are different at the data structure 
used and the performance cost.

                  Algorithm 4: The TreeMiner algorithm [63]

Input: D, σ, {T k
1 , . . . , T

k
m}, F(σ,D,�e)

Output: F(σ,D,�e)
1 for i ← 1 to i=m do

2 F k+1
i ← ∅;

3 for j ← 1 to j=m do

4 Ck+1
i ← ∅;

5 Ck+1
i ← ⊗(T k

i , T
k
j , );

6 for all T k+1
i,j ∈ Ck+1

i,j as supp(T k+1
i,j ≥ σ do

7 F k+1
i ← F k+1

i ∪ {T k+1
i,j };

8 end

9 end

10 F(σ,D,�e) ← F(σ,D,�e) ∪ {F k+1
i };

11 TreeMiner(D, σ, F k+1
i , F(σ,D,�e));

12 end

6.3.2 Data Structures for Storing Trees

There are many possible data structures can be used for storing trees. For 
example, the adjacency matrix and the fi rst-child-next-sibling are commonly 



utilized. In addition to these data structures, some other tree representations 
have been also introduced for different purposes. For example, to save space, 
some canonical representations are proposed because they are more compact 
than the commonly used data structures. Another reason is that because 
there are always many possibilities to represent the same tree information 
for labeled trees, using a unique way is important and essential for mining 
process. An effective representation, therefore, facilitates the comparison 
process. We will introduce different approaches that were proposed for 
frequent subtree mining.

6.3.2.1 TreeMiner

Zaki introduced the TreeMiner algorithm [63] to mine frequently ordered 
subtrees. The basic idea is that it applies both breadth fi rst search (BFS) 
and depth fi rst search (DFS) to traverse the whole search space fi nding 
the frequent subtrees. Similar to other structure mining algorithms in 
the literature, TreeMiner also applies the Apriori rule, i.e., all subtrees of 
a frequent tree are frequent. Moreover, the author introduces an effective 
strategy that by fi nding an observation if we remove either one of the last 
two vertices at the end of the string encoding of a rooted ordered tree, we 
can obtain the string encoding of a valid embedded subtree. Based on this 
observation, Zaki proposed to use BFS and DFS integratedly that generates 
the candidate (k+1)-subtrees by joining two frequent k-subtrees which have 
the same prefi x string encodings with (k-1)-length. This idea is similar to 
that of SPADE [62] for sequential pattern mining.

               Algorithm 5: The FREQT algorithm [6]

Input: D, σ, {T k
1 , . . . , T

k
m}, F(σ,D,�i)

Output: F(σ,D,�i)
1 for i ← 1 to i=m do

2 F k+1
i ← ∅;

3 Ck+1
i ← ∅;

4 Ck+1
i ← extension(T k

i , OCL(T k
i ));

5 for all T k+1
i ∈ Ck+1

i suchthatsupp(T k+1
i ≥ σ do

6 F k+1
i ← F k+1

i ∪ {T k+1
i };

7 end

8 F(σ,D,�i) ← F(σ,D,�i) ∪ {F k+1
i };

9 FREQT(D, σ, F k+1
i , F(σ,D,�i));

10 end

To count the frequency of the candidate subtrees, similar to SPADE [62], 
TreeMiner introduces the vertical format to represent the data. Specifi cally, 
the scope of a node is defi ned as between the preorder number of it and the 
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preorder number of the rightmost node of it. From the defi nition, we can 
know that the size of the data tree could be very large and this is an issue 
for large dataset. The pseudo code of the TreeMiner algorithm is illustrated 
in Fig. 4. Refer [63] for detail.

6.3.2.2 FREQT

Asai et al. proposed the FREQT algorithm [6] to fi nd the frequent induced 
subtrees. The basic idea follows the well known property, i.e., Apriori. To 
generate the candidates, FREQT applies the rightmost extension strategy 
that, a k-tree is extended to a candidate (k+1)-tree by adding a new node to 
the node at the rightmost branch of the k-tree. By this way, we know that 
the parent tree can be uniquely determined. This strategy also guarantees 
that each candidate subtrees are traversed exactly only once. Similar to other 
structure pattern mining (i.e., itemset or sequence mining), the algorithm 
starts to fi nd 1-patterns and then grows the pattern by increasing 1 and so 
forth to fi nd all the frequent subtrees. The mining process is terminated 
when there is no possible extension can be made. Figure 5 shows the pseudo 
code of the FREQT algorithm.

To extend the frequent k-tree to the candidate (k+1)-trees, the FREQT 
algorithm utilizes the rightmost extension strategy. Firstly all the siblings 
of the nodes on the rightmost path of the K-tree are determined, and then 
the children of the rightmost leaf can be found. Based on these children 
nodes, the candidate (k+1)-tree can be determined. An intuitive idea to 
implement this strategy, is that we only scan a small part of the tree, instead 
of scanning the whole data, to improve effi ciency. Some techniques have 
been introduced in [6] to tackle this issue. It utilizes a list of pointers for 
each tree, to point to the nodes of the pattern map.
Moreover, only the occurrences of the rightmost leaf of the tree is saved to 
reduce the space cost.

6.3.2.3 HybridTreeMiner

To further improve the effi ciency of frequent subtree mining, Chi et al. [14] 
has proposed the HybridTreeMiner algorithm which, similar to TreeMiner, 
applies both the breadth fi rst search and the depth fi rst search strategies. 
The basic idea of HybridTreeMiner also follows the traditional generate-
and-test technique. To effi ciently generate the candidates to be tested, the 
authors introduced the tree representation, i.e., breadth fi rst canonical form, 
to facilitate traversal of all possible subtree candidates. A disadvantage of 
the algorithm is that it cannot generate all the candidates in constant time 
because of the complexity cost.



Similar to TreeMiner, the HybridTreeMiner algorithm joins two k-trees 
which have the common prefi x (k-1)-trees, to generate the candidate subtree. 
For those trees which cannot be generated by joining, HybridTreeMiner 
borrows the idea of FREQT, that extends the frequent subtrees to obtain the 
larger candidates. There are several effective strategies proposed in [13, 14] 
to address the issue of tree authomorphisms during the joining and extending 
processes. Moreover, for different types of trees, the authors introduced 
different approaches to improve the effi ciency of the algorithms. For 
example, to deal with the free trees, the algorithm is extended by utilizing the 
breadth fi rst tree encoding. By this way, it can take account for a small part of 
all the rooted trees. Another strategy introduced by HybridTreeMiner is that 
the occurrence lists of the subtrees are proposed and the authors explained 
how they are joined for generating the candidates in Chi et al. [14].

6.3.2.4 Gaston

Nijssen et al. proposed another algorithm named Gaston [40]. Based on the 
similar idea of TreeMiner and HybridTreeMiner, the Gaston algorithm applies 
both the breadth fi rst search and depth fi rst search strategies. There are 
several phases introduced for the whole mining process. Firstly, it extracts 
the frequent undirected paths by traversing all the possible ways. To 
facilitate the process, the authors introduced an effective representation for 
trees which can be built in reasonable time for large data; then it deals with 
these paths as the start point of a rooted tree, and joins or extends them with 
rightmost path extension technique to generate the candidates and test.

6.3.3 Maximal and closed frequent subtrees

A main issue for all the previous work is that the resultant frequent subtrees 
may be very large and it can grow exponentially when the size of the original 
data increases. As a result, how to effi ciently obtain them is important. 
Moreover, it is very diffi cult to clarify the whole result because of the huge 
size of them. To tackle these problems, the maximal and closed frequent 
subtrees have been introduced [50, 54, 12], which borrows the idea from the 
literature of itemset and sequence mining. The defi nition of the maximal 
frequent subtree is that none of a maximal frequent subtree’s super trees 
are frequent. By this way, the discovered frequent patterns can be reduced 
dramatically, which facilitates the mining process and the explanation of 
the results. The basic idea of [50, 54] is that they fi rst fi nd all the frequent 
subtrees, and then fi lter out those non-maximal patterns. This technique, 
although simple to be implemented, is time consuming. To tackle the issue, 
Chi et al. [12] proposed the CMTreeMiner algorithm, which extracts the 
maximal patterns without fi rst fi nding all the frequent ones. Furthermore, 
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the authors also introduced to discover closed frequent patterns. A tree is 
closed if none of its super trees has the same support. By this way, the result 
can be analyzed with more meaningful information.

6.4 Frequent Subgraph Mining
Frequent subgraph mining (FSM) is an important issue because it is the 
basis for many applications, such as web mining, bioinformatics, computer 
networks, and so forth. Most of the existing frequent subgraph methods 
follow the similar strategies with that proposed in the traditional frequent 
itemst mining, i.e., Apriori rule. However, the higher complexity of the 
former issue introduces some unique properties and thus, special solutions 
for graphs have been presented in the literature.

The key idea of frequent subgraph mining, similar to other structure 
pattern mining (i.e., itemset, sequence, tree), is that the generate-and-test 
strategy is implemented during the mining process. Firstly it generates 
some candidate subgraphs by applying breadth fi rst search or depth fi rst 
search; and then it tests these candidates to decide whether these subgraphs 
occur above some predefi ned threshold. There are several issues need to 
be tackled. For example, how the candidate subgraphs are to be generated 
without duplication and none of them are missing? How to effi ciently count 
the frequency of these candidate subgraphs? To tackle the fi rst issue, the 
Apriori rule has been commonly utilized. In this section, we will briefl y 
introduce the basic concepts and algorithms for frequent subgraph mining. 
More detail on this issue can be seen in [28, 15].

6.4.1 Problem Defi nition

The defi nition presented in this section follows that of [28, 15]. A subgraph 
g is deemed as frequent if its occurrence is greater than some predefi ned 
threshold. The occurrence of a subgraph can be deemed as its support, which 
is defi ned by the number of graph transactions that g exists. No matter how 
many times g occurs in a graph transaction, it accounts for no greater than 
one count. Given a database G = {G1, G2, . . . , GT} and a threshold minsup, the 
set of graph transactions where a subgraph g exists is defi ned by ξG(g) = 
{Gi|g  Gi}. As a result, the support of g is defi ned as supG(g) = |ξG(g)|/T, where 
|ξG(g)| denotes the size of ξG(g) and T is the number of graph transactions. 
We say that g is frequent if the following holds: supG(g) ≥ minsup.

A labeled graph is denoted as G(V, E, LV, LE, θ), where V is a set of 
vertices, E   V × V is a set of edges, LV is a set of vertex labels, LE is a set 
of edge labels, and θ is a function that maps V to LV and E to LE. A path is 
defi ned as a set of vertices in G which could be ordered that two vertices 



construct an edge if they are consecutive. If for all the e  E, e is an (un)
ordered pair of vertices, then we say that G is (un)directed. If there exists a 
path for every pair of vertices in G, we say that G is connected. Otherwise, 
G is disconnected. If G contains no cycle, then way denote G as acyclic. If 
every pair of vertices is connected by an edge, we say that G is complete. 
Given two graphs G1(V1, E1, LV1

 ,LE1
, θ1) and G2(V2, E2, LV2

, LE2
, θ2), G1 is a 

subgraph of G2, if G1 satisfi es: (1) V1  V2, and v  V1, θ1(v)=θ2(v), (2) E1  
E2, and (u, v)   E1, θ1(u, v)=θ2(u, v). G1 is an induced subgraph of G2, if 
G1 further satisfi es u, v  V1, (u, v)  E1  (u, v)  E2. G2 can be denoted 
as a supergraph of G1. A graph G1(V1, E1, LV1, LE1, θ1) is isomorphic to another 
graph G2(V2, E2, LV2

, LE2
, θ2), if and only if a bijection f : V1  V2 exists such 

that: (1) u  V1, θ1(u)=θ2(f(u)), (2) (u, v)  E1  (f(u), f(v))  E2, (3) (u, v) 
 E1, θ1(u, v)=θ2(u, v). The bijection f is an isomorphism between G1 and G2. 

If there exists a subgraph G3  G2 that a graph G1 is isomorphic to G3, we 
say that G1 is subgraph isomorphic to G2.

 There are many ways to store graph information. The existing 
works aim to introduce more effi cient strategies on designing effective 
representations on this issue. In the next several subsections we will briefl y 
introduce these approaches.

6.4.2 Graph Representation

The common data structures used to store the graph information are 
adjacency matrix and adjacency list. For the adjacency matrix, the rows 
and columns denotes the vertices, and the intersection of row i and 
column j represents the edge between the vertices vi and vj. The value at 
the intersection i, j  represents the number of edges between the vertices vi 
and vj. One main issue for adjacency matrix, is that it is diffi cult to detect the 
graph isomorphism by utilizing the matrix data structure. The reason is that 
there could be many possible adjacency matrices for the same graph by using 
different traversing strategies [52]. To address this problem, it is essential 
to guarantee that the same graphs (that may have different format) should 
be represented by the identical representation. Many studies explored this 
issue by introducing effective labeling strategies. To facilitate detecting the 
graph isomorphism, many researchers proposed to represent the graphs by 
using a unifi ed coding strategy, i.e., canonical labeling [45]. The technique 
guarantees that if some graphs are isomorphic, their canonical labeling 
representation will be the same [32]. To fulfi ll this purpose, a reasonable 
approach is that we can utilize the common data structure, i.e., adjacency 
matrix, with some modifi cation by taking into account the lexicographical 
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ordering. Further optimization on compressing the canonical representation 
has been introduced [45]. For the remaining part of this section, we will 
introduce several canonical labeling strategies.

Depth First Search (DFS) Code: Yan et al. introduced the DFS code as a 
canonical labeling strategy [55]. Each edge in the graph encoded by DFS 
code is represented as (vi, vj, lvi

 , lvj
, le), where vi and vj are the vertices, lvi

 
and lvj

 are the labels for lvi and lvj, le is the label for the edge linking lvi
 and 

lvj
. The basic method of DFS coding is that while traversing the graph 

according to the depth fi rst search order, the vertex is labeled by a unique 
identifi er sequentially. There could be several kinds of DFS codes and the 
existing works always aim at introducing an identical effective labeling 
strategy [55].

Canonical Adjacency Matrix: Inokuchi et al. proposed the canonical adjacency 
matrix (CAM) as the unique representation of the graph [26]. CAM can 
be obtained by encoding an adjacency matrix AM of a graph, through 
concatenating the lower triangular entries of AM which also takes into 
account of the diagonal. Because there can be many possible representations 
of the adjacency matrices, CAM is the one with the maximal or minimal 
encoding, which uniquely represents the graph information.

6.4.3 Candidate Generation

Because almost all the algorithms follow the candidate generate-and-test 
strategy, in the subsection we introduce how to deal with the candidate 
generation, which is an important step during the mining process. The 
challenge is that how to generate the candidates without redundancy and 
none of them is missing.

6.4.3.1 Join Operation

Borrowing from the idea of SPADE [62], Kuramochi et al. [32] introduced 
the join operation to generate the candidate subgraphs. The key idea in 
[32] is that two frequent k2-subgraphs which have the same (k-1)-subgraph 
are joined, to generate a (k+1)-subgraph candidate. The main challenge, 
however, is that there could be many candidates produced. The reason is 
that a k-subgraph may have k different (k-1)-subgraphs. Kuramochi et al. 
tackled this issue by making a constraint that the (k-1)-subgraphs should be 
the two (k-1)-subgraphs which have the smallest and the second smallest 
canonical labels. This constraint largely reduces the candidates necessary 
to be generated and therefore, improves the whole performance.

2Here k could be the number of vertices or edges.



6.4.4 Frequent Subgraph Mining Algorithms

Because of the importance of frequent subgraph mining, there has been 
many algorithms proposed to tackle the issue. Similar to that of itemeset, 
sequence, and tree mining, the candidate generation and test are the main 
issues during the mining process. It is well known that the problem of 
detecting graph isomorhpism is NP-complete and therefore, the existing 
works aim to introduce efficient heuristic techniques to reduce the 
complexity of the problem. Detail surveys of the frequent graph mining in 
the literature can be found in [52, 22].

6.4.4.1 Apriori-based Graph Mining (AGM) Algorithm

AGM [26] is recognized as the fi rst algorithm proposed to tackle the issue 
of frequent graph mining. The basic idea of AGM is that it applies the 
classic Apriori property to facilitate the mining process. To represent the 
graph, AGM uses the adjacency matrix. The join operation, therefore, can 
be executed straightforward by using basic matrix computation. According 
to the paper [26], the performance of AGM on real data (i.e., chemical 
data) has confi rmed to be more effi cient than the state-of-the-art approach. 
Moreover, the resultant patterns include those useful and undiscovered 
ones by previous work. In a later paper [27], the same authors explored 
the issue of frequent graph mining on more categories of graph data (i.e., 
directed v.s. undirected, labeled v.s. unlabeled, loop graph).

6.4.4.2 Frequent Subgraph Mining Algorithm (FSG)

The basic idea of FSG [32] also follows the Apriori rule. The main distinct 
features of FSG are that [32]: (1) a sparse graph representation which 
minimizes both storage and computation has been introduced; (2) when 
we generate the candidate, FSG adds one edge at a time to the discovered 
frequent subgraph; (3) the proposed algorithms are simple and the 
graph isomorphism detection are effi cient for small graphs; and (4) some 
optimization are introduced to scale the algorithm on large graph data. A 
main issue, however, is that FSG does not perform well on very large data, 
as illustrated in the experimental evaluation.

6.4.4.3 Path Mining (PM) Algorithm

Gudes et al. introduced the path mining algorithm [21], which uses edge-
disjoint paths as the expansion units to generate the candidate subgraphs. 
The key idea of PM is to decrease the number of the candidate patterns 
as early as possible. Furthermore, it minimizes the number of expensive 
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support computations. There are several steps executed in the PM algorithm. 
It fi rst extracts all the frequent paths, and then it discovers all the subgraphs 
which have two paths. Finally it joins the frequent subgraphs with (k-1)-
paths which have the same (k-2)-paths, to obtain the candidate k-paths 
subgraph. Similar to other pattern mining algorithm papers, Gudes et al. 
stated that the support computation is the most time consuming step.

6.4.4.4 Graph-based Substructure Pattern Mining Algorithm (gSpan)

Yan et al. introduced the gSpan algorithm [55], which utilizes the DFS 
code to uniquely represent the graph. gSpan applies the depth fi rst search 
strategy to traverse all the candidate subgraphs in the whole lattice which 
constructs a DFS code tree, whose nodes are the corresponding DFS code. 
The algorithm traverses the DFS code tree and all the subgraphs that have 
not minimal DFS codes are removed. By this way, it can avoid to generate 
the redundant candidates. Moreover, gSpan only saves the transaction 
lists for the discovered patterns and scans these lists to detect subgraph 
isomorphism. As shown in the paper [55], gSpan is effi cient on both time 
and space cost compared with the state-of-the-art techniques.

6.4.4.5 Fast Frequent Subgraph Mining Algorithm (FFSM)

Huan et al. introduced another effi cient algorithm, FFSM [25], to tackle the 
issue of frequent graph mining. The basic idea of FFSM is that it utilizes 
a vertical search scheme within an algebraic graph framework to reduce 
the number of redundant candidates tested. There are several distinct 
features in FFSM: (1) a novel graph canonical form and two effi cient 
candidate generation operations, i.e., join and extension; (2) an algebraic 
graph framework (suboptimal CAM tree) to guarantee that all frequent 
subgraphs are enumerated unambiguously; and (3) avoid to test subgraph 
isomorphism by maintaining an embedding set for each frequent subgraph. 
The experimental evaluation demonstrates that FFSM outperformed gSpan 
on several chemical data sets [25].

It is very diffi cult to explore the advantages and disadvantages of the 
various frequent graph mining algorithms, because they are incomparable 
from many aspects. However, there are still some works towards this 
purpose, i.e., [53].

6.5 Chapter Summary
In this chapter, we have discussed the issues related to frequent pattern 
mining (i.e., itemset, sequence, tree, graph). These problems are fundamental 



issues in the data mining literature and are the basis of many practical 
applications. Some strategies have been commonly utilized by different 
algorithms (i.e., Apriori rule). Although so many works have studied 
the problem of frequent pattern mining, there are still many challenges 
existing. To name a few: (1) How to deal with huge data?; (2) How to mine 
exact patterns from stream data?; and (3) How to judge the usefulness and 
effectiveness of those discovered patterns. It seems that there is a still long 
way to reach the original goal of the data mining research.
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CHAPTER 7

Advanced Clustering Analysis

7.1 Introduction
Clustering is a useful approach in data mining processes for identifying 
patterns and revealing underlying knowledge from large data collections. 
The application areas of clustering include image segmentation, information 
retrieval, and document classifi cation, associate rule mining, web usage 
tracking and transaction analysis. Generally, clustering is defi ned as the 
process of partitioning unlabeled data set into meaningful groups (clusters) 
so that intra-group similarities are maximized and inter-group similarities 
are minimized at the same time. In essence, clustering involves the following 
unsupervised learning process, which can be written as: Defi ne an encoder 
function c(x) to map each data object xi into a particular group Gk(c(x) = k) 

 x  Gk, k = 1, 2, 3, ..., k, so that a cluster criterion Q(c) = k = 1K 
c(xi) = k, 

c(xj = k)dist(xi, xj) is minimized. 
As we know, this is a classical combinatorial optimization problem and 

solving it is exactly NP-hard, even with just two clusters [13]. According 
to computation complexity theory [36], no complete algorithm can get the 
overall optimal solutions in a polynomial time, unless P = NP. Iterative 
refi nement method, a popular approximate algorithm, is widely adopted 
by various unsupervised learning algorithms. A general iterative refi nement 
clustering process can be summarized as Algorithm 7.1 [6].

Algorithm 7.1: General iterative refi nement clustering
Initialization: Initialize the parameters of the current cluster model.
Refi nement: Repeat until the cluster model converges.
 (1) Generate the cluster membership assignments for all data objects, based on 

the current model;
 (2)  Refine the model parameters based on the current cluster membership 

assignments.
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Figure 7.1.1: An example of iterative refi nement clustering algorithm

The intuitionists denotation of iterative refi nement clustering algorithm 
is shown in Fig. 7.1.1. The horizontal axis denotes feasible solutions of 
clustering problem and the vertical axis is the corresponding objective 
function values of feasible solutions.

In this chapter, the feasible solution is the results of encode function 
(or the clustering results) and the objective function value is the values 
of cluster criterion Q(c) = k  = 1K

c(xi) = k, c(xj = k)dist(xi, xj). Without loss 
of generality, we assume that point 3 is selected as the initialization of an 
iterative refi nement clustering algorithm, and by repeating step (1) and (2), 
the algorithm will converge to point 4, one of the feasible solutions with 
suboptimal objective function value. An iterative refi nement clustering 
algorithm is a popularly used clustering approach based on heuristic 
search, which is to minimize the cluster criterion in a designated region 
(i.e., guarding the heuristic search with the specifi ed initial values). In this 
scenario, the obtained clustering result is dependent on the initialization 
and the minimized cluster criterion only refl ects the sub-optimal solution 
with this running of heuristic search. In other words, the nature of heuristic 
search process makes the iterative refi nement clustering algorithms heavily 
sensitive to the initialization settings, thus not guaranteeing the higher 
quality clustering results with randomly chosen initializations [5]. Therefore, 
how to deal with the sensitivity problem of initialization in iterative 
refi nement clustering algorithm is becoming an active and well concerned. 
That the initialization model must be correct is an important underlying 
assumption for iterative refi nement clustering algorithm. It can determine 
the clustering solution [6], that is, different initialization models will produce 
different clustering results (or different local minimum points as shown in 
Fig. 7.1.1). Since the problem of obtaining a globally optimal initial state 
has been shown to be NP-hard [15], the study on the initialization methods 



towards a sub-optimal clustering result hence is more practical, and is of 
great value for the clustering research. Recently, initialization methods have 
been categorized into three major families: random sampling methods, 
distance optimization methods and density estimations [17]. Forgy adopted 
uniformly random input objects as the seed clusters [14], and MacQueen 
gave an equivalent way with selecting the fi rst K input objects as the seed 
clusters [29]. In the FASTCLUS, a K-means variance implemented in SAS 
[37], the simple cluster seeking (SCS) initialization method is adopted [21]. 
Katsavounidis et al. proposed a method that utilizes the sorted pairwise 
distances for initialization [22]. Kaufman and Rousseeuw introduced a 
method that estimates the density through pairwise distance comparison, 
and initializes the seed clusters using the input objects from areas with 
high local density [23]. In Ref. [18], a method which combines local density 
approximation and random initialization is proposed. Belal et al. fi nd a 
set of medians extracted from a dimension with maximum and then use 
the medians as the initialization of K-means [4]. Niu et al. give a novel 
algorithm called PR (Pointer Ring), which initializes cluster centers based 
on pointer ring by partition traditional hyper-rectangular units further 
to hyper-triangle subspaces [33]. The initialization steps of K-means++ 
algorithm can be described as: choosing an initial center m1 uniformly at 
random from data set; and then selecting the next center mi = x0 from data 
set with a probability, where dist(x, m) denote the shortest distance from a 
data object x to the closest center m; iterative until fi nd K centers [2]. The 
main steps of initialization centers of K-means by kd-tree are: fi rst, the 
density of a data at various locations are estimated by using kd-tree; and 
then use a modifi cation of Katsavounidis algorithm, which incorporates 
this density information, to choose K seeds for K-means algorithm [39]. And 
recently, Lu et al. treated the clustering problem as a weighted clustering 
problem so as to fi nd a better initial cluster center based on the hierarchical 
approach [28].

7.2 Space Smoothing Search Methods in Heuristic 
Clustering

The goal of modifi ed initialization methods, is to reduce the infl uence 
of sub-optimal solutions (the local minimum points) bestrewed in the 
whole search space, as shown in Fig. 7.1.1. Although iterative refi nement 
clustering algorithms with these modifi ed initialization methods have 
some merits in improving the quality of cluster results, they also have high 
probability to be attracted by local minimum points. Local search method 
is the essence of iterative refi nement clustering algorithms. Lots of the 
local minimum points make a local search problem hard and sensitive to 
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the initialization. Those proposed modifi ed initialization methods are only 
focused on how to select an initialization which can improve the quality of 
iterative refi nement clustering algorithm, but the search space embedded 
lots of local minimum points is ignored. Smoothing search space method 
reconstructs the search space by fi lling local minimum points, to reduce 
the infl uence of local minimum points. In this paper, we fi rst design two 
smoothing operators to reconstruct the search space by fi lling the minimum 
traps (points) based on the relationship between distance metric and cluster 
criterion. Each smoothing operator has a parameter, smoothing factor, to 
control the number of minimum traps. And then, we give a topCdown 
clustering algorithm with smoothing search space (TDCS3) to reduce the 
infl uence of initialization. The main steps of TDCS3 are to: (1) dynamically 
reconstruct a series of smoothed search space as a hierarchical structure: 
the most smoothed search space at the top, and the original search space 
at the bottom, other smoothed search spaces are distributed between them, 
by fi lling the local minimum points; (2) at the top level of the hierarchical 
structure, an existing iterative refi nement clustering algorithm is run with 
random initialization to generate the cluster result; (3) from the second 
level to the bottom level of the hierarchical structure, the same clustering 
algorithm is run with the initialization derived from the cluster result on 
the previous level.

Figure 7.2.1: Illustration of smoothing search space

7.2.1 Smoothing Search Space and Smoothing Operator

7.2.1.1 Local Search and Smoothing Search Space

Local search method is the essence of iterative refi nement clustering 
algorithms. During the mid-sixties, local search method was first 
proposed to cope with the overwhelming computational intractability of 
NP-hard combinatorial optimization problems. Give a minimization (or 
maximization) problem with objective function f and feasible region F, a 

Start solution

Local minimum

Global optimum



typical local search algorithm requires that, with each solution xi  Rd, there 
is associated a predefi ned neighborhood N(xi)  Rd. Given a current solution 
point xi  Rd, the set N(xi) is searched for a point xi+1 with f(xi + 1) < f(−xi) or 
(f(xi + 1) > f(xi)). If such a point exists, it becomes the new current solution 
point (xi xi+1), and then the process is iterated. Otherwise, xi is retained as 
a local optimum with respect to N(xi). Then a set of feasible solution points 
is generated, and each of them is locally improved within its neighborhood. 
Local search methods only check the neighborhood of current feasible 
solution xi, so the search range has been dramatically reduced and the 
convergence speed has been accelerated. A major shortcoming of local 
search is that the algorithm has a tendency to get stuck at a locally optimum 
confi guration, i.e., a local minima point, as the point 2 or 4 shown in Fig. 
7.1. Different neighborhood structures result in difference terrain surface 
structures of the search space and produce different numbers of local 
minimum points. The effectiveness of a local search algorithm relies on 
the number of local minimum points in the search space [16], that is, local 
minimum points make a search problem hard. The smaller the number of 
local minimum points, the more effective a local search algorithm is. In 
order to reduce the infl uence of local minimum to local search algorithm, 
some local minimum traps must be fi lled. Gu and Huang [16] has called 
the method of fi lling minimum trap as the smoothing search space, and it 
is able to dynamically reconstruct the problem structure and smooth the 
rugged terrain surface of the search space. The smoothed search space could 
hide some local minimum points, therefore, improving the performance 
of the traditional local search algorithm. Figure 7.2.1 is the illustration of 
smoothing search space.

From Fig. 7.2.1, we can see that Many local minimum traps are fi lled 
after running a smoothing operator. The real line curve shows the original 
search space which has lots of minimum traps, and dashes shows the 
smoothed search space with fewer minimum traps. At the former discussing, 
we can fi nd that lots of the local minimum points which are embedded 
in the search space make a local search problem hard and sensitive to the 
initialization. The essence of iterative refi nement clustering algorithms is the 
local search method, thus they have the same real reason for initialization 
sensitivity problem. The main idea of smoothing search space is always 
common, but different application areas have different ways to smoothing 
the search space. In clustering area, clustering is defi ned as the process 
of partitioning unlabeled data objects into meaningful groups (clusters) 
so that the value of cluster criterion Q(c) is minimized. Minimizing Q(c) 
value means that the intra-similarities of all clusters are maximized or 
the distances of each data object to its cluster center is minimized. So the 
cluster criterion Q(c) has a close relationship with the similarity or distance 
between data objects.
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7.2.1.2 Smoothing Operator

In this section, we designed two smoothing operators based on the 
relationship between Q(c) and distance measure, to fi ll the minimum traps 
embedded in the rugged surface of search space. Let D = x1, x2, ... xN, xi  Rd 
be a set of data objects that needs to be clustered. And note dist:Rd × Rd  
R+ be a given distance function between any two data objects in Rd. Dist is 
a distance matrix which contains the distances between all data objects of 
D, and Dist(i,j) denotes the distance between data object xi and xj, Dist(xi,xj). 
In this chapter, two smoothing operators will be described as follows:
 (1)  Displacement smoothing operator
  Based on average distance of distance matrix Dist, we design the 

displacement smoothing operator as below.

Defi nition 7.1. Given a data set D = x1, x2, ... xN, and its distance matrix 

Dist, the average distance of Dist is defi ned as: Dist= 
1

( 1)N N −
 i = 1N j 

= 1N Dist(i, j).

Definition 7.2. Given a smoothing factor α ≥ αarg, the displacement 
smoothing operator reconstructs the smoothed search space according to:

Distα(i, j) =   
( ( , ) ) ( , )

( ( . )) ( , )

Dist Dist i j Dist if Dist i j Dist

Dist Dist Dist i j if Dist i j Dist

α

α

⎧ + − ≥⎪
⎨

− − <⎪⎩

α

α

According to Defi nitions 7.1 and 7.2, a series of smoothed search spaces 
with different numbers of minimum traps will be reconstructed during 
α  αarg. A smoothed search space generated from a large exhibits a 
smoother terrain surface, and a search space generated from a smaller 
exhibits a more rugged terrain surface. The search space will return to the 
original search space when α = αarg. Lets note the smoothed search space 
according to the largest serves as the top search space and the original search 
space as the bottom search space, as shown in Fig. 7.2.2.

Algorithm 7.2 describes the details of the reconstruction process for 
smoothing the search spaces. In the fi rst step, we calculate the average 
distance of and during the second step, a distance transformation is run 
to change each distance Dist(i, j)  Dist with average distance Dist  and the 
difference between dist(xi, xj) and Dist . The main time cost of displacement 
smoothing operator is the process of the distance transformation. For a 
distance Dist(i, j)  Dist, the time cost of distance transformation is . For all 
the distances belong to , the total time consume is O(N2).

In this section, we set αorg = 1, then there are two extreme cases of the 
series of the clustering instances, which are based on the distance. These 
are:

,
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Figure 7.2.2: Illustration of a series smoothed search space with different terrain 
surfaces, which are generated by displacement methods with different smoothing 
factors

Algorithm 7.2: Displacement Smoothing Operator
Input: distance matrix Dist, smoothing factor α
Output: smoothed search space Sα

 (1)  Calculate the average distance Dist  of Dist;
 (2)  For any Dist(i, j) Dist

 If Dist(i, j) < Dist  then
  Distα (i, j) = Dist –(Dist –Dist(i, j))α;
 Else
  Distα (i, j) = Dist  + (Dist(i, j)– Dist )α;
 End if;
End for;

 (3)  Sα  Distα and return.

 • if α  αorg, then Distα  Dist  this is the trivial case;
 • if α = αorg, then Distα = Dist , which is the original problem.

 (2)  Kernel Smoothing Operator
  The main idea of the displacement smoothing operator is the linear 

transformation of distance based on Dist  and the exponential of the 
difference between dist(xi, xj) and Dist . This smoothing operator fi ts well 
to linear problem, but is weak with the non-linear problem. So another 
smoothing operator which could be extended to non-linear situation is 
designed. This smoothing operator, named kernel smoothing operator, 
is based on the smoothing kernel.
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DEFINITION 7.3 [3]. Given a real value function f : Rn  R and a smoothing 
kernel g : R  R, which is a continuous, bounded, nonnegative, and 
symmetric function whose integral is one, the g-transform of is defi ned as 
f g(x) = ∫(Rn)f(y)g(||y − x||)dy. The Gaussian kernel function g(z) = exp(−z2/

(2σ2)) is the most widely used kernel. Figure 4 gives an example of applying 
a smoothing transformation to the piecewise constant function and we 
estimate the transformed function. L g(x) = ∫(Rn)f(y)g(||y − x||)dy.

From Fig. 7.2.3, we can see the traps of minimum point has been 
smoothed by the Gaussian kernel function with different σ, the smoothing 
factor. 

In Fig. 7.2.3, the real line curve illustrates the original search space, 
and all the dashed are the smoothed search space, by running a kernel 
smoothing operator with different smoothing factor σ on the original search 
space. In this chapter, we use the kernel smoothing method to smooth the 
distance function dist(xi, xj) and reduce the infl uence of lots of minimum 
value embedded in the search space. We assume that there is no missing 
value in data set D, that is, distance function dist is a continuous function. 
Let L(x) = dist(xi, xj) =  l = 1d || xil − xjl ||2, the smoothing method for 
clustering is defi ned as: dist(xi, xj)g = dist(xi, xj) * exp(−dist(xi, xj)

2/(2σ2)). The 
main steps of kernel smoothing operator are shown in Algorithm 3. For any 
pairwise data objects belong to data set D, a Gaussian kernel infl uence adds 
to distance function dist(xi, xj) to smooth the surface of search space. Once 
transformation on a pairwise data object xi, xj needs O(1) time, so for the 
transformation of N2 pairwise data objects O(N2) times is need at least.

Figure 7.2.3: Illustration of a smoothing space after running a kernel smoothing 
operator on piece-wise function
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Algorithm 7.3: Kernel Smoothing Operator
Input: data set D, smoothing factor σ
Output: smoothed search space Sα

(1) Sα = zeros(N, N);
(2) for any pairwise data objects, xi, xj D
 Sα (i, j)= dist(xi, xj) * exp(–dist(xi, xj)

2/2σ2) 
(3) return Sα

7.2.2 Clustering Algorithm based on Smoothed Search Space

Based on the smoothing operator and the smoothing factor, a series of 
smoothed search space with different number of minimum traps, are 
reconstructed as a hierarchical structure. Iterative refi nement clustering 
algorithm can be run on each smoothed search space from the top search 
space down to the bottom search space. An algorithm framework is 
proposed to realize this process in this section. For simple description, we 
use symbol α to denote the smoothing factor in the rest of this paper.

7.2.2.1 Top-Down Clustering Algorithm based on Smoothing Search Space

We give a Top-Down Clustering algorithm based on the Smoothed Search 
Space (TDCS3) in this section. The main ideas of TDCS3 are:

 (1)  dynamically reconstruct the smoothed search space by running a 
smoothing operator;

 (2)  run an existing iterative refi nement clustering algorithm on the current 
smoothed search space and generate the cluster results;

 (3)  based on the cluster results, a new initialization is generated and 
services to the next smoothed search space;

 (4)  repeat run (1)–(3) until back to the original search space.

Algorithm 7.4 is the main description of the framework of TDCS3. 
From the top search space to the original search space, any existing iterative 
refi nement clustering algorithm, such as k-means [13], MeanShift [41] and 
so on, could be run on these smoothed search space. At the top search space, 
algorithm  is run with random initialization, and the correlate cluster 
results are generated. The initialization from the former cluster results will 
be regards as the initialization of   in the current search space and lead the 
search of algorithm   to converge to a better sub-optimal result. Iteratively 
run these steps until reach the original search space.
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7.2.2.2 Benefi ts

TDCS3 focuses on reducing the infl uence of lots of minimum trap embedded 
in the search space of iterative refi nement clustering algorithm. Comparing 
to traditional iterative refi nement clustering algorithm, TDCS3 has the 
following benefi ts:

 (1)  Intelligent characteristic under TDCS3 framework, a series of different 
smoothed search space are reconstructed. All the smoothed search 
spaces are the different level topological structures of the original 
search space. The quality of cluster results on more smoothed search 
space is high for the number of minimum trap more less than the 
original search space. So the initialization from the cluster result on 
more smoothed search space can capture good structure of clusters. The 
initialization from the cluster results on the former search space can 
lead the search on current search space to a better minimum point.

 (2)  Flexible characteristic TDCS3 is only an algorithm framework. The 
smoothing operator and the iterative clustering algorithm, which will 
be run under TDCS3, are not fi xed. According to different applications 
and demands, the smoothing operator could be redesigned and the 
iterative refi nement algorithm will be selected.

 (3)  Adaptive characteristic TDCS3 inherits the merits of iterative 
refi nement clustering algorithm and reconstructs their search space 
to reduce the probability of getting stuck into a worse sub-optimal 
minimum points.

Algorithm 7.4: TDCS3
Input: Data set D, Cluster number K and Smoothing factor α
Output: cluster results C
(1) Generate the top search space Sα with α;
(2) Run any iterative refi nement clustering  on Sα with random initialization, and 

generate the cluster results Cα;
(3) while α αorg

(3.1) Generate the initialization Initα from Cα;
(3.2) α’ α – λ and generate new search space Sα’ with α’;
(3.3) Run  on Sα’ with Initα, and generate the cluster results Cα’;
(3.4) α α’ Cα Cα’;

(4) C Cα and return.



7.3 Using Approximate Backbone for Initializations in 
Clustering

As described in Section 7.2, iterative refi nement clustering exactly is 
NP-hard, even with just two clusters. In real application, K-centre clustering 
algorithm is a traditional iterative refi nement clustering, so it inherits the 
advantages and drawbacks from iterative refi nement clustering.

For a larger data set, researchers are seeking heuristic methods to solve 
this clustering problem. For example, the K-centre clustering algorithm 
is a popularly used clustering approach based on heuristic search by 
minimizing the sum of squared error locally and obtaining the local 
suboptimal clustering results. However, the heuristic search process makes 
K-centre clustering algorithms heavily sensitive to the initialization, and 
usually cannot guarantee the high quality clustering results with random 
initializations [5]. On the other hand, different local suboptimal clustering 
results do refl ect the different likelihood of data instances gathering around 
various centres in a data set [43]. Due to the fact that there are 80% local 
suboptimal solutions are observed to distribute around the global optimal 
solutions [24, 30, 35], it is believed that fi nding the commonly overlapped 
intersections of various local suboptimal clustering results will facilitate 
locating the global optimal solutions. Moreover, for K-centre heuristic 
clustering, it is expected that choosing these intersection areas as the initial 
search space will result in better clustering results. Backbone analysis 
is becoming an active research topic in NP-hard problem recently. The 
backbone of a NP-hard problem is regarded as the core part of all global 
optimal solutions, which was fi rst proposed in [26] for Travelling Salesman 
Problem (TSP), and has attracted much attention recently [42, 38]. An exact 
backbone, however, is generally hard to be obtained for many optimization 
problems in real applications. Instead, Approximate Backbone (AB), as 
indicated by the name—the approximate form of backbone, and defi ned 
as the intersection of different local suboptimal solutions of a dataset, is 
often used to investigate the characteristic of the dataset and expedite the 
convergence speed of heuristic algorithms [44, 8, 19]. In this paper, we 
intend to adopt the concept of AB to address the initialization problems 
suffering the heuristic clustering described above, and in particular, 
propose a Heuristic Clustering Approach Based on Approximate Backbone 
(HC_AB). The basic idea of HC_AB is that: we, fi rst identify the AB from a 
set of local suboptimal solutions derived from running K-centre clustering 
with different initialization settings; then, construct a new restricted search 
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space based on the AB for heuristic search; eventually re-run the K-centre 
clustering algorithm by using this new search space which has the AB as the 
part of initialization, and generate a better clustering result that is deemed 
to best approximate the global optimal solution.

7.3.1 Defi nitions and Background of Approximate Backbone

In this section, we give several defi nitions to prepare the background of 
approximate backbone. Given a data set D = x1, x2, ...xn contains N data 
objects and each object xi  Rd is defi ned over-dimensional feature space. 
Let dist : Rd × Rd � R+ be a given distance function between any two objects 
in Rd. A K-centre clustering algorithm takes D as an input and partitions 
the N data objects into K clusters such that the sum of squared error  = 

K
k=1 xi Ck

 dist(xi, vk) is minimized, where Ck is a cluster and vk is the centre 
of Ck. Since each cluster is represented by its centre, the K-centre clustering 
result can be represented as V = v1, v2, ...vK. The local suboptimal clustering 
result is represented by a set of centres such that the corresponding  value 
is minimized in a local area. The Global optimal clustering results are 
the collection of suboptimal clustering results with the smallest  value. 
DEFINITION 1 (Backbone). Given the global optimal clustering results 
Z* = V1*, V2*, ...Vp* where Vp* = vp

1*, vp
2*, ...vp

k*, p = 1, ...P. The backbone of 
this clustering problem is defi ned as the intersection of P global optimal 
clustering results. backbone(V1*, V2*, ...Vp*) = V1* ∩V2* ∩....∩Vp*. 

Generally, the global optimal solution is hard to be obtained for a NP-
hard problem in fact, resulting in diffi culty in identifying the theoretically 
ideal backbone. However, in many research areas, researchers have observed 
an interesting fact that there are 80% local suboptimal solutions being 
distributed around the global optimal solutions and a big valley structure 
is seen. Motivated by this fact, we intuitively have an idea in mind on how 
to approximate the ideal backbone by making use of the local suboptimal 
solutions.

DEFINITION 7.4 (Approximate Backbone). Given the local suboptimal 
clustering result Z = V1, V2, ..., VM, where Vm = vm

1, v
m
2 ..., v

m
K  m = 1, ....,M. The 

AB is defi ned as the intersection of M local suboptimal clustering results.

a_bone(V1, V2, ..., VM) = V1 ∩ V2 ∩ .. ∩ VM

As described above, our method aims to use the AB of local optimal 
solutions to form the part of initialization (i.e., the start points for heuristic 
search), thus constructing an appropriate AB for the heuristic search in 
K-centre clustering algorithm is a key issue. In other words, the quality of 
K-centre clustering results is greatly dependent on the characteristics of 
AB. To address the concern, here we propose two parameters to describe 



the characteristics of AB—Scale and Purity. The former one describes how 
many percentages of total local optimal solutions are included in the AB; 
whereas the later one denotes how many percentages of local suboptimal 
solutions included in AB are also existed in the theoretically ideal backbone 
as well. In particular, Approximate Backbone Scale (ABS) and Approximate 
Backbone Purity (ABP) are defi ned as follows.

DEFINITION 7.5 (Approximate Backbone Scale). Given an AB, abone
(V1, V2, ..., VM). Approximate Backbone Scale is defi ned as the proportion 
of the AB cardinality to the cluster number K.

ABS = 
1 2| _ ( , ,..., ) |Ma bone V V V
K

DEFINITION 7.6 (Approximate Backbone Purity). Given an AB, abone(V1, 
V2, ..., VM), and a backbone backbone(V1*, ..., VP*) Approximate Backbone 
Purity is defi ned as the proportion of the cardinality of the intersection of 
the AB and the backbone to the AB cardinality.  

ABP = 
1 2 1 2

1 2

(| _ ( , ,..., ) ( *, *,..., *) |)
| _ ( , ,..., ) |

M P

M

a bone V V V backbone V V V
a bone V V V

∩

As the AB is used for the selection of initialization, in order to achieve 
the best result of heuristic search, we expect to form an appropriate AB with 
both large ABS and ABP values, which indicates the fact that the most of 
whole local suboptimal solutions should be included in the initialization 
and the included local suboptimal solutions (centres) are closely scattered 
around the global optimal clustering result. In order to better understand 
ABS and ABP, we give an example to explain them. Given a data set D, 
which contains 500 objects and 10 clusters, each cluster is represented by 
a representative object. An assumed global optimal clustering result V* 
is located in the fi rst row in table 1 and three local suboptimal clustering 
results V1, V2, V3, obtained by running K-centre clustering algorithm with 
three initializations, are also listed in Table 7.3.1. For the simplifi cation, we 
assume that each centre is represented by an objects ID in D, and there is 
only one global optimal clustering result in D, that is backbone(V*) = V*.

For this example, we can obtain the AB: abone(V1, V2, V3) = 43, 78, 198, 
240, 310, 366, 480. Known from the defi nition of ABS, the value of ABS in 
this example is calculated as follow. 

ABS = 
1 2 3| _ ( , ,..., ) | 7 0.7

10
a bone V V V

K
= =
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Name Centre set 

*
V 22, 78, 109, 180, 230, 292, 310, 366, 412, 475 

1
V 43, 78, 109, 198, 240, 262, 310, 366, 412, 480 

2
V 43, 78, 128, 198, 240, 262, 310, 366, 412, 480 

3
V 43, 78, 128 198, 240, 252, 310, 366, 432, 480 

Figure 7.3.1: Clustering results of D

We observed that there are three commonly overlapped centres existed 
in AB and backbone, thus the value of ABP is,

ABP = 
1 2 3

1 2 3

| _ ( , , ) * | 3 0.429
| _ ( , , ) | 7

a bone V V V V
a bone V V V

∩
= =

According to the Definition 7.5, the AB is derived from M local 
suboptimal solutions, so the characteristics of AB has a close relationship 
with M. In order to illustrate this relationship, we construct three data 
sets: RandomS1, RandomS2 and RandomS3, each of which contains 34 
clusters. And each cluster has 100 data objects, among which 99 objects 
are generated by a Gaussian distribution function with different mean (µ) 
and standard deviation (σ) and the last one is the mean of the rest, which 
is deemed as the centre of the cluster. We run Vertex Substitution Heuristic 
(VSH) algorithm [7], a classical K-centre clustering algorithm, on these 
three data sets, and note the process as VSHRandomS1, VSHRandomS2 and 
VSHRandomS3 respectively. VSH was executed for M=2:2:20 times on each 
data set, where M=2:2:20 means M changing from 2 to 20 with step 2. The 
relationships between ABS, ABP and M are shown in Fig. 7.3.2.
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Figure 7.3.2: The ABS and ABP of AB
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From Fig. 7.3.2, we can see that the trends of changes on ABS and 
ABP are along opposite directions with M—ABS is decreasing while M 
increasing, on the contrary, ABP increasing, and eventually, the changes of 
ABS and ABP become slight and a balanced state is reached. As indicated 
above, we hope to form a better AB with both higher ABS and ABP values to 
construct a good searching start for K-centre clustering algorithm. Due to the 
inconsistent changes of ABS and ABP with M, we have to choose a tradeoff 
between ABS and ABP to ensure the better clustering results. According 
to the experimental results, we fi nd the fact that choosing a reasonable M 
can guarantee a better AB. The setting of M is an open question in various 
applications [19]. In this chapter, we experimentally set M value based on 
the size of data set and the cluster number.

7.3.2 Heuristic Clustering Algorithm based on Approximate Backbone

7.3.2.1 Reconstruct the New Searching Space

A new search space, S determined by the AB, is crucial to heuristic clustering 
algorithms. Various applications might have different new search space 
reconstruction methods. For example, in TSP [16], the new search space is 
reconstructed by including all the edges that are not occurred in AB. While 
the construction of AB leads to the formation of the fraction of the new search 
space, the number of centres within the AB is usually less than the number 
of predefi ned clusters in K-centre clustering. In that case, how to select 
the rest centres from the local suboptimal solutions is another important 
issue. Essentially, a cluster centre that was’nt included in the AB but was 
frequently occurred in local suboptimal clustering results is more likely to 
be selected to represent a real cluster. Although we can refi ne the new search 
space with all the centers occurred in local suboptimal solutions, in order to 
reduce the size of the new search space, we therefore select a centre into the 
new search space, only if it is a frequent centre. DEFINITION 5 (Frequent 
Centre). Given an occurrence threshold β, the local suboptimal clustering 
result Z = V1, ..., VM and the AB abone(Z), for each centre vi  UZ abone(Z), if 
the occurrence frequency of vi exceeds β, then vi is a frequent centre, where 
is a set difference operator and UZ = Um = 1MVm.

We use the example shown in Table 1 to explain the new search space 
refi nement. From table 1, we fi nd that there are 14 objects be selected as the 
centre of clusters in V1, V2, V3. The AB of this example is abone(V1, V2, V3) = 
109, 128, 130, 262, 252, 412, 432, if the occurrence frequency of vi exceeds  β, 
then it is a frequent centre and will be included in S. According to the big 
valley phenomenon, here we set the parameter  β = M * 80% = 2.4 (for this 
example M=3), and we obtain the three additional centers 128, 262, 412.
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7.3.2.2 Framework of HC_AB

Algorithm 7.5 shows the framework of HC_AB. It works as follows. 
A K-centre clustering algorithm is run on D with different initializations to 
generate clustering results Z. The AB a_bone(Z) is generated based on the 
Defi nition 2, as shown in step 2. The aim of step 3 is to refi ne the new search 
space S according to the description in afore section. The best_V is produced 
by re-running the K-centre clustering algorithm on S with AB as a fraction 
of initializations along with the complementary frequent centres.

Algorithm 7.5: HC_AB
Input: D, K, M
Output: best _V
 (1)  Generate M clustering result, Z ={V1, V2,..., VM}, by running K-centre clustering 

algorithm;
 (2)  Find the AB a_bone(V1, V2,..., VM);
 (3)  Reconstruct a new search space S;
 (4)  Rerun K-centre clustering algorithm with the a_bone(V1, V2,..., VM) as a fraction 

initialization centres on S ;
 (5)  Return best _V.

According to Defi nition 2, each centre of Z is uniquely represented by a 
data object ID number in D. For some specifi c kinds of K-centre clustering 
algorithms, such as K-means where the centres of clusters algorithms are 
determined by the mean of all data objects in the cluster, we amend the 
intersection operator of fi nding AB described above—the AB is defi ned 
as the co-occurrence data objects in the same cluster, and then use their 
means as the fraction of initialization of K-means clustering algorithm. 
Heuristic clustering algorithms are sensitive to the initialization problem 
and are prone to reach the local suboptimal solutions. Due to the strength 
of AB on improving the performance of heuristic algorithms, many research 
efforts have introduced it in heuristic algorithm design. In this chapter, 
we have proposed a novel solution to this by devising an approximate 
backbone based K-centre clustering approach. The main strength of the 
proposed method is the capability of restricting the initial search space 
around the global optimal results by using the approximate backbone, and 
in turn, reducing the impact of initialization on clustering and improving 
the effi ciency of heuristic clustering. Experiments on several synthetic 
and real world data sets have shown that the approximate backbone has 
signifi cant effects on improving the quality of clustering and reducing the 
initialization impact.



7.4 Improving Clustering Quality in High Dimensional 
Space

7.4.1 Overview of High Dimensional Clustering

Clustering is one of the frequently used tools in data mining. In many 
applications, data objects to be clustered are described by points in a high 
dimensional space, where each dimension corresponds to an attribute/
feature. A distance measurement between any two points is used to 
measure their similarity. The research in [25] has shown that the increasing 
dimensionality results in the loss of contrast in distances between data 
objects. Thus, clustering algorithms that measure the similarity between data 
objects based on all attributes/features of the data tend to degrade in high 
dimensional data spaces. In addition, the widely used distance measurement 
usually perform effectively only on some particular subsets of attributes, 
where the data objects are distributed densely [20]. In other words, it is 
more likely to form dense and reasonable clusters of data objects in a lower 
dimensional subspace [1]. Recently, several algorithms for discovering 
clusters of data objects in subsets of attributes have been proposed, and 
they can be classifi ed into two categories: subspace clustering and projective 
clustering [32]. Subspace clustering was fi rst proposed by Agrawal in [1]. 
The main task of subspace clustering is to search clusters in 2d subspaces of 
a data set according to their individual cluster defi nition. A large number of 
overlapping clusters are typically reported. Most of the cluster defi nitions 
of subspace clustering are based on a global density threshold that ensures 
anti-monotonic properties necessary for an Apriori style search. The setting 
of global density threshold heavily relies on the domain knowledge and has 
a signifi cant impact on clustering results. Large values of the global density 
threshold will result in only low dimensional clusters, whereas small values 
will lead to not only higher dimensional clusters but also a large number 
of low dimensional clusters (many of which are too trivial to be kept) [32]. 
CLIQUE [1], ENCLUS [11], SSC [40] and SCUD [12] are the typical subspace 
clustering algorithms in the lecture. In general, subspace clustering aims to 
fi nd out overlapped clustering results in a bottom-up way, while, projective 
clustering seeks to assign each point to a unique cluster (clusters embedded 
in different subspaces) in a top-down way. PROCLUS [9] is one of the 
classical projective clustering algorithms. It discovers groups of data objects 
located closely in each of the related dimensions in its associated subspace. 
In such case, the data objects would spread along certain directions which 
are parallel to the original data axes. ORCLUS [10] aims to detect arbitrarily 
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oriented subspaces formed by any set of orthogonal vectors. EPCH [34] is 
focused on uncovering projective clusters with varying dimensionality, 
without requiring users to input the expected average dimensionality l of 
the associated subspace and the number of clusters K that inherently exists 
in the data set. The d-dimensional histogram created with equal width, is 
used to capture the dense units and their locations in the d-dimensional 
space. A compression structure is used to store these dense units and their 
locations. At last, a search method is used to merge similar and adjacent 
dense units and form subspace clusters. P3C [31] can effectively discover 
projective clusters in the data while minimizing the number of required 
parameters. P3C also does not need the number of projective clusters as 
input and can discover the true number of clusters. There are three steps 
consisted in P3C. Firstly, regions corresponding to the clusters on each 
attribute are discovered. Secondly, a cluster core structure described by a 
combination of the detected regions is designed to capture the dense areas 
in a high dimensional space. Thirdly, cluster cores are refi ned into projective 
clusters, outliers are identifi ed, and the relevant attributes for each cluster 
are determined. STATPC [32] uses a varying width hyper-rectangle structure 
to fi nd out the dense areas embedded in the high dimensional space. By 
using a spatial statistical method, all dense hyper-rectangles are found. 
A heuristic search process is run to merge these dense hyper-rectangles 
and clustering results are generated. The clusters of projective clustering 
are defi ned as the dense areas in corresponding subsets of attributes. In 
projective clustering, it is a common way that a hyper-rectangle structure 
is used to fi nd out the dense areas in the d-dimensional space at fi rst; and 
then, a search method is run to merge these hyper-rectangles for generating 
clusters. Because the dense area is captured by the hyper-rectangle structure, 
it is important to defi ne the structure before clustering. There are two 
kinds of hyper-rectangle structures used in projective clustering—the 
equal width hyper-rectangle and the varying width hyper-rectangle. For 
the equal width hyper-rectangle structure, each dimension is divided into 
equal width intervals, and the hyper-rectangles are constructed by these 
intervals, for instance, the d-dimensional histogram is used as the fi rst step 
of the construction of hyper-rectangle structure in EPCH. As for the varying 
hyper-rectangle structure, it (1) randomly selects a data object from a data 
set D; (2) constructs a hyper-rectangle structure around the data object with 
randomly selected widths; (3) runs a statistical test on the hyper-rectangle 
to decide whether it is a dense hyper-rectangle. In real applications, it is a 
diffi cult task to set reasonable widths for these hyper-rectangles.



7.4.2 Motivation of our Method

Furthermore, data objects may belong to various clusters in different 
subspaces. Projective clustering is an effi cient way to deal with high 
dimensional clustering problems. Explicitly or implicitly, projective 
clustering algorithms assume the following defi nition: Give a data set D of 
d-dimensional data objects, a projected cluster is defi ned as a pair (Ck, Sk), 
where Ck is a subset of data objects and Sk is a subset of attributes such that 
the data objects in Ck are projected along each attribute in Sk onto a small 
range of values, compared to the range of values of the whole data set in 
Sk, and the data objects in Ck are uniformly distributed along every other 
attributes not in Sk. The task of projective clustering is to search and report 
all projected clusters in the search space. Generally, researchers often defi ne 
the equal or varying width hyper-rectangle structure to capture the dense 
area at fi rst, and then merge these dense areas to generate the projected 
clusters. In real applications, however, it is hard to decide the widths of 
these hyper-structures directly. The use of a histogram is a common and 
easy way to defi ne the width of hyper-rectangles. The width defi ned by 
this method has a strict bond of distribution which heavily affects the 
quality of the clustering result. On the other hand, it is intuitive to decide 
the width directly from the density distribution estimated from the real 
data itself. Kernel width of a data object derived by using kernel estimator 
has the ability of capturing the dense distribution around it [43]. So it is a 
wise way that use kernel estimator to decide the width of hyper-rectangle 
structure. Conversional kernel estimators, however, can not deal with 
high dimensional data. Rodeo [27]. An effi cient local kernel estimator, has 
the ability of estimating the kernel width around a data object in the high 
dimensional space. By making use of Rodeo, we propose an innovative 
projective clustering in this paper. Particularly, in this paper, we defi ne 
a new structure named Signifi cant Local Dense Area (SLDA) to capture 
the local dense area around the data object based on Rodeo and spatial 
statistical theory; and then propose a greedy search algorithm to generate 
whole SLDAs which could cover the data distribution in the d-dimensional 
space; eventually, we merge the SLDAs to construct the projected clusters 
and fi lter out outliers.

7.4.3 Signifi cant Local Dense Area

7.4.3.1 Rodeo Algorithm

Let x1, x2, ..., xN, xi  Rd(i = 1, ...,N) be a sample set from a distribution F with 
density function f. Non-parametric density estimation methods are often 
used to estimate the f. Rodeo is an effective kernel density estimator for 
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sparse and high dimensional data and it has the advantages of performing 
the selection of subset of attributes and the determination of kernel width 
simultaneously [43].

The kernel density estimator is defi ned as

� 1
1

1( ) ( ( ))
det ( )

N
ii

f w x K W x X
N W

−
=

= −∑
where K(.) is a symmetric kernel with ∫ K(u)du = 1 and ∫ K(u)du = 0d and W = 
diag(width1, ...,widthd) is a diagonal matrix. Rodeo algorithm uses an iterative 
learning step to calculate the kernel value and estimate the kernel width 
W of data object x. In order to reduce the time consuming of Rodeo, the 
authors propose a greedy Rodeo method by embedding the Rodeo within 
LARS (Least Angle Regression) [27]. In this chapter, we prefer to select this 
modifi ed Rodeo as our subroutine in our experiments. Here we assume 
that the attributes which have the signifi cant contribution on estimating the 
kernel value of x are listed in the fi rst r columns in W and the rest attributes 
are irrelative with the kernel estimation. So the kernel width W returned 
by Rodeo satisfi es the following Theorem [27].

Theorem 7.1. Given the kernel width W = diag(width1, ...,widthd), it satisfi es: 

P(wj = wj(0))  1 for all j > p and P(w0
j (NbN)

1
4 r
−
+ )≤ wj ≤ w0

j (NaN)
1

4 r
−
+ ) 1, where 

w0
j is the original large kernel width on attribute j, a_N and b_N are the 

constant. 
From Theorem 7.1, we can fi nd that the kernel widths on relative 

attributes which have the signifi cant contribution to the kernel estimation 
are smaller than those original kernel widths. In this paper, we therefore 
select these r attributes to construct the relative subspace S and its 
corresponding kernel width set W* to form the hyper-rectangle.

In order to show the ability of Rodeo on fi nding out the subset of 
attributes that has signifi cant efforts on the kernel estimation and the 
corresponding kernel width determination, we give an example. Randomly 
generate a data set D containing 50 data objects, each object described by 
4 attributes, the range of each attribute is in [0,1]. The data of the fi rst two 
attributes is subject to a normal distribution and the data of the last two 
attributes is subject to a uniform distribution, as shown in Fig. 7.4.1(a) and 
(b). Randomly select a data object x from D, and use the Rodeo method 
to estimate the kernel density of it. The subset of attributes which has 
signifi cant contributions to the kernel density estimation is on dimension 
1 and 2. The kernel widths of x are shown in Fig. 7.4.1(c). From Fig. 7.4.1(c), 
we can observe that the kernel width on dimension 1, 2 is smaller than the 
widths on dimension 3, 4, which indicates the fact that the contribution of 
dimension 1, 2 is higher than that of dimension 3, 4 to the kernel density 
estimation.



7.4.3.2 Defi nition of SLDA
Let D = x1, x2, ..., xN be a data set of N d-dimensional data objects. Let 
A = attr1, attr2, ..., attrd be the set of attributes of the data objects so that xij 

 dom(attrj), where dom(attrj) denotes the domain of the attribute attrj, j = 1, 
..., d. Without losing the generality, we assume that all the attributes have 
been normalized, i.e., dom(attrj)  [0, 1]. In this section, we fi rst construct 
a hyper-rectangle structure of data object x based on the kernel width W* 
and determine the corresponding subset of attributes S by running Rodeo; 
and then, conduct a spatial statistical test on the hyper-rectangle to decide 
whether it is a SLDA around the data object x. To better describe the process 
of determining the SLDA, we introduce the following defi nitions.

Defi nition 7.6 (Hyper-Rectangle). Given a subset of attributes S and a kernel 
width W* = width1, ...,widthp of data object x, the hyper-rectangle structure 
H around x can be constructed as : H = I1???Ip, where Ij = [xj?widthj/2, xj 
+widthj/2], j = 1, p, p = dim(S).
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Figure 7.4.1: The distribution and the kernel width

The volume of hyper-rectangle around the data object x is vol(H) = j 
= 1pwidthj. The number of data objects within the hyper-rectangle H can be 
used to indicate the local density around x.

Defi nition 7.6 (Data Objects in Hyper-Rectangle). Given a data set D and 
a hyper-rectangle H around a data object x in the subset of attributes S, the 
data objects located in H are defi ned as: remm(H) = xi  D | (xj − widthj/2) 
≤ xij ≤ (xj − widthj/2), i = 1, ...,N; j = 1, ..., p.

Defi nition 7.7 (Local Density of Hyper-Rectangle). Given the identifi ed 
data object set remm(H) of a data object x , the local density around x in the 
subset of attributes S is defi ned as: LS(H) =|remm(H)|, where |·| means 
the number of objects within the hyper-rectangle.

Known from the spatial statistical theory of assigning N data points 
in a space, the number of data points which are assigned in a bounded 
area is subject to the Binomial distribution with parameters of N and the 
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volume of the bound area [16]. Here H is the hyper-rectangle in the subset 
of attributes, which is a bounded area, and the local density LS(H) is the 
number of data objects assigned in H. So LS(H) is subject to the Binomial 
distribution with parameter N and vol(H), i.e.,

LS(H)  Binomial(N, vol(H)).
To decide whether H is a dense hyper-rectangle, we run a null 

hypothesis statistical test on H.
h0: Hyper-rectangle H in S contains LS(H) data objects.
The signifi cant level α of the statistical hypothesis is a fi xed probability 

of wrongly rejecting the null hypothesis, when in fact it is true. α is also called 
the rate of false positives or the probability of type I error. The critical value 
of the statistical hypothesis test is a threshold which the value of the test 
statistic is compared to determine whether the null hypothesis is rejected. 
There are two test methods for hypothesis test: one-side test and two-side 
test. For the one-side test, the critical value θ is computed based on α = 
p(LS(H) > θ). For the two-side test, the computation of left critical value θL 
is the same as the one-side test, but the right critical value θR is computed 
based on α = p(LS(H) > θR) Where is a probability function.

Defi nition 7.8 (Signifi cant Local Dense Area). Let H be a hyper-rectangle 
in the subset of attributes S. Let α be a signifi cant level and θ be the critical 
value computed at the signifi cant level α based on the one-side test, where 
the probability is computed using Binomial(N, vol(H)). If LS(H) > θ, (H, 
S) is deemed as a Signifi cant Local Density Area (SLDA) around the data 
object x.
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Figure 7.4.2: Hyper-rectangle of dataset D



7.4.4 Projective Clustering based on SLDAs

7.4.4.1 Finding SLDAs

After using the Rodeo method, the subset of attributes S and the kernel 
width w* of a data object x are generated. Based on S and w*, a hyper-
rectangle structure H is constructed around x. We also use the data set 
described in Section 2.2 as an example to illustrate the constructed hyper-
rectangle. The subset of attributes having important supports on kernel 
estimation is on dimensions 1 and 2.

The example of H is shown in Fig. 7.4.2. In this fi gure, there are two 
hyper-rectangles H1, H2 around two randomly selected data objects. But 
the local density values of each hyper-rectangle are different. Based on the 
Defi nitions 7.6 and 7.7, the local density value of the dashed frame (H1) is 
2, whereas the local density value of the real line frame (H2) is 5. According 
to the spatial statistical hypothesis described in Section 2.3, we set the 
signifi cant level α = 0.001 and the value of θ calculated by the one-side 
statistical test is 3.21. So the dashed frame is not a signifi cant local density 
area as LS(H1) < θ, and it will be deleted.

The greedy search method, G_SLDA as shown in Algorithm 7.6, is 
utilized to fi nd the whole signifi cant local dense areas which can cover 
the data distribution of D in the d-dimensional space. The main steps of 
G_SLDA are to:
 (1)  randomly select a data object x from D and calculate the subset of 

attributes S and the kernel width W* using Rodeo (steps 3–4);
 (2)  create a hyper-rectangle structure H around x based on Defi nition 7.5, 

and obtain the local dense value of H based on Defi nition 7.6 and 7.7 
(steps 5–6);

Algorithm 7.6: G_SLAD
Input: Data set D
Output: SLDA set SLD
1. SLD Ø;
2. Loop
3.   Randomly select a data object x from D;
4.   [S,W*] =Rodeo(D, x);
5.   H = CreateH(x, S, W*);
6.   remm(H) = G_remm(D, H);
7.  Run a statistical test of LS(H)=|remm(H)|on H according to defi nition 4;
8.   If LS(H) θ
9.    SLD = SLD  (H, S);
10.   x and the data object in remm(H) are signed as visited;
11.   end
12. Until all data objects in D are visited
13. return SLD
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 (3)  decide whether H is a Signifi cant Local Dense Area based on Defi nition 
7.8. If H is a signifi cant local dense area, store the pair (H, S) into SLD 
set, and label x and the data objects in H as visited, otherwise, discard 
the obtained hyper-rectangle H (steps 7–11). These steps iteratively 
run until all data objects have been processed.

7.4.4.2 Generating Clusters by Merging SLDAs

G_SLDA fi nd out all the signifi cant local density areas of data set D. Each 
SLDA, (H, S), in SLD contain a density hyper-rectangle satisfying LS(H) ≥ θ 
and its relevant subset of attribute S. The main structure of the density area 
in a subset of attributes can be captured by all the density hyper-rectangles 
embedded in it. To further understand the relationship between the density 
area and signifi cant local density area, we give an example to show it. Given 
a data set D used in Fig. 7.4.1, each object is described by four attributes, 
the range of each attribute is in [0,1]. The data of the fi rst two attributes is 
subject to a normal distribution and the data of the last two attributes is 
subject to a uniform distribution.

From the above discussion, we know that the identifi ed subset of 
attributes is on S = 1, 2 denoted by nodes in Fig. 7.4.2, and the SLDAs 
generated by G_SLDA on S = 1, 2 are represented by six solid rectangles (i.e., 
H1, H6). From Fig. 7.4.3, we therefore can conclude that the main structure 
of data distribution is characterized by six dense hyper-rectangles.

Figure 7.4.3: Example of the relationship between SLDAs and the density area
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The clustering result of projective clustering is represented by the data 
objects which are located in small ranges in its specifi c subspace. As for 
SLDA, the various Hs do indicate these small ranges in S. The data objects 
that are scattered in deferent hyper-rectangle Hs but within the same 
subspace S constitute the different parts of a dense area in S. To obtain the 
fully projected clusters, we need to merge these hyper-rectangles within 
the same subspace S to generate its corresponding cluster. More concretely, 
the clusters derived by a projective clustering algorithm are represented by 
all the dense areas and their related subsets of attributes.
Algorithm 7.7: MC_SLDA

Input. SLD
Output. Clustering results and outliers
(1) Divide SLD into several subsets;
(2) For each subset of SLD, a single-linkage merger algorithm is run to fi nd out the 

clustering results;
(3) Refi ne the clustering results

Hence we merge all the dense hyper-rectangles in the same subset of 
attributes to generate the clusters. Further, for the example shown in Fig. 
7.4.3, the cluster in the subset of attributes S = 1, 2 is ( h = 16, (1, 2)), where 

h = 16 denotes the merger processing of density hyper-rectangles. The 
three major steps of the merger clustering algorithm on SLDAs, named 
MC_SLDA, are to (1) divide SLDAs into several subsets so that the hyper-
rectangles within one attribute subset have the same subspace S; (2) run a 
single-linkage merger algorithm on these subsets to fi nd the fully projected 
signifi cant local dense area; (3) refi ne the clustering results and detecting 
the outliers. The pseudo codes of MC_SLDA are detailed in Algorithm 2. 
The data objects which are not included in any clusters are denoted as Rest 
= D\( K

k=1 Ck),
where\ 
is the set different operator. In the clustering result refi nement, we use 
the reassign method proposed in [39] to assign data objects in Rest to the 
corresponding clusters. After the refi nement, the data objects which do not 
belong to any clusters can be regarded as outliers, and an outlier collection 
is generated.

Hyper-rectangle structure is often used in fi nding the density area 
in high dimensional data sets. The determination of the width of hyper-
rectangle structure is a crucial task in high dimension clustering applications. 
The majority of projective clustering algorithms use the restrictive model 
to determine the width of hyper-rectangle, which has signifi cant efforts on 
discovering real clustering results. Inspired by the kernel density method, 
we present a new way to design the hyper-rectangle structure, whose width 
is determined by the true data distribution. In order to examine whether 
a hyper-rectangle structure is a Signifi cant Local Density Area, we run a 
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spatial statistical test on it. A greedy algorithm is proposed to fi nd out all the 
SLDAs in the data set. At last, a merger algorithm is applied on SLDAs to 
generate the clustering results and identify the outliers. Experiment results 
on synthetic and real data sets have shown that our method outweighs the 
traditional projective clustering algorithms in discovering the high quality 
clustering results with varying density widths.

7.5 Chapter Summary
In this chapter, we focused on the modifi cation and improvement of heuristic 
clustering algorithms at fi rst. Two different methods based on smoothing 
space and approximate backbone respectively, were proposed to deal with 
the drawbacks of heuristic clustering algorithm. For the method based on 
smoothing space, different smoothing operator to reconstruct the search 
space of clustering is used. The search space construction step needs more 
executing time. For the method based on approximate, different clustering 
results which are derived by other heuristic clustering algorithm, such as 
k-means, VSH, etc., to capture the common part of the dataset are used. 
It also needs more executing time for generating the clustering results. 
And then, we discussed the method to improve the quality of projective 
clustering algorithm in high dimensional space. A method based on Rodeo 
and statistical theory was been proposed in this chapter. This method has 
the ability to capture the real distribution of data objects in high dimensional 
space. However, the Rodeo method needs more running time. It is an open 
question that how to reduce the time cost of these three methods.
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CHAPTER 8

Multi-Label Classification

8.1 Introduction
With the advent of affordable digital facilities and the rapid development 
of internet, a huge amount of data has been generated, and the volume is 
still increasing explosively. In most cases, such data needs to be analysed 
and thus potential knowledge hidden behind them could be extracted 
and summarized. Classifi cation, also known as supervised learning, is a 
fundamental technique for data analysis. In the framework of classifi cation, 
each object is described as an instance, which is usually a feature vector 
that characterizes the object from different aspects. Moreover, each instance 
is associated with one or more labels indicating its categories. Generally 
speaking, the process of classifi cation consists of two main steps: the fi rst is 
training a classifi er based on a set of labelled instances, the second is using 
the classifi er to predict the label of unseen instance.

It is usually assumed that each instance has only one label. Let X denote 
the instance space and L be a set of labels, a single-label training set could 
then be denoted as D = {(x1, l1), (x2, l2), . . . , (xn, ln)}, where xi is the ith instance 
and li is its relevant label taken from L. The objective of classifi cation could 
be viewed as learning a mapping from the instance space to the label space: 
f : X  Y, based on a training dataset D. Generally, this kind of learning is 
also called single-label classifi cation [1].

However, the instances might be assigned with multiple labels 
simultaneously, and problems of this type are ubiquitous in many modern 
applications. For instance, Fig. 8.1.1 gives us two examples of multi-label 
objects. As it has shown, a fi lm could be tagged as action, and adventure 
simultaneously, and an outdoor scene can also be viewed as a sea scene, 
etc. Learning for this kind of instances is called multi-label classifi cation 
accordingly.

Recently, there have been a considerable amount of research concerned 
with dealing with multi-label problems and many state-of-the-art 
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methods has already been proposed. It has also been applied to lots of 
practical applications, including text classifi cation [2, 3], gene function 
prediction [4], music emotion analysis [5], semantic annotation of video 
[6], tag recommendation [7, 8] and so forth. Motivated by the increasing 
applications, multi-label classifi cation is becoming a hotspot and attracting 
more and more academic researchers and industrial practitioners.

In this chapter, a comprehensive and systematic study of multi-label 
classifi cation is carried out, in order to give a clear description of what is 
the multi-label classifi cation and highlight the basic and representative 
methods. The chapter is organized as follows. First, we introduce the 
formal concept of multi-label classifi cation and several defi nitions from 
different perspectives. Second, we divide the multi-label methods into 
several types, and provide a thorough description of the state-of-the-art 
methods according to different types. Subsequently, we present a number 
of frequently-used benchmark datasets and evaluation metrics, which are 
used to examine and compare the performance of different methods. Finally, 
the conclusions and the further challenges are given in the last section.

(a) a movie with multiple genres (b) a scene have several meanings

Figure 8.1.1: Two examples of multi-label instances

8.2 What is Multi-label Classifi cation
To begin with, let us give the formal concept of multi-label classifi cation 
fi rstly, in order to gain a better comprehension of it, and make the analysis 
and comparison of the following algorithms more easy.

Let X denote the instance space and L = {l1, l2, ..., lm} be a set of labels, 
so D = {(x1, C1), (x2, C2), . . . , (xn, Cn)} can be used to denote a set of multi-
label instances, where xk  X is an instance, and Ck  L is a subset of L that 
denote xk’s true labels. The target of multi-label classifi cation is thus to learn 
a classifi er: f : X  2L, which is a mapping from the instance space to the 



space consists of all the possible subsets of L, where 2L is the power set of L. 
Ck can also be represented as a Boolean vector yk = (bk1, bk2, . . . , bkm), where 
bkj = 1 indicates label lj is xk’s true label (lj  Ck), whereas bkj = 0 indicates the 
opposite.

In the view of probability, the process of multi-label classifi cation can 
also be viewed as to calculate the posteriori joint probability of each possible 
label vector. If x is an unlabelled instance, and Y is a set of possible label 
vector, then the reasonable label vector, for instance, x should be the one that 
gets the greatest posteriori probability, as illustrated by Formula 8.2.1.

   yx = arg max ( | )
Y y

P Y x
=

  (8.2.1)
 
However, it’s a NP-hard problem to calculate the posteriori probability 

by using Formula 8.2.1 directly, so it’s very diffi cult and time-consuming. 
One practicable alternative is to learn the relationship between labels and 
characterize the joint probability as a Bayesian network. For each label yk, 
let Parent(lk) denote the set of labels that label lk is dependent on, so P(y|x) 
can be transformed as Formula 8.2.2

  P(y|x) = 
1

( | ( ), )
m

k k
k

P y parent y x
=
∏   (8.2.2)

where yk denotes the kth label. Hence we can get the label vector’s posterior 
probability by computing each label’s posterior probability respectively and 
then multiplying them. It’s clear that how to fi nd the dependent labels for 
each label is emerging as a critical issue now. Actually, how to learn the 
appropriate dependencies among labels in order to improve the learning 
performance is getting more and more important. We can also see various 
methods in the following sections that try to incorporate label dependencies 
into the learning process, and most of them indeed bring benefi t.

The predictions can also be a number of values besides Boolean label 
vector in many cases, and each value indicates a label’s probability or 
confi dence being the instance’s true label. In these cases, the task of multi-
label classifi cation could be transformed to learning a function f : X × L  
R, and thus f(x, l) outputs a real value that indicates label l’s confi dence to 
be instance x’s true label. Actually, many multi-label algorithms learn such a 
function for each label, in other words, f = {f1, f2, . . . , fm}. Thus the predictions 
for instance x takes the form as shown in Formula 8.2.3.

   f(x) = {f1(x), f2(x), . . . , fm(x)}  (8.2.3)

The multi-label classifi cation problem thus can be tackled through 
solving a label ranking (LR) problem, where the labels are sorted according 
to their predicted values in descending order, then a threshold t, is learned 
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to decide the relevant labels and irrelevant labels. For label li, it is predicted 
as a relevant label if fi(x) ≥ t, otherwise it is predicted as an irrelevant label. 
LR is a very important issue in multi-label learning, not only it is an effective 
means of solving multi-label problems, but also it’s more suitable for some 
real applications. For example, users of tag recommendation system might 
prefer seeing the most interesting tags top the tag list, instead of just a set 
of tags. So it poses a very interesting and useful way to solving multi-
label classifi cation. Usually, LR models can also be learned for single-label 
instances to solve the multi-class problems.

Nowadays, researchers have proposed lots of effective and effi cient 
methods for multi-label classification, and they mainly fall into two 
main categories: (1) algorithm adaptation (2) problem transformation [9]. 
Algorithm adaptation methods extend traditional single-label algorithms, 
such as kNN, decision tree, Naive Bayes etc., in order to enable them 
to handle multi-label data directly [4, 10, 11]. By contrast, problem 
transformation methods decompose the multi-label instances into one or 
several single-label instances, thus existing methods could be used without 
modifi cation [12, 13, 14]. In other words, the algorithm adaptation strategy 
is to fi t the algorithms to data, whereas the problem transformation strategy 
is to fi t data to the algorithms. The primary difference between these two 
strategies is that the algorithm adaptation is algorithm-specifi c, therefore 
the strategy used in one method can not be applied to another one usually. 
Nevertheless the problem transformation is algorithm-independent, so it 
is more fl exible and can be used with any existing models. The following 
sections will elaborate on them by different categories.

8.3 Problem Transformation
As mentioned above, problem transformation is a fundamental strategy for 
tackling multi-label problems. It enables most of the existing methods to 
work easily, while making few modifi cations to them. Hence it gets much 
popularity among researchers, and various methods based on it have 
been proposed [12, 13, 14, 15, 16]. Several simple methods of this kind are 
All Label Assignment (ALA), No Label Assignment (NLA), Largest Label 
Assignment (LLA) and Smallest Label Assignment (SLA), as summarized 
by Chen et al. and used for multi-label document transformation [17]. Let’s 
explain these methods through a multi-label dataset shown in Table 8.1.



Table 8.1: A exmaple of multi-label dataset

instances labels
x1 l1, l3
x2 l1, l2, l4
x3 l2
x4 l2,l4

Suppose that we have a set of instances {x1, x2, x3, x4}, as shown in 
Table 8.1. For each instance, ALA approach will make a copy of it and 
assign the copy to all its true labels respectively. Namely, ALA will 
replace an instance {xi, Ci} with |Ci| instances, each of which is associated 
with one label in Ci. Thus instance xi will appear |Ci| times in the 
dataset. The NLA approach only keeps instances, with a single label and 
discards others with more than one label. Different from the previous 
two approaches that either keep or delete all the labels of a multi-label 
instance, LLA and SLA make a compromise by keeping only one label as 
the instance’s fi nal label and discarding the remaining labels. LLA selects 
the label that is most frequent among all instances, whereas SLA selects 
the label that is least frequent among all instances instead. The results of 
transformation for the above example dataset using these 4 approaches 
Chen alsaorepsrhoopwonseidn aFignuorveel8.a3p.1p.roach is called 
entropy-based weighted label assignment (ELA). This method actually 
assigns a weight to each instance that is generated by ALA approach [17]. 
Generally speaking, the aforementioned approaches are straightforward, 
but they ignore lots of potential information in the discarded instances and 
labels, which could have been used to enhance the learning performance. 
Currently, two commonly used strategies for problem transformation are 
label powerset (LP) method that treats all the true labels of each instance 
as a new single label, and binary relevance (BR) method that predicts each 
label respectively [13, 9]. A considerable mount of methods based on these 
two strategies have been proposed, some of them will be inspected in the 
following parts respectively.

8.3.1 Binary Relevance and Label Powerset

BR method transforms a multi-label dataset D into |m| single-label datasets 
{D1, D2, . . . , Dm}, each one corresponding to a label. Dataset Di includes the 
same instances of D, while each instance’s label is changed to 1 if li is its true 
labels in D, otherwise it is changed to 0. The generated datasets for dataset 
given in Table 8.1 through using BR method are shown in Fig. 8.3.2.
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insts label
x1 l1
x1 l3
x2 l1
x2 l2
x2 l4
x3 l2
x4 l2
x4 l4

(a) ALA’s result

insts label
x3 l2

(b) NLA’s result

insts label
x1 l1
x2 l2
x3 l2
x4 l2

(c) LLA’s result

insts label
x1 l3
x2 l1
x3 l2
x4 l4

(d) SLA’s result

Figure 8.3.1: The Transformation results using ALA, NLA, LLA, and SLA

insts l1
x1 1
x2 1
x3 0
x4 0

(a) D1

insts l2
x1 0
x2 1
x3 1
x4 1

(b) D2

insts l3
x1 1
x2 0
x3 0
x4 0

(c) D3

insts l4
x1 0
x2 1
x3 0
x4 1

(d) D4

Figure 8.3.2: Transformation results through using BR method

We can see that one dataset is generated for each label, thus the original 
multi-label problem is changed to multiple binary problems. Then a binary 
classifi er fi can be trained based on dataset Di, which is responsible for giving 
a yes/no prediction for label li. In the end, results from all the binary classifi ers 
will be aggregated into a fi nal prediction. Basic BR approach is very straight-
forward and effi cient, and has become a benchmark algorithm for being 
compared with other algorithms. However, it assumes that the labels are 
independent each other and ignores the potential label dependencies during 
the transformation process.

LP method deals with the multi-label problem from a different 
perspective. Instead of treating labels respectively, it converts the label 
set of each instance into a single label. Thus a set of single-label instances 
is formed, where the label space consists of all the possible subsets of the 
original label set. After being transformed through using LP method, the 
result for dataset given in Table 8.1 should be as shown in Table 8.2.

Table 8.2: The transformation results through using basic LP method

instances labels
x1 {l1, l3}
x2 {l1, l2, l4}
x3 {l2}
x4 {l2, l4}



We can see that the result of LP method is only one dataset instead 
of generating one dataset for each label as BR does. Since each instance’s 
new label is a subset of original set of labels, the label set now is actually 
the power set of the original label set, that’s why we name this method 
as Label Powerset. A conventional multi-class classifi er will be trained on 
this new dataset, and it will predict the possibilities of each possible subset 
of labels directly. Compared with BR method, the benefi t of LP is that the 
label dependencies have been taken into consideration since it predicts 
multiple labels simultaneously. However, the number of labels would 
grow dramatically, and become huge especially when the m is large. So the 
instances with same label will be very few, and it’s very diffi cult to build 
an effective multilabel classifi er. In order to eliminate the disadvantages 
of BR and LP, various methods have been proposed consequently, some of 
which will be introduced in the following parts.

8.3.2 Classifi er Chains and Probabilistic Classifi er Chains

Classifi er Chains (CC) algorithm was proposed by Read et al. recently 
based on BR method [13]. Similar with BR method, CC also generates a 
dataset and then trains a classifi er for each label respectively, but it takes 
the dependencies among labels into consideration. CC methods mainly 
consists of the following steps. First of all, it randomizes all the labels and 
links them along a chain, and it assumes that each label is dependent on 
all its preceding labels in the chain. Secondly, the feature set of each label’s 
corresponding dataset is extended with all its preceding labels, and each 
of these new features in every instance take value of 0/1, according to 
whether it is the instance’s true label or not in original dataset. Finally, a 
binary classifi er for label li is trained based on the new feature set consist 
of original features and all the labels li is dependent on, thus the label 
dependencies are incorporated in the process of training classifi ers. Let us 
see an example of CC method using the dataset given in Section 8.1. We 
simply assume that the randomized order of labels is still {l1, l2, l3, l4}, thus 
the generated datasets for every label are given in Fig. 8.3.3.

When predicting labels for test instance x, these labels have to be 
predicted in the chain order. Therefore, predictions could be merged with x 
to form a new instance suitable for the next classifi er. Although CC method 
could utilize label dependencies in a simple way, a potential problem is the 
labels are ranked randomly, so the learned dependencies might not always 
be consistent with the truth. Thus ECC (Ensemble of Classifi er Chains) 
method was also proposed [13], which uses ensemble learning to learn 
multiple CC classifi ers, each of which is trained using a different order 
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of labels. During the prediction phrase, results from all the classifi ers will 
be averaged to eliminate the impact of randomness of labels’ order and 
increase the overall accuracy.

For every label, CC method always selects the optimal value currently 
as its fi nal prediction, without considering its infl uence on the following 
labels. So it’s a greedy algorithm essentially, and might not always reach 
the globally optimal results. Inspired by CC method, Dembczynski et al. 
proposed the probabilistic classifi er chains (PCC) method. It solves the 
multi-label problem from the viewpoint of risk minimization and Bayes 
optimal prediction [14]. PCC method uses Formula given in 8.3.1 to predict 
labels for test instances.

  P(y|x) = 1 2 1
1

( | , ,..., , )
m

k k
k

P y y y y x−
=
∏   (8.3.1)

where y1, y2, . . . , yk−1 is label yk’s preceding labels in the chain. Similar with 
CC method, it also ranks the labels randomly, and assumes each label is 
dependent on all the preceding labels. The difference is that PCC will check 
all the possible label vector, that is 2m paths in the search space, to fi nd the 
one with the highest joint probability, whereas CC only follows a single 
path in the search space.

PCC method could achieve a better performance, but the possible 
improvement is at the cost of a much higher complexity approximate to 
O(2m). Hence it’s reasonable to design more suitable methods that could 
depict the label dependencies in a lower-dimensional label space, where 
the computation cost is affordable.

Figure 8.3.3: The transformation results using classifi er chains

insts l1
x1 1
x2 1
x3 0
x4 0

(a) D1

insts l1 l2
x1 1 0
x2 1 1
x3 0 1
x4 0 1

(b) D2

insts l1 l2 l3
x1 1 0 1
x2 1 1 0
x3 0 1 0
x4 0 1 0

(c) D3

insts l1 l2 l3 l4
x1 1 0 1 0
x2 1 1 0 1
x3 0 1 0 0
x4 0 1 0 1

(d) D4



8.3.3 Decompose the Label Set

We can view the aforementioned BR and LP methods as two extreme cases. 
While BR assumes labels are independent, LP assumes dependencies exist in 
any combination of labels. In most cases, the truth is that the labels could be 
divided into several groups. Labels from the same group are dependent on 
each other strongly, whereas labels from different groups are independent. 
Methods based on this assumption usually consist of two primary steps: 
one is how to partition the labels to determine the dependencies among 
labels, the other is how to incorporate such dependencies in the learning 
process. Based on such a learning framework, many approaches have been 
proposed by researchers. Let us look through several typical methods in 
this subsection.

RAkEL (RAndom k labELsets). This method was proposed based on 
the LP transformation [16]. As mentioned above, the number of labels 
may become very large and there would be not enough instances to train 
an effective classifi er. Hence Tsoumakas et al. introduced the RAkEL 
method, aiming at reducing the computation cost of LP while keeping label 
dependencies will still be considered. The main idea in RAkEL is fi rstly 
to break a large set of labels into a number of small-sized label subsets 
randomly. The size of each of the subsets is k, a parameter that could be 
adjusted to reach the best performance. Then a LP classifi er is trained for 
each of these label subsets. Let’s see a example using the dataset given in 
8.1. We simply assume that the set of labels {l1, l2, l3,4 } are divided into two 
subsets: {l1, l3} and {l2, l4}, so the generated datasets are as shown in Fig. 
8.3.4.

insts {l1, l3}
x1 1
x2 0
x3 0
x4 0

(a) dataset for label {l1, l3}

insts {l2, l4}
x1 0
x2 1
x3 0
x4 1

(b) dataset for label {l2, l4}

Figure 8.3.4: The transformation results using RAkEL method

From Fig. 8.3.4, we could see that this method generates a dataset for 
each subset of labels, and the dataset contains all the instances but each 
instance’s label is changed to 1 if all the labels in this group is its true labels, 
otherwise it is changed to 0. Then the LP method is applied to learn the labels 
in the same subset simultaneously. Thus the dependencies among labels 
within the same group are incorporated in the learning process, whereas 
the possible dependencies between labels from different groups are ignored. 
Moreover, each new label will be associated with multiple instances, since 

   Multi-Label Classifi cation 189



190 Applied Data Mining

the size of label subset k, might be far less than m, the size of the original 
set of labels. For a test instance x, its fi nal prediction is given by combining 
predictions of all the classifi ers.

Labels in the above example are divided into two disjoint groups, 
however they can also be divided into overlapping groups. Since any 
label might appear in multiple overlapping groups, it will be predicted 
several times for a test instance. Thus the simple voting strategy will be 
used to determine whether it’s true or false based on each value’s times be 
predicted. Although having taken label dependencies into consideration, 
the primary problem of RAkEL method is that it just determines the division 
of labels randomly, so it might result in ignoring the true dependencies and 
generating the wrong dependencies instead.

Tenenboim et al. proposed a similar framework with RAkEL method 
[18]. In this framwork, Tenenboim assumes that label dependencies 
could be analysed explicitly in the following several ways: (1) Label 
distribution analysis; (2) Features among category distribution analysis; 
(3) Category combinations shown in the training set; (4) Supervised 
defi nition of dependencies. After determining the label dependency, one 
kind of clustering method could be used to cluster all the labels into disjoint 
subsets.

PS (Pruned sets) method has been proposed by Read et al. [15]. Similar 
with RAkEL, it’s also based on the LP method and aims at solving the 
problem of infrequent label vectors and the diffi culty to build effective 
classifi ers. The difference is that RAkEL divides the labels into different 
subsets and generates a dataset for each subset, whereas PS method would 
prune the label sets until its occurrences n > p, a pruning threshold, and 
only one dataset is generated fi nally. The main process is described in the  
following steps:

 (a)  Let us D = {(x1, C1), (x2, C2), . . . , (xn, Cn)} be a multi-label dataset. For 
every label vector Ci, its number of times of occurrences in the whole 
dataset D is computed and aggregated as ni.

 (b)  For every label vector Ci, if its count ni > p, then all the instances 
associated with it will be kept. Otherwise it will be decomposed into 
the subsets: {s1, s2, . . . , sn}, while any subset si’s times of occurrences is 
greater than p.

 (c)  Furthermore, any instance xi associated with ci will be deleted from the 
dataset fi rstly, and then be copied and associated with each of these 
subsets, resulting in a set of instances {(xi, s1), (xi, s2), . . . , (xi, sn)}. All 
these instances will be added to the dataset fi nally.

Now a single dataset is generated and each distinct label vector has 
been associated with enough instances, so an effective LP classifi er could 
be trained based on it.



8.3.4 Transform Original Label Space to Another Space

Although we have used a simple dataset to explain a number of methods 
well, the number of labels in real problems may be huge, and it’s usually 
very diffi cult to classify instances in a high-dimensional label space. 
Hence researchers try to transform the original label space into a new label 
space where the number of labels is smaller and the instances are more 
separable.

ECC framework (Error-Correcting Codes). Ferring et al. have applied the 
ECC framework on multi-label problems [19]. The main process of this 
method includes three steps:

 (a)  Firstly, an encoder en(•) : 0, 1m  0, 1k is used to transform each 
instance’s original label vector y to a new label vector b, usually b << 
k. Thus each instance (xi, yi) is transformed to (xi, bi).

 (b)  Then, a multi-label classifi er is learned based on the new dataset. In 
other words, instead of learning a classifi er f(x) : x  y, the objective 
is changed to learn a classifi er h(x) : x  b.

 (c)  During the prediction phase for a test, for instance x, we fi rst predict 
the label vector bx that might be associated with it, then use a decoder 
den(•) : 0, 1k  0, 1m to get the prediction in the original label space.

We can see that this is a general framework and any encoder, decoder 
and classifi er can be used in it. It’s also noted that when dividing labels 
into overlapped groups, the previous RAkEL method can also be seen as a 
special case of ECC method.

KDE-based methods (Kernel Density Estimation). Basic KDE method can 
be used to learn the dependencies between two classes of objects [20]. When 
used for multi-label classifi cation, it’s similar to the ECC framework and 
consists of the same steps. The difference is that the main object of KDE-
based methods is to reduce the high dimensional label space into a low 
dimensional label space, to fi nd the latent dependencies among labels and 
make the computation cost affordable. However, it’s not necessary for the 
encoder used in ECC framework to reduce the label space’s dimension, its 
main object is to make the instance more separable. The encoder used in 
KDE can also be implemented by various techniques. For instances, Hsu et 
al. used CS (compressed sensing) to perform a linear transformation on the 
label space [21]. Although the encoder of Compressive Sensing is linear, the 
decoder is not. It needs to solve an optimization problem when predicting 
labels, for instance, for something that is very time-consuming.

Motivated by the CS method, Tai et al. proposed the PLST (Principal 
Label Space Transformation) method [22], which also performs a linear 
transformation on the label space. It uses the principal components analysis 
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technique as the encoder. In the viewpoint of linear algebra, we could create 
a m × n matrix Y based on a training dataset, where each column yi is the 
label vector of the ith instance. Thereby, the problem of space transformation 
can be solved by fi nding an appropriate project matrix P to realize H = P 
• Y, while H is a k × n matrix and k << m. Each column hi of H is the ith 
instance’s label vector in the low-dimensional label space. In PLST, the SVD 
decomposition is performed on the matrix Y, as shown in Formula 8.3.2.

    Y = U VT  (8.3.2)

Here U is a k × k unitary matrix, and V is a n × n unitary matrix. The matrix  
is a k × n diagonal matrix that contains the singular values σi of each singular 
vector ui in matrix U. Without loss of generality, we could assume that the 
singular values are ordered as σ1 > σ2 > . . . > σm. Now Formula 8.3.2 can be 
rewritten as:

    UTY = VT   (8.3.3)

Since the largest k singular values indicate the principle directions of the 
original label space Y, so we could discard the rest of the singular values and 
their corresponding singular vectors in U to get a smaller project matrix P = 
UT

k = [u1, u2, . . . uk]
T that projects the original label matrix Y to a new matrix 

H = VT. The decoder can also be obtained easily from Formula 8.3.3, it is 
P−1, the inverse matrix of P. So we can see that it’s a straightforward method, 
compared with CS method that has to solve an optimization problem.

8.4 Algorithm Adaptation
Algorithm adaptation is another fundamental strategy for multi-label 
classifi cation. It extends conventional classifi cation models, such as KNN, 
decision tree, Naive Bayes etc., to enable them to deal with the multi-
label problems. Currently, a large number of single-label classifi cation 
methods have been extended, let’s see some representative examples in 
this section.

8.4.1 KNN-based methods

ML-KNN (Multi-Label K-nearest Neighbour) is the fi rst multi-label lazy 
learning algorithm [10]. As its name implies, ML-KNN is derived from the 
popular K-nearest neighbor (KNN) algorithm. It decomposes a multi-label 
problem into multiple independent binary problems, each one corresponds 
to one label. ML-KNN fi rstly fi nds the K nearest neighbours in the training 
set for a test instance, then some statistics are collected and the principle 
of maximum a posteriori is used to determine the label set of the test 
instance.



Let x be an instance, y be the binary label vector associate with x, and 
N(x) represents its k nearest neighbours in the training set. For each label li, 
ML-KNN will calculate the following statistics information fi rst of all.

   Cx(i) = 
( )

( )x i
x N x

y l
∈
∑   (8.4.1)

where yx(li), the ith value of yx, is 1 if label li is x’s true label, and 0 else. Let 
Hi

x represent the event that li is x’s true label, thus P(Hi
x |Cx(i)) represents 

the posteriori probability of Hi
x, given Cx(i) instances in N(x) are assigned 

with label li, and P(¬Hi
x|Cx(i)) represents the posteriori probability of Hi

x is 
false. Thereby, for label li, we could get the classifi cation function fi for it:

fi(x) =  
1 if ( | ( )) ( | ( ))
0 else

i i
x x x xP H C i P H C i⎧ > ¬

⎨
⎩

Classifi cation is simple right now. For an instance x and a label li, we 
fi rstly calculate Cx(i), P(Hi

x|Cx(i)) and P(¬Hi
x|Cx(i)), then li is predicted as 

the x’s true label if P(Hi
x|Cx(i)) > P(¬Hi

x|Cx(i)), otherwise as a false label. 
The key issue is how to calculate these probabilities. Using Bayesian rule, 
P(Hi

x|Cx(i)) can be rewritten as

  P(Hi
x|Cx(i)) = 

( )
( ) ( ( ) | )

( )

i i
x x x

x

P H P C i H
P C i

 (8.4.2)

where P(Hi
x) is event Hi

x’s prior probability, and P(Cx(i)|Hi
x) is the probability 

that the number of instances in N(x) which are associated with label yi is 
Cx(i), given Hi

x is true. We can estimate the P(Hi
x) and P(Cx(i)|Hi

x) by counting 
the frequency in training set. Specifi cally speaking, the P(Hi

x) could be 
estimated by

   P(Hi
x) = 1

( )
2

n
x ii

s y l
s n

=
+

× +
∑

  (8.4.3)

Here s is a smoothing parameter and is usually set to 1, that is the 
Laplace smoothing. Estimation of P(Cx(i)|Hi

x) is a little bit complicated. For 
label li(1 ≤ i ≤ m), there will be an array: ki, which has k + 1 elements. The value 
of ki’s jth element is the count of occurrences that label lj is a true label of 
current instance, as well as j instances from its k nearest neighbouring. Then 
we could get the conditional probability P(Cx(i)|Hi

x) as Equation 8.4.4.

  P(Cx(i)|Hi
x) = 

0

[ ]

( 1) [ ]
j j

k
jr

s k C

s k k r
=

+

× + +∑
 (8.4.4)
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Similarly, we could compute P(¬Hi
x|Cx(i)) and P(Cx(i)|¬Hi

x) in the same way. 
Since P(Cx(i)) is constant, so we can simply compare P(Hi

x) × P(Cx(i)|Hi
x) and 

P(¬Hi
x) × P(Cx(i)|¬Hi

x) to get the prediction.
We can see that ML-KNN method learns a classifi er for each label, 

so actually it can also be viewed as a problem transformation method. 
Although it has been recognized as an effective algorithm, it assumes the 
labels are independent of each other and could not utilize the dependencies 
among labels to facilitate the learning process.

Similar with ML-KNN, Cheng et al. proposed IBLR-ML, a method 
that is also based on the kNN method [23]. The difference is that it takes 
label dependencies into consideration and combines model-based and 
similarity-based inference for multi-label classifi cation. IBLR-ML fi rstly 
uses the stacking framework to give a base prediction for each label, and 
then gives the fi nal prediction for each label based on the base predictions 
of other labels. Thus the prediction process for a test instance x consists 
of two steps. Firstly, basic KNN method is used to predict base labels of x 
respectively. For instance, for label l  {0, 1}, its probability to be x’s base 
label is given by the Equation 8.4.5.

  P(l = 1) = 
|{ ( ) | 1} |

( )
i lx N x y

N x
∈ =

 (8.4.5)

Here N(x) is x’s k nearest neighbours. According to KNN model, the 
probability of label l to be x’s base label is the proportion of instances in 
N(x) that are also associated with l.

IBLR-ML then uses a logistic regression model to compute the fi nal 
probability of each label li based on the base probabilities of all labels. Let 
bpi and fpi denote the base and fi nal probability respectively, that li is x’s true 
label. The fi nal probability can then be got by the Equation 8.4.6.

   0
1

log( )
1

m
i

i i
ii

fp a a bp
fp =

= +
− ∑   (8.4.6)

Here a0, . . . , am is the parameters needed to be learned. Now it is 
clear that when giving fi nal prediction for each label, all other labels are 
considered, thus the potential dependencies are considered.

8.4.2 Learn the Label Dependencies by the Statistical Models

So far, most of aforementioned methods assume that labels are independent 
or learn the dependencies in a intuitive way. Formal defi nition of label 
dependency is not given and how to measure and depict it is also not clear. 
Thus researches applied a number of statistical models to depict the label 
dependencies explicitly.



Tenenboim-Chekina et al. proposed the ChiDep algorithm. It 
measures the dependencies between pairwise labels using Chi-square 
test and divides the labels into several mutually exclusive subsets [24]. 
Ghamrawi et al. applied the conditional random fi elds model to create an 
undirected graphical representation of the relationships between labels 
and features [25]. Bieza et al. proposed the multi-dimensional Bayesian 
network [26], which organizes the labels and features into three subgraphs: 
label subgraph, feature subgraph, and label-feature subgraph. Zhang et 
al. proposed the LAED method [27], which uses a Bayesian network to 
represent the relationships between labels. Fu et al. proposed the LDTS 
method to depict the label dependencies using a tree model [28]. Guo et al. 
used the conditional dependency network to create a cyclic directed graphic 
model for representing the label dependencies [29].

8.5 Evaluation Metrics and Datasets
Evaluation is a critical way to fi nd the appropriate methods for a specifi c 
application. Now we have encountered different kinds of multi-label 
learning methods and there are more potential methods we haven’t 
mentioned. With lots of available methods, we have to determine which one 
could generate the most appropriate classifi cation model for a application 
in practice. You may wish to evaluate and compare their performances to 
fi nd the good ones. But what is good and how we can estimate it? Moreover, 
in most cases we could characterize multi-label instances from different 
aspects and these features are related to the model’s performance closely. 
So what are the representative features of multi-label data and how could 
we get them? These questions will be addressed in this section. First, some 
typical evaluation metrics are introduced, then multiple datasets that are 
widely used for evaluating different multilabel learning methods and 
several statistics for characterizing these datasets are described.

8.5.1 Evaluation Metrics

Since each instance may have several labels simultaneously, conventional 
metrics used for evaluating single-label classifi cation methods, such as 
accuracy, error rate, etc. can not be used directly. Thus several appropriate 
metrics that can deal with multi-label predictions are introduced by 
researchers. Generally speaking, these metrics mainly fall into two 
categories, i.e., bipartition-based metrics and ranking-based metrics. 
Furthermore, they can be further divided as instance-based metrics and 
label-based metrics [9]. Before going through the detail defi nitions of these 
metrics, we fi rst specify the notations that will be used. Let D = {(x1, C1), 
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(x2, C2), . . . , (xn, Cn)} be a dataset, where xi is its ith instance, and Ci  L is its 
true labels. Given a classifi er f and a test instance xi, Yi denotes the possible 
labels of xi predicted by f. rank(xi) or ranki denotes the predicted rank of 
labels, and rank(xi, l) denotes the label l’s position in the rank.

Bipartition-based metrics simply focus on whether the labels are 
correctly predicted or not, without considering to what extent the labels 
are correctly predicted. Thus predictions with different confi dences will get 
the same evaluation value according to these metrics. Several well-known 
metrics of this type are as follows:

 (1)  Subset accuracy. It is similar to the accuracy used in single-label learning, 
and computes the ratio of instances for which the predicted set of 
labels match the true set of labels exactly. Its defi nition is given by the 
Equation 8.5.1.

  SubsetAccuracy(f, D) = 
1

1 ( )
n

i i
i

I Y C
n =

=∑  (8.5.1)

where I(true)=0 and I(false)=0. Obviously it’s a very strict measure, since 
the prediction will still be viewed as totally wrong, even if only few of 
the labels are predicted incorrectly and the rest get right predictions. The 
greater this measure is, the better the classifi er’s performance is, and the 
optimal value could be 1, that indicates all instances’ labels get the exact 
predictions. However, it’ should be noted that it’s very diffi cult to predict 
all labels correctly when there are a huge number of labels, thus the actual 
value should be very small in most cases.

 (2)  Hamming Loss. This measure is proposed by Schapire and Singer [3], 
and it’s defi nition is given in Equation 8.5.2.

  H-Loss(f, D) = 
1

| |1 n
i i

i

Y C
n m=

⊕∑   (8.5.2)

where the operator  calculates the symmetric difference of two sets of 
labels. So |•| returns the number of misclassifi ed labels, for instance. We 
can see that it’s a more reasonable measure compared with Subset accuracy, 
since it results in better evaluation to the classifi er which can predict the 
majority of the labels correctly. The smaller this measure is, the better the 
classifi er’s performance, and the optimal value could be 0 when the labels 
of all instances are predicted correctly. Hamming Loss can also be viewed as 
a kind of label-based metric, since it can be decomposed by labels, and for 
each label the evaluation is the same as the traditional accuracy for single-
label learning.

 (3)  Precision. It calculates the ratio between intersection of the two sets of 
labels and the set of true labels, as depicted in Equation 8.5.3.



  Precision(f, D) = 
1

| |1
| |

n
i i

i i

Y C
n C=

∩∑   (8.5.3)

As shown, this metric would compute the portion of one instance’s 
true sets of labels that are predicted correctly. The difference between it 
and Hamming Loss is it only concerns the predictions of one instance’s 
set of true labels and does not care about whether the remaining labels 
are predicted correctly or not, while Hamming Loss takes all the labels’ 
predictions into consideration. The greater this measure is, the better the 
classifi er’s performance is, and the optimal value could be 1 when all the 
instances’ true labels get right predictions.

 (4)  Recall. Different from Precision, this metric calculates the ratio between 
intersection of the two sets of labels and the set of predicted labels, as 
showed in Equation 8.5.4.

   Recall(f, D) = 
1

| |1
| |

n
i i

i i
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∩∑  (8.5.4)

It evaluates the classifier’s performance from the perspective of 
predicted labels, since it only focuses on the portion of an instance’s set 
of predicted labels that are its true labels. The greater this measure is, the 
better the classifi er’s performance, and the optimal value could be 1 when 
all the predicted labels are the instance’s true labels, even some of its true 
labels are still predicted wrongly.

 (5)  F1 measure. Since precision and recall evaluate classifi er’s from different 
prospectives, optimizing any one will make the other decline. 
Therefore, F1 measure is introduced to make a trade-off between them 
and get a reasonable result. It’s described by Equation 8.5.5.

   F1(f, D) = 
1

2 | |1
| | | |
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the better the classifi er’s performance is, and the optimal value could be 1. 
The aforementioned 3 metrics are heavily used in information retrieval to 
evaluate the returned documents given an ad hoc query.

 (6)  Accuracy. It evaluates the average ratio of the intersection of the two 
sets of labels and the union of the two sets of labels, as depicted in 
Formula 8.5.6.

  Accuracy(f, D) = 
1

2 | |1
| | | |

n
i i

i i i

Y C
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The greater this measure is, the better the classifi er’s performance, 
and the optimal value could be 1. We can see that it’s a more strict metric 
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compared with precision and recall, since only when the predicted label set 
matches the true label set exactly, the optimal value could be reached.

All the above are bipartition-based metrics. There are other kinds of 
metrics called rank-based metrics. While the former are based on binary 
predictions of the labels, the latter are based on a predicted rank of labels, 
instead of giving an explicit yes/no predictions. The following are the several 
commonly used rank-based metrics.

 (1) One-error. It evaluates how many times the top-ranked label is not in 
the instance’s set of true labels, as given in Equation 8.5.7.

One-error(f, D) = 
1

1 (arg max ( , ))
i

n

il Yi
rank x l

n ∈=
∑ δ   (8.5.7)

where δ(•) = 1 when l isn’t xi’s true label, otherwise δ(•) = 0. One-error is not 
a very rigorous metric, since it only concerns whether the top-rank one is a 
true label or not, while ignoring the remaining true labels’ predictions. So it 
might not able to give a reasonable evaluation of the classifi er’s performance. 
The smaller this measure is, the better the classifi er’s performance, and the 
optimal value could be 0 when the top-rank label is the its true label for 
all instances. 

 (2) Coverage. It computes how far it is needed to go down the ranked list 
of labels to cover one instance’s all true labels, as given in Formula 
8.5.8

  Coverage(f, D) = 
1

1 max ( , ) 1
i

n

il Ci
rank x l

n ∈=

−∑    (8.5.8)

Smaller value of this measure means more true labels are ranked before 
the false labels and thus the classifi er’s performance is better.

 (3)  Ranking Loss. It computes the number of times when false labels are 
ranked before the true labels, as given in Equation 8.5.9.

R-Loss = 
1

1 1 |{( , ) : ( , ) ( , ), ( , ) } |
| || |

n
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l l rank x l rank x l l l C C
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where Ci  is the set of false labels of instance xi. This metric compares any 
possible pairwise labels’ rank that one is the true label and the other is a 
false label. The smaller this measure, the better the classifi er’s performance, 
and the optimal value could be 0 when any one of the true labels is ranked 
before all the false labels.

 (4)  Average Precision. This metric is fi rstly used in the fi eld of information 
retrieval, to evaluate the rank of result documents, given a specifi c 
query. It computes the average fraction of labels ranked above a 



particular true label, while these labels are also true labels. The 
defi nition is given in Formula 8.5.10.

AvePrec = 
1
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The greater this measure, the better the classifi er’s performance is, and 
the optimal value could be 1.

Roughly speaking, all preceding bipartition-based and rank-based 
metrics evaluate the performance of classifi ers from different aspects. 
Therefore, there could be no single classifi cation model which could perform 
well on all metrics, and there is also no general metric that could be used for 
evaluating any kinds of classifi ers. It depends on the particular problems 
and the objectives of learning to select appropriate metrics. Moreover, 
there might be potential relationships between different metrics, which are 
implicit now and need further investigation.

8.5.2 Benchmark Datasets and the Statistics

In this subsection, some representative datasets used extensively by 
researchers are presented. Since different characteristics of multi-label 
data might have different impacts on the learning methods, so the 
explicit definitions of various characteristics should be given first to 
assist observation of the relationship between datasets and classifi ers’ 
performances. The following are a number of fundamental statistics for 
characterizing multi-label datasets.

 (1)  Label Cardinality. It calculates the average number of labels for each 
instance, which is defi ned as follows.

   LC = 
1

1 | |
n

i
i

C
n =
∑    (8.5.11)

where |Ci| is the number of the ith instance’s true labels.

 (2)  Label Density. It is calculated through dividing the label cardinality by 
m, the size of original label set, which is defi ned as follows.

   LD = 
1

1 n
i

i

C
n m=
∑      (8.5.12)

 (3)  Distinct Label Sets. It counts the number of distinct label vectors which 
appeared in the data set, which is defi ned as follows:

   DLS(D) = |{C| (x, C)  D}|   (8.5.13)
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 (4)  Proportion of Distinct Label Sets. It normalizes the DLS(s) by the number 
of instances, which is defi ned as follows.

   PDLS(D) = 
( )DLS S

n
∗

   (8.5.14)

Table 8.1: Description of representative multi-label benchmark datasets

name insts atts labels LC LD DLS PDLS
bibtex[7] 7395 1836 159 2.402 0.015 2856 0.386
bookmarks[7] 87856 2150 208 2.028 0.010 18716 0.213
CAL500[31] 502 68 174 26.044 0.150 502 1
corel5k[32] 5000 499 374 3.522 0.009 3175 0.635
delicious[5] 16105 500 983 19.020 0.019 15806 0.981
emotions[33] 593 72 6 1.869 0.311 27 0.045
enron 1702 1001 53 3.378 0.064 753 0.442
genbase[34] 662 1186 27 1.252 0.046 32 0.516
mediamill[35] 43907 120 101 4.376 0.043 6555 0.149
medical 978 1449 45 1.245 0.028 94 0.096
rcv1v2[36] 6000 47236 101 2.880 0.029 1028 0.171
tmc2007[37] 28596 49060 22 2.158 0.098 1341 0.046
scene[12] 2407 294 6 1.074 0.179 15 0.006
yeast[38] 2417 103 14 4.237 0.303 198 0.081

As mentioned in the beginning, multi-label data are ubiquitous in the 
real applications, including text analysis, image classifi cation, prediction 
of gene functions etc. Researchers have extracted multiple benchmark 
datasets from these practical problems and used them to examine and 
compare various multi-label methods’ performance. Tsoumakas et al. have 
summarized a number of datasets used commonly, with corresponding 
informations including source reference, number of instances, features, 
labels, etc. and other statistics [9]. Table 8.1 gives the detailed descriptions 
of the datasets and all of them are available for download at the homepage 
of Mulan, an open source platform for multi-label learning [30].

8.6 Chapter Summary
So far we have introduced the defi nition of multi-label classifi cation and 
various types of algorithms for it. The typical measure metrics and datasets 
used for experiments are also given. Although we have reached a great deal 
of achievements, the problem is actually not tackled very well. The following 
issues still should be given enough concerns and need further research.

The fi rst one is the instance spareness problem, since the number of 
possible label vectors has grown explosively with the increasing size of 
original label space m. For example, the size of possible label space would 
be 220 fi nally, even if m is only 20. Consequently, the number of positive 



instances that have the same label vector would decrease dramatically, and 
it is diffi cult to build an effective classifi er for each possible label vector.

The second one is the label spareness problem. In most cases, there 
will be hundreds or even thousands of labels in the label space, whereas 
most of the instances might only be associated with  few labels only, for 
example, less than fi ve. Hence most of the labels will have few positive 
instances and too many negative instances. This situation would lead to 
the class-imbalance problem that is common in machine learning when 
building classifi ers label by label, and make learning the real distribution 
of labels more diffi cult.

Moreover, there are always certain kinds of dependencies among the 
labels in multi-label data. For instance, a thriller is likely to be an action 
fi lm, while the same book could probably not be of technique and fi ction 
simultaneously. It can be seen clearly that learning these dependencies 
would benefi t the learning process. Although many methods have been 
proposed, many of them simply assume that there are only random label 
dependencies, not giving a formal defi nition of dependency and measure it 
precisely. Thus the dependencies these method have learned might violate 
the reality. Other primary challenges and practical issues include the curse 
of dimension, how to explore the semantic meaning of labels etc., thus more 
appropriate classifi cation models for multi-label problems are needed.
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CHAPTER 9

Privacy Preserving in Data Mining

Privacy preserving in data mining is an important issue because there is an 
increasing requirement to store personal data for users. The issue has been 
thoroughly studied in several areas such as the database community, the 
cryptography community, and the statistical disclosure control community. 
In this chapter, we present the basic concepts and main strategies for the 
privacy-preserving data mining.

The k-anonymity approach will be presented in Section 9.1. The 
l-diversity strategy will be introduced in Section 9.2. The t-Closeness 
method will be presented in Section 9.3. Discussion on privacy preserving 
data mining will be presented in Section 11.4. Chapter summary will be 
presented in Section 11.5.

9.1 The K-Anonymity Method
Due to the importance of privacy preserving in various applications, 
especially for protecting personal information, Samarati [21] fi rst introduced 
the issue and proposed several effi cient strategies to address it. Samarati 
observed that although the data records in many applications are made 
public by removing some key identifi ers such as the name and social-
security numbers, it is not diffi cult to identify the records with the help of 
taking into account some other public data. This happens especially more 
commonly in the medical and fi nancial fi eld where microdata that are 
increasingly being published for circulation or research, can lead to abuse, 
compromising personal privacy.

Figure 9.1.1 shows a concrete example to explain the personal 
information leaking issue. The published data in Fig. 9.1.1 (a) has been 
de-identifi ed by removing the users’ names and Social Security Numbers 
(SSNs). It is thus thought to be safe enough. Nevertheless, some attributes 
of the public data, such as ZIP, DateOfBirth, Race, and Sex can also exist 
in other public datasets and therefore, this information can be jointly used 



to identify the concrete person. As shown in Fig. 9.1.1 (a), the attributes of 
ZIP, DateOfBirth, and Sex in the Medical dataset can be linked to that of 
the Voter List (Fig. 9.1.1 (b)) to discover the corresponding persons’ Name, 
Party, and so forth. Given the concrete example, we can observe that there 
is one female in the Medical dataset who was born on 09/15/61 and lives in 
the 94142 area. This information can uniquely recognize the corresponding 
record in the Voter list, that the person’s name is Sue J. Carlson and her 
address is 900 Market Street, SF. Through this example, we can see that there 
exists personal information leak by jointly considering the public data.

(a) Medical dataset

(b)  Voter list

Figure 9.1.1: Re-identifying anonymous data by linking to external data [21]

To address the problem mentioned above, Samarati [21] introduced an 
effective concept, i.e., k-anonymity, defi ned as follows: 

Defi nition 1 (k-anonymity) Each release of the data must be such that every 
combination of values of quasi-identifi ers can be indistinguishably matched to at 
least k respondents.

The key idea is that, to reduce the risk of record identifi cation, it requires 
that each record in the public table should be not distinct and no fewer than 
k records can be returned according to any query.

To fulfi ll the purpose of k-anonymity, the author in [21] introduced two 
main strategies, i.e., generalization and suppression. For the generalization 
approach, it generalizes the attribute values of records to a larger range so 
that the granularity of the representation is reduced. For the above example, 
it could generalize the date of birth to the year of birth and therefore, make 
those records indistinct. The idea of the suppression strategy is to remove 
those sensitive attributes’ value or hide them. As we can see, the privacy 
obtained from these strategies is at the price of losing some information 
of the original data. Therefore, there is always a trade-off between privacy 
preserving and the accuracy of the transformed data. To take a good balance 
between privacy and accuracy, the author in [21] introduced the concept of 
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k-minimal generalization to limit the level of generalization while keeping 
as much data information as possible with regard to some determined 
anonymity.

Although the work in [21] has tackled the privacy preserving issue 
for some extent, the problem itself is very diffi cult to solve optimally. It is 
well known that the problem of optimal k-anonymization is NP-hard, as 
demonstrated in [20]. As a result, most existing studies aim to introduce 
effective and effi cient heuristic strategies to address it, such as [21, 5, 13]. 
More detail survey about the issue can be found in [6].

Bayardo et al. [5] introduced an order-based strategy to improve 
the effi ciency of tackling the issue. It takes the attributes of records into 
two groups, i.e., quantitative attribute and categorical attribute. For the 
quantitative attributes, the values of them are discretized into intervals. For 
the categorical attributes, the values are clustered into different classes. The 
authors deal with each group as an item that could be ordered. Similar to 
traditional database techniques, the authors [5] introduced an effective index 
to facilitate the traversing process on a set enumeration tree. This tree is in 
a similar sense of that applied in the frequent pattern mining literature (See 
Chapter 6), which is used to enumerate all the candidate generalizations 
based on the items. The construction of the tree is as follows: (1) fi rst set 
the root of the tree, which is a null node; and (2) each successive level of 
the tree is built by adding one item which is larger than all the items in 
the previous tree. The order is based on the lexicographical order. We can 
see that it could be possible the tree grows too large and thus, could be 
impractical to deal with. To address this issue, the authors [5] proposed 
several effective strategies to prune the candidate generalizations as early as 
possible. However, all of these techniques are heuristic and the complexity 
of the tree building (and item generalization) is not optimal. The proposed 
strategy in [5] follows a branch and bound manner, that it could terminate 
the item generalization process earlier. As demonstrated in the paper [5], 
the introduced algorithm shows a good performance compared with the 
state-of-the-art ones.

To further improve the effi ciency, in a later paper [13], LeFevre et 
al. proposed the Incognito algorithm. The basic idea of Incognito is that it 
utilizes bottom-up breadth fi rst search strategy to traverse all the candidate 
generalizations. Specifi cally, it generates all minimal k-anonymous tables 
through the following steps: (1) for each attribute, it removes those 
generalizations which could not satisfy the k-anonymity; (2) it joins two 
(k)-dimensional generalizations to obtain the (k+1)-dimensional candidate 
generalization and then evaluate the candidate. If it cannot pass the 
k-anonymity test, the candidate will be pruned. This step is in a similar sense 
of that introduced for frequent pattern mining (i.e., candidate-generate-
and -test in Chapter 6). All the candidate generalizations can be traversed 



without duplication and loss. There is a distinct for [14, 13] that the authors 
deal with the data as a graph instead of a tree, which was assumed in the 
previous work [21].

There are some other works applying the generalization and suppression 
strategies to tackle the privacy preserving issue [23, 10]. The basic idea of 
[10] is that it applies a top down approach to traverse all the candidate 
generalization. Because of the special property of the process, which is to 
reverse the bottom up process, it will decrease the privacy and increase 
the accuracy of the data while traversing the candidates. As stated in the 
paper [10], the method can control the process so as to obey the k-anonymity 
rule. In a later paper [23], the authors introduced several complementary 
strategies, e.g., bottom-up generalization, to further improve the whole 
performance.

The essential step to generate the candidate generalization is to 
traverse all the subspaces of multi-dimensions. As a result, it could use 
genetic algorithm or simulated annealing to tackle the issue. Iyengar [11] 
introduced the genetic algorithm based strategy to transform the original 
into k-anonymity model. In another work [24], the authors proposed a 
simulated annealing algorithm to address the problem. 

In addition to the commonly used strategies, i.e., generalization and 
regression, there is some other techniques proposed, such as the cluster 
based approach [8, 2, 3]. The basic idea for these works is that the records 
are fi rst clustered and each cluster is represented by some representative 
value (e.g., average value). With the help of these pseudo data, privacy can 
be effectively preserved while the aggregation characteristics of the original 
data is well reserved. However, how to measure the trade-off between the 
privacy and the reserved data information seems to be an issue.

Figure 9.2.1: Example for l-diversity [17]

Using views appropriately is another technique to protect privacy. The 
basic idea is that we can just show a small part of the views (that sensitive 
attributes can be controlled) to the public. However, this approach may fail if 
we unintentionally publish some important part of the views, which lead to 
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the violation of k-anonymity. [26] studied the issue of using multiple views 
and clarifi ed that the problem is NP-hard. Moreover, the authors introduced 
a polynomial time approach if the assumption of existing dependencies 
between views holds.

The complexity of tackling the k-anonymity issue is diffi cult to measure. 
The existing works limit the analysis on the approximation algorithms 
[4, 3, 20]. These methods guaranteed the solution complexity to be within a 
certain extent. In [20], the authors introduced an approximate method that 
at O(k · logk) cost, while in [4, 3], the authors proposed some algorithms 
that guaranteed O(k) computation cost.

9.2 The l-Diversity Method
Although the k-anonymity is simple and effective to tackle the issue of 
privacy preserving to some extent, it is susceptible to many vicious attacks, 
such as homogeneity attack and background knowledge attack [17, 18], 
defi ned as follows.

 • Homogeneity Attack: For this case, there are k tuples that have the 
same value of a sensitive attribute. From the previous viewpoint, it 
follows the privacy preserving of the k-anonymity. However, these k 
tuples as a group can be identifi ed uniquely.

 • Background Knowledge Attack: For this case, it is possible that the 
sensitive and some quasi-identifi er attributes can be combined together 
to infer certain values of some sensitive attributes.

The concrete examples which describe the attacks are illustrated in 
Fig. 9.2.1. It shows the patient information from a New York hospital (Fig. 
9.2.1 (a)). There are no critical attributes such as name, SSN, and so forth. 
The attributes are classifi ed into two categories, i.e., the sensitive and non-
sensitive attributes. The values of the sensitive attributes are preferred by 
adversaries. Figure 9.2.1 (b) presents the 4-anonymity transformed data, 
i.e., the mark * indicates a suppression value between 0 and 9 for Zip code 
and Age. The examples for the attacks which cannot be prevented by the 
k-anonymity are shown as follows:

 • Example of Homogeneity Attack [17]: Alice and Bob are neighbors 
who know each other very well. Alice fi nds the 4-anonymous table, 
i.e., Fig. 9.2.1 (b), which is published by the hospital and she knows 
that Bob’s information exists in it. Moreover, Alice knows that Bob is 
an American whose age is 31 and lives in the 13053 area. As a result, 
it is easy to infer that Bob’s number is between 9 and 12. From the 
table, Alice can make a conclusion that Bob has cancer because any 
person whose number in the range (i.e., [9,12]) has the same health 
problem.



 • Example of Background Knowledge Attack [17]: Alice has another 
friend, Tanaka, whose medical information also appears in the table 
(i.e., Fig. 9.2.1 (b)). Tanaka is a Japanese female whose age is 21 and 
lives in the 13068 area so it can be inferred that Tanaka’s number is 
between 1 and 4, whose health problem could be heart disease or viral 
infection. Because it is well known that Japanese people seldom got 
heart disease, Alice knows that Tanaka has a viral infection issue.

From the above examples, we can see that although the k-anonymity 
is an effective solution to preserve the records’ privacy, in some cases, it 
may lose effectiveness on protecting sensitive information. To tackle these 
issues, l-diversity [17, 18] was proposed by keeping the diversity of the 
attributes to hide sensitive information.

Machanavajjhala et al. [17, 18] proposed the diversity principle, i.e., 
l-diversity, to protect sensitive information from malicious attacks. To fulfi ll 
this purpose, it requires each quasi-identifi er attribute group has at least l 
“well represented” different values, which can be used to make the tuple 
indistinct. To defi ne how well the values of attributes represented, several 
possible models could be applied. The simplest one is that at least l distinct 
values exist in the attribute group. If we have l=k, then it should satisfy 
the k-anonymity. This model is mentioned in [22]. However, this simple 
implementation can still be attacked, i.e., probabilistic inference attack. The 
reason is that some values are more frequent than others in the group and 
it is not diffi cult to deduce those frequent ones based on the distribution 
of the values. To tackle this issue, some more deliberated principles based 
on l-diversity are introduced.

 • Entropy l-diversity [17]: For entropy l-diversity, in each quasi-identifi er 
group, we have − s S P(qid, s)log(P(qid, s)) ≥ log(l), where S is a sensitive 
attribute, and P(qid, s) is the probability of tuples in a quasi-identifi er 
group which have the value s. Because of the property of entropy, we 
can know that a larger value of the entropy indicates the sensitive 
values can distributed more evenly in the group, which makes the 
tuples more indistinct. However, the entropy l-diversity is still not 
perfect to prevent all the attacks. Moreover, it has the drawback that 
the entropy value is diffi cult to understand for users, who prefer 
some probability based explanation, i.e., malicious attackers have 20% 
chance to know that Bob has cancer, according to the current l-diversity 
setting.

 • Recursive (c, l)-diversity [17]: Similar to the entropy l-diversity, the 
key idea of the recursive (c, l)-diversity also ensures that the sensitive 
values are distributed as more evenly as possible, that the frequent 
values are not so frequent and the rare values are not so rare. In a given 
quasi-identifi er group qn, ri is denoted as the number of times the ith 
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most frequent sensitive value appears in qn. Given a constant c, qn 
satisfi es recursive (c, l)-diversity if r1 < c(rl+rl+1+· · ·+rm). A table satisfi es 
the recursive (c, l)-diversity if every quasi-identifi er group satisfi es the 
recursive -diversity. Note that 1-diversity is always satisfi ed.

There are some other principles based on the l-diversity introduced, 
i.e., positive disclosure-recursive (c, l)-diversity and negative/positive 
disclosure-recursive (c1, c2, l)-diversity [17, 18]. The basic idea of these 
principles is that although with the help of some background an attacker 
may remove some values from the group, he still cannot recognize sensitive 
information. From another viewpoint of these principles, some work is 
introduced to estimate the maximum disclosure risk of the published data 
[19] based on different privacy preserving metrics.

Note that the above mentioned issues are based on such an assumption 
that only one sensitive attribute exists. If there are multiple sensitive 
attributes, the l-diversity problem becomes more challenging. Some works 
have explored this issue, i.e., [18, 25]. However, all these works suffer from 
the issue of the curse of dimensionality.

9.3 The t-Closeness Method
Due to the intrinsic drawback of the l-diversity, Li et al. [16] found that 
leakage of sensitive information could happen when the overall distribution 
of a sensitive attribute is skewed. The reason is that because the l-diversity 
requirement ensures “diversity” of sensitive values in each group, it does 
not take into account the semantical closeness of these values. For example, 
suppose we have a patient table where 90% of the tuples have headache 
and 10% have cancer. If we have a quasi-identifi er group which has 50% of 
headache and 50% of cancer, it satisfi es the 2-diversity rule. Nevertheless, 
this quasi-identifi er group may face to a privacy problem because it is easy 
to infer that any person in this group has 50% chance to get cancer, yet 
consider in the whole table, this probability reduces to 10%. The obvious 
difference between these two conclusions makes the l-diversity principle 
lose its effect.

To protect the attack from the above mentioned example, Li et al. [16] 
introduced the t-closeness principle. The key idea is that t-closeness requires 
the distribution of each sensitive attribute in every group should be similar 
to that in the overall table. Moreover, in [16], the authors introduced a new 
distance metric, i.e., Earth Mover Distance (EMD), to estimate the closeness 
between two distributions. A constant t is used as a threshold to satisfy 
the t-closeness principle. Although the advantage it may obtain, there are 
several issues brought by this interesting principle: (1) it is not easy to protect 
privacy according to different security levels; (2) the introduced distance 



metric, i.e., EMD, lacks a fl exibility to cope with numerical attributes [15]; 
and (3) the utility of the published data may largely be sacrifi ced because 
it is too strict a rule to let all the distributions of attributes be similar to 
each other. Several solutions are introduced to tackle part (if not all) of 
these issues [9].

9.4 Discussion and Challenges
In this chapter, we presented the main strategies for privacy preserving 
data mining. There are several issues which should be mentioned. The fi rst 
one is how to keep a good balance between different evaluation metrics, 
such as privacy and utility. It is intuitive that the safest strategy to protect 
privacy is to publish as few data as possible, though this approach, leads 
to low utility. For some principle (e.g., entropy l-diversity), how to explain 
the semantic meaning of the setting becomes more diffi cult and thus, is 
challenging to be applied on the real applications. Another main issue for 
privacy preserving is the curse of dimensionality. The work in [1] states that 
to keep privacy, a large number of the attributes may need to be suppressed 
or generalized. This requirement also leads to the loss of the data’s utility. 
More seriously, it seems that some methods become infeasible to implement 
with more dimensionality taken into account.

9.5 Chapter Summary
In this chapter, we introduced the basic concept and main techniques for 
the privacy-preserving data mining issue. We presented a variety of data 
transformation strategies such as k-anonymity, l-diversity, and t-closeness 
based methods. Furthermore, we gave some concrete examples to illustrate 
the advantages and disadvantages of these approaches and analyzed them 
thoroughly. Some related issues, i.e., curse of dimensionality and balance 
between utility and privacy, were also discussed.
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CHAPTER 10

Data Stream

Data stream mining is an important issue because it is the basis for numerous 
applications, such as network traffic, web searches, sensor network 
processing, and so on. Data stream mining aims to determine the patterns 
or structures of continuous data. Such patterns of structures may be used 
later to infer possible events that could occur. Data streams exhibit unique 
dynamics in that such data can be read only once. This feature presents a 
limitation to numerous traditional strategies from analyzing data streams 
because such techniques always assume that all data could be stored in 
limited storage. Thus, data stream mining could be considered as the 
performance of computations on a large amount of data or even unlimited 
data. In this chapter, we will introduce the basic concepts and main strategies 
that can be employed to address the aforementioned challenge.

The general data streaming models will be introduced in Section 10.1. 
The sampling approach will be presented in Section 10.2. The wavelet 
method will be discussed in Section 10.3. The sketch method will be 
presented in Section 10.4. The histogram method will be introduced in 
Section 10.5. A discussion on data stream will be presented in Section 11.4. 
A chapter summary will be presented in Section 11.5.

10.1 General Data Stream Models
Several models have been introduced in the data stream literature [53]. 
Given an input stream, S, the items arrive sequentially, that is, a1, a2, . . . , 
an. Each item, ai, describes a corresponding underlying signal Ai. Different 
models are distinct in terms of describing signals based on the items in the 
stream.

 • Time Series Model. Each item ai is the same as signal Ai. The items are 
received based on an increasing order of i. Numerous applications such 
as stock price stream and Web server log fi t this kind of model well.
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 • Cash Register Model [35]. In this model, the items ai are accumulated 
to the signals Aj. Similar to a cash register, multiple ai could be 
aggregated and set to a given Aj over time. This model can be applied 
to applications such as counting the access 198 number of the same IP 
address to a website.

 • Turnstile Model [53]. In this model, the items ai are updates to Aj. The 
update operator can be insertion or deletion. The model is the most 
generalizable in that it fi ts a large number of applications such as the 
dynamic people situation in a subway system.

 • Sliding Window Model. In this model, the mapping or computation 
of items is focused over a fi xed-sized window in the stream. While 
the stream is in progress, items at the end of the sliding window are 
deleted, and the new items from the stream are considered. This kind 
of model fi ts applications such as weather prediction, which require 
the most up-to-date data stream.

As introduced in [53], the models in decreasing order of generality are 
as follows: turnstile, cash register, and time series1. Designing appropriate 
algorithms specifi c models is more practical, and the challenge lies in 
making these approaches suffi ciently generalizable for strong models such 
as the turnstile.

10.2 Sampling Approach
Sampling is an important approach that is employed for numerous 
applications, such as signal processing, information survey, computer 
graphics, and so on. Sampling is based on the assumption that directly 
dealing with an extremely large amount of data is impractical, and therefore, 
some form of approximation is necessary. In statistics, sampling is concerned 
with the selection of a subset of items from a large data set to retain (and 
further measure) the properties of the whole data [4].

Sampling has the following advantages: (1) low cost; (2) effi cient data 
storage; and (3) convenience in addressing the sampling data because of 
the small size. Compared with all other commonly used techniques for 
data streams, such as wavelets, sketches, histograms, the sampling strategy 
is probably the easiest and the most applicable approach, especially for 
challenging issues such as high dimensional data.

From a statistical perspective, the sampling technique aims to store the 
posterior distribution of the data stream to retain similar expectations and 
variances. Therefore, the expectation and variance of some function f(α) with 

1The sliding window model can be considered as the constrained versions of the above three 
models.



respect to a probability distribution p(α), where α denotes the components 
that could be continuous or discrete, must be determined. To measure the 
expectation, we have the following formula [12]:

   E[f] = ∫ f(α)p(α)dα    (10.2.1)

where the integral is the summation if α represents discrete variables. After 
sampling, we need to ensure that the new expectation of the sampled items 
is stored the same manner as that of the whole data set (i.e., E  [�f ]=E[f]). The 
new expectation estimator (i.e., �f ) based on the samples αn (where n ranges 
from 1 to N) relative to discrete variables is defi ned as follows: 

    α�
1

1 ( )
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n

n
f f

N =

= ∑     (10.2.2)

Further, the variance of the new expectation estimator must also be 
the same as the former value (i.e., var[ �f ]=var[f]) and can be represented 
as follows:

   var[�f ] = � � 21 E[( E[ ]) ]f f
N

−    (10.2.3)

Thus, different sampling strategies have been introduced with a focus 
on how to select sample instances to satisfy the given rules, although 
these rules may vary for different applications and domains (e.g., sum 
aggregation). Another challenging issue is that the variables considered are 
not always independent, thus resulting in more complex estimation.

For a few applications, in addition to the expectation E[f] and the 
variance var[f], we need to measure the mean µ (i.e., µ=E[f]) and the standard 
deviation σ (i.e., σ = [ ]var f ), which are commonly used to describe the 
distribution of the total data set. We introduce a number of inequalities, such 
as the Markov and Chebychev inequalities, to estimate these features [8].

To estimate the bound of the random variable α, we can use the Markov 
inequality:

   P(α > β) ≤ µ/β    (10.2.4)

where β is a random variable of the data stream. The Chebychev inequality 
can be obtained by employing the Markov inequality for the random 
variable (α − µ)2/σ2:

   P(|α − µ| > β) ≤ σ2/β2    (10.2.5)

The Markov and Chebychev inequalities have been proven to be 
suffi ciently generalizable. Specifi c applications such as Chernoff bound 
and Hoeffding inequality may be more suited to tighter bounds. For these 
bounds, we can employ the Markov inequality based on the parameterized 
functions relative to the specifi c applications. Moreover, the manner by 
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which to select a sample from the stream is another issue, that is, the size 
of the sample must be determined. Intuitively, this size is determined by 
the total size of the stream, which cannot be known apriori. Therefore, 
the probability that any item is stored as a sample should be dynamically 
changed according to the data stream.

10.2.1 Random Sampling

From a statistics perspective, random sampling denotes the selection of a 
group of individuals (samples) randomly from a large data set (i.e., data 
stream). The probabilities for all individuals to be chosen during the process 
should be the same [67, 65]. Given its simplicity, random sampling can be a 
basis or component of other more sophisticated sampling methods.

A concrete example to illustrate the idea of random sampling is as 
follows [1]. Suppose that n students wish to obtain tickets for a football 
game. However, the tickets (i.e., M) are insuffi cient. Therefore, the students 
have to employ a fair method to determine the persons who can go. To fulfi ll 
this goal, every student is randomly given a number (i.e., from 0 to n-1). The 
students who obtain the fi rst (or the last) M numbers are the winners. 

In numerous applications, this kind of sampling is commonly applied 
without replacement, i.e., any number will not be chosen more than once. 
Under this assumption, the probability of one instance being chosen by 
the process is no longer independent, but the result is still reasonable, 
especially in the case of selecting a small group of samples from a large 
data set, because the probability of choosing the same individual is low. 
However, for other applications, sampling with a replacement strategy 
may be more appropriate.

The given example is built upon the assumption that the data are static, 
that is, the size of the data set is known apriori. However, for a data stream, 
the selection of individual samples is more challenging because the process 
is performed under a dynamically changing environment [8].

Suppose we want to extract M individual samples from a data stream. 
While receiving the data, we maintain a list of size M to store the candidate 
samples. In the initialization stage, the fi rst M individuals in the data stream 
are stored in the list. As more data are received, we need to determine 
whether the next individual should be stored. The probabilities of storing 
these individuals as samples should be the same (i.e., M/n, where n is the 
size of the individuals received thus far in the data stream). Considering 
the replacement model in the process, an old individual has to be removed 
from the list before a new individual is stored as a sample. As proven by 
Aggarwal [8], the probability of storing any individual as sample in the 
list is M/(n+1).



As introduced in Section 10.1, the assumed model is a time series, in 
which the individual item is received with the same importance. However, 
for a few applications, recent individual items may be of importance. We can 
use a sliding window to partition the data stream, and more recent windows 
are given larger weight relative to the results of queries. This issue has been 
explored by a number of researchers [32, 13, 11]. The sliding window-based 
model is more practical for real data stream applications considering the 
limitation resources such as the main memory and CPU.

10.2.2 Cluster Sampling

Cluster sampling [3] is another commonly used technique in the literature 
that was introduced mainly for static data [48]. The total data set is fi rst 
clustered intuitively into several groups, and the representative individual 
of each group can then be deemed as a sample. The clusters should be 
mutually exclusive and collectively exhaustive. This method is cost effective, 
and the criteria for clustering on the data is domain specifi c, including time, 
position, nationality, and so on.

Considering that several clustering algorithms (e.g., [9]) take into 
account the dynamic property of data, the clustering sampling strategy 
can be implemented on data streams.

Compared with random sampling, cluster sampling generally needs 
more samples to achieve the same effectiveness (i.e., accuracy) because these 
samples are necessary to distinguish clusters from one another. Moreover, 
the implementation of cluster sampling is always conducted through 
multi-steps: the fi rst step aims to build the clusters that will subsequently 
be used; in the second step, primary individuals are randomly selected as 
samples for each group; and in the following steps, we recursively determine 
whether other individuals from the selected clusters are samples. This kind 
of multi-step sampling can largely reduce sampling cost.

Another sampling technique called stratifi ed sampling [5], is similar 
to cluster sampling. This approach fi rst partitions the whole data into 
homogeneous subgroups before sampling using two criteria: (1) the strata 
should be mutually exclusive, such that every individual in the data set must 
be assigned to only one stratum; and (2) the strata should be collectively 
exhaustive, such that no individual can be excluded. These criteria are 
similar to those of cluster sampling. Finally, random sampling can be used 
for each stratum. Through these strategies, stratifi ed sampling can improve 
the representativeness of the samples by reducing sampling error.

Cluster and stratifi ed sampling have a number of key differences: (1) 
in cluster sampling, the cluster is treated as the sampling unit, and the 
analysis is executed on the level of clusters, whereas in stratifi ed sampling, 
the analysis is implemented on the individuals in the strata; (2) in stratifi ed 
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sampling, a sample is randomly chosen from each strata, whereas in cluster 
sampling, only the randomly selected clusters are explored; and (3) cluster 
sampling primarily aims to reduce costs by increasing sampling effi ciency, 
whereas stratifi ed sampling aims to increase effectiveness (i.e., precision). 
However, both of these sampling methods are limited by the unknown 
size of the total data.

As introduced in [27], several issues confront existing sampling 
techniques. First, data streams have an unknown dataset size. Therefore, 
the sampling process on a data stream requires a special analysis to limit 
the error bounds. Another problem is that to check the sampling strategy 
may be inappropriate for checking anomalies in surveillance analysis 
because the data rates in the stream are always changing. Thus, we explore 
the relationship among the data rate, sampling rate, and error bounds for 
real applications.

10.3 Wavelet Method
The wavelet-based technique is a fundamental tool for analyzing data 
streams. From a traditional perspective, a wavelet is a mathematical function 
used to divide a given function or continuous time series into different scale 
components [6]. This approach has been successfully applied to applications 
such as signal processing, motion recognition, image compression, and so on 
[63, 7]. The wavelet technique provides concise and general summarization 
of data (i.e., stream), which can be used as the basis for effi cient and accurate 
query processing methods. Numerous strategies have been introduced 
based on the idea of wavelet, in which the most commonly used approach 
for data streams is called Haar wavelets [68].

The Haar wavelet provides a foundation for query processing on stream 
and relational data. It creates a decomposition of the data (or compact 
summary) into a set of Haar wavelet functions, which can be used for later 
query processing. The essential step is the determination of the Haar wavelet 
coeffi cients. Only coeffi cients with high values are typically stored. Higher 
order coeffi cients in the decomposition generally indicate broad trends in 
the data, whereas lower order coeffi cients represent the local trends. We will 
show a concrete example to illustrate the Haar wavelet process [66, 31].

Suppose our data stream is {3, 2, 4, 3, 1, 5, 0, 3}. The data in the 
vector are computed as averaged values between neighbors to obtain 
a lower resolution representation (i.e., level 2) of the data, such as

3 2 4 3 1 5 0 3 5 7 3, , , , , 3,
2 2 2 2 2 2 2
+ + + +⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. This transformation results in the loss 

of information, thus requiring more information to be stored. The Haar 
wavelet technique computes the differences of the averaged values between 



neighbors, such as 3 2 4 3 1 5 0 3 1 1 3, , , , , 2,
2 2 2 2 2 2 2
− − − −⎡ ⎤ ⎡ ⎤= − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. These eight data values 

are the fi rst-order coeffi cients of the sample data, which can be used to 
recover the original data set. Similarly, we can obtain the lower resolution 

representation (i.e., formal part of level 1) as 
5 7 3 5 7 33 3 9 1 32 2 2 2 2 2, , , 3, , ,

2 2 2 2 4 2 4

⎡ ⎤+ + − −⎢ ⎥ ⎡ ⎤= −⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎣ ⎦

.  

Recursively, we can obtain the fi nal Haar wavelet transformation of the data 

as 
21 3 1 3 1 1 3, , , , , , 2,
8 8 2 4 2 2 2

⎧ ⎫− − −⎨ ⎬
⎩ ⎭

. The whole transformation process is illustrated 

in Fig. 10.3.1.
 

Haar wavelet transformation on {3, 2, 4, 3, 1, 5, 0, 3}

Original data (level 3) 3 2 4 3 1 5 0 3

level 2 2.5 3.5 3 1.5 0.5 0.5 -2 -1.5

level 1 3 2.25 -0.5 0.75

level 0 2.625 0.375

Figure 10.3.1: Sample Haar wavelet transformation

Haar wavelet analysis commonly assumes that the size q of the time 
series data is a power of two without loss of generality because the series 
can be decomposed into segment subseries, each of which has a length that 
is a power of two. From the process of Haar wavelet transformation, we 
obtain 2l+1 coeffi cients of level l (as shown in Fig. 10.3.1). Each coeffi cient 
(i.e., 2l+1) represents (and summarizes) a contiguous part of the data stream 
(i.e, q/2l+1). In the segment series data, the ith of the 2l+1 coeffi cients covers 
the part beginning from(l + 1) · q/2l+1+1 to i · q/2l+1.

Previous works were not concerned about retaining all coeffi cients, 
but only a smaller number of them (i.e., top-B) [36]. Given this simplicity, 
some information on the original data during the transformation will be 
lost. In [36], the authors report that the highest B-term approximation is 
in fact the best B-term approximation that it minimizes the sum squared 
error for a given B.

A large number of existing approaches employ a lossy mechanism 
because of the large number of coefficients introduced by the Haar 
wavelet transformation, that is, the number is equal to the length of the 
total data stream. While keeping the top-B coeffi cients with large values, 
the other ones are set to zero. This heuristic is thus, employed to reduce 
the dimensionality of the time series data. However, a trade-off always 
exists between the number of coeffi cients and the error introduced by the 
transformation. Obtaining the optimal number of Haar wavelet coeffi cients 
is an interesting issue in the literature. Nevertheless, previous works assume 
that only a small number of coeffi cients dominate the full effectiveness of 
the transformation.
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In addition to the determination of the optimal number of the Haar 
wavelet coeffi cients, another issue is the selection of the appropriate 
coeffi cients. The absolute value is not the sole optimal criterion to dominate 
performance. For example, based on different evaluation metrics for various 
applications such as mean square error vs. least maximum error, different 
selection strategies may be appropriate [29, 30, 63]. However, other issues 
such as computation effi ciency should also be considered.

As introduced in [8], other important topics are related to Haar wavelet 
transformation. A number of applications prefer to monitor large quantities 
of information simultaneously in the same stream data source. Taking sensor 
applications, the monitors may store a large number of data features, such 
as location, pressure, wind direction, and so on. Therefore, the Haar wavelet 
transformation needs to process all of these features simultaneously. An 
intuitive approach is the application of decomposition on each feature, 
such that the top-B coeffi cients are discovered by merging the transformed 
results [63]. However, this strategy may be ineffi cient, because duplicate 
transformations may be conducted on the same individual data (relative to 
different features). The authors in [22] introduced several effective strategies 
for the simultaneous monitoring and transformation of multi-feature data 
by using bitmaps to determine the optimal features.

In summary, Haar wavelet transformation continuously builds a 
summarization of the B representative wavelet coeffi cients (e.g., with 
largest absolute values) for time series data set. Considering the special 
properties of dynamic stream data, the following criteria should be satisfi ed: 
(1) sub-linear space usage must be available to store the summarization 
and (2) sub-linear per-item update time must be suffi cient to maintain the 
summarization. Applications on query processing may further need to 
consider another criterion, that is, sub-linear query time.

10.4 Sketch Method
The sketch-based technique is one of the major tools for stream data analysis. 
Sketches are small space summarizations of stream data in a centralized or 
distributed environment. The main advantage of sketch-based techniques is 
that they require storage that is signifi cantly smaller than the input stream 
length. For most sketch based algorithms, the storage usage is sub-linear in 
N, that is, logkN, where N is the input size and k is some constant. The hashing 
function is generally employed by sketch based algorithms to project the 
data stream into a small space sketch vector that can be easily updated and 
queried. As demonstrated by numerous experimental evaluations, the cost 
of updating and querying on the sketch vector is only a constant time for 
each operation.



Given the property of a sketch, the answers to the queries that are 
determined by examining the sketches are only approximations because 
only part of the data information is stored (as sketch). A sketch generally 
contains multiple counters for random variables relative to different 
attributes. The error boundary on the answers should be held with 
probabilistic guarantees. The introduced sketch-based algorithms differ in 
terms of defi ning and updating random variables as well as in the effi cient 
querying of the sketches.

The sketch-based technique is closely related to the random projection 
strategy [45]. Indyk et al. [41] introduced this strategy into the database 
domain (i.e., time series domain) to discover the representative trends. 
The key idea is that a data point with dimensionality d is reduced by 
(randomly) selecting k dimensionalities. The dot product of the these k 
dimensionalities between data points is computed. Each k dimensionality 
(i.e., random vectors) follows the normal distribution with zero mean and 
unit variance. Moreover, the random vector is normalized relative to one 
unit in magnitude. Accuracy is dependent on the value of k, where a larger 
value of k results in high accuracy. We will then introduce several sketch-
based algorithms for processing data streams. Please refer to [17, 62, 8] for 
a more detailed survey of related issues.

10.4.1 Sliding Window-based Sketch

Indyk et al. [41] introduced the sketch-based technique into the database 
domain to discover the trends governing data streams. The authors observed 
that the length of a time series can be considered to have one dimensionality. 
Therefore, we can construct the sketch by considering the length as the 
random vector. Two situations are considered in [41]: fi xed window sketches 
and variable window sketches.

For fi xed window sketches, the aim is to obtain sliding window sketches 
with a fi xed length l. Thus, l · k operations should be conducted for a sketch 
with size k. Given the total of O(n−l) sliding windows, O(n · l · k) operations 
are necessary. From this analysis, we fi nd that if the window length l is large 
(i.e., the same order of magnitude as the time series), the cost of calculation 
would be quadratic to the size of the series. Therefore, this approach could 
be impractical for large time series data (i.e., stream). As introduced in 
[41], the construction of fi xed window-based sketches can be considered 
as the computation of the polynomial convolution of random vectors of 
appropriate length over the time series data. Therefore, we can use the fast 
Fourier transform to address the issue. This observation indicates that the 
fi xed window sketches can be obtained effi ciently.

For variable window sketches, the aim is to construct the sketches for 
any sub-vector between length l and u [41]. This approach requires O(n2) 
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sub-vectors that may have the length O(n) in the worst case. Through this 
analysis, we fi nd that the total cost is O(n3), which limits the application of 
the technique for large time series data (i.e., stream). To address this issue, 
Indyk et al. [41] proposed the construction of a set of sketches. The size of
the group must be considerably smaller than the total sketches. To determine 
the sketches to be stored, the authors deliberately chose sub vectors out of 
the original ones, such that the computation can be achieved in O(1) time 
with suffi cient accuracy guaranteed for each vector. The experimental 
evaluation demonstrates the effectiveness and effi ciency of the introduced 
strategies [41]. Please refer to [41] for more details about this technique.

10.4.2 Count Sketch

Alon et al. [10] were the fi rst to introduce the term sketch as a tug-of-war 
sketch. The authors aim to measure and optimize the second order of the 
frequency moment F2= i f

2
i. Notably, more recent studies found that the 

introduced summarization in [10] can also be utilized to measure the inner 
product of two distributions on frequency, that is, i fi f'i, where fi and f'i 
denote the two frequency distributions. From the observation, we fi nd that 
if fi can be obtained from a data stream, the product of f'i=1 and f'j=0 for all 
j  i can be calculated during the query processing. Thus, we fi nd that for 
the error bound, the value should be F1/2

2 ≤ n, which has more than 1-δ

probability for a sketch with size of O( 2

1
ε

 log 1/δ).

The cost of updating the count sketch is high because all the sketches 
should be rebuilt if a new instance comes in. Thus, the naive count sketch 
technique as an appropriate strategy for data streams. To address the issue, 
Charikar et al. [14] proposed an improved algorithm that requires only a 
small part of the sketches to be updated when a new instance comes in. 
Thus, performance is signifi cantly improved. 

We briefl y describe the idea in [14]. Interested readers are referred 
to the previous paper for more details. The introduced sketch structure 
contains a d × ω array (denoted as C) that stores counters (where d is the 
number of rows), with two hash functions presented for each row. One hash 
function g maps the instances of the data stream into [ω], whereas the other 
hash function h maps the instances into {–1, +1}. For each row j (i.e., 1 ≤ j 
≤ d), the corresponding mapping on instance i, that is, hj(i), is stored in the 
array element C[j, gj (i)]. We fi nd that �f i is median 1≤j≤dh

j(i)C[j, gj (i)] [17]. 
The analysis shows that for each value of j, the expectation and variance 
depending on F2/ω can be accurately derived.



10.4.3 Fast Count Sketch

To improve the effi ciency of count sketches further, Thorup and Zhang [64] 
introduced the fast count sketch technique, that uses one random hashing 
to hasten the update time while maintaining reasonable error bounds. The 
price of obtaining this improvement is that more sketch vectors are utilized, 
and deliberately designing the hash function is necessary. In the fast count 
sketches, the counters in the vector are the same as those of count sketches, 
the only difference is that the former contains a four-universal hash function 
that is associated with the vector.

When a new data instance i arrives, its mapped value, ω, is immediately 
stored into the corresponding counter, that is, xf[h(i)] = xf[h(i)] + ω, where 
h : I  {1, . . . . , n} is the four-universal hash function [64].

We can deduce the estimate of the size of the join attributes based on the 
second frequency moment as in [62]. As claimed by the authors, the estimate 
is an unbiased one of the inner product f  g. The variance is retained in the סּ 
fast count sketches in a manner similar to that in the count sketches. The 
multiplicative factor is 1

1n −  for the fast count sketches but 1
n
 for the count 

sketches. More entries are needed in the fast count sketches than in the count 
sketches, but the difference is negligible for large values of n.

10.4.4 Count Min Sketch

Cormode and Muthukrishnan [18] introduced another effective sketch type, 
that is, count min sketches, for facilitating the construction and update of 
the synopsis. The data structure of count min sketches is the same as that 
of fast count sketches. Count min sketches apply a series of two-universal 
functions to map the data instances, which differs from the four-universal 
functions used in fast count sketches. The mechanism of sketch update in 
Count Min sketches is the same as that in fast count sketches.

An issue for count min sketches is that they employ the L1 norm, 
whereas count sketches utilizes the L2 norm. Thus, count min sketches 
require more space to maintain the same level of error bound compared 
with count sketches. This condition is attributable to the fact that the L2 
norm is generally smaller than the L1 norm.

In summary, given an input data stream of length N and user specifi ed 
parameters δ and epsilon, the count min sketch technique can store the 
frequencies of all the instances with the following guarantees: (1) all the 
stored frequencies differ from the truth at most N with a probability of at 
least δ; (2) the space usage is O(1

∈ log 1
∈δ ); and (3) for each update and query, 

the cost is constant, that is, O(log 1
∈δ

).
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10.4.5 Some Related Issues on Sketches

In addition to the above introduced sketch based algorithms, several other 
extended approaches are based on the sketch techniques.

Pseudo random vector generation. A primary issue for sketch construction 
is that the number of distinct items may be large and, therefore, the size of 
the corresponding random vector will also be large. This issue will reduce 
the effi ciency of building the sketches. To address this problem, we fi rst 
generate a set of k random vectors, and then, when the data instance comes 
in, we can map it to the corresponding pre-generated random vector. This 
strategy, however, may consume a large amount of space. A more feasible 
idea is that we can store the random vectors implicitly (i.e., as seeds), which 
are utilized dynamically to generate the vectors.

The authors in [10] have found that we can generate the random vectors 
with four-wise independent random vectors from a seed of size O(log(N)). 
Gilbert et al. [37] demonstrated that if Reed-Muller codes are used, we can 
generate seven-wise independent random vectors. The properties of the 
pseudo random vectors generation approach are as follows: (1) we can 
generate a random vector in poly-logarithmic time from the seed; and (2) 
the dot-product of two vectors can be approximately computed using only 
their sketch representations. We can observe that the dot product of two 
vectors is closely related to the Euclidean distance, which is an indication 
derived through the random projection strategy [45].

Sketch partitioning. Dobra et al. [23] introduced the sketch partitioning 
technique. The authors deliberately partitioned the join attributes to 
construct the separate sketches of each group. The fi nal estimation is 
accumulated from all partitions. The essential part of the introduced 
technique is the partition of the domains to bind the variance, which can 
result in high accuracy for applications. The authors in [24] further studied 
the issue by extending it to multi-query processing.

Sketch skimming. Ganguly et al. [28] observed that sketch skimming 
can be utilized to improve the estimation of join size. The variance of the 
join estimation is largely affected by the most frequent random variables, 
which are generally few even for a large data set. Given that high variance 
is undesirable, the frequent instances are deliberately separated from 
others. Therefore, the skimmed sketches can be identifi ed by removing 
the sketches with frequent instances. We can estimate the join size using 
four-wise independent random vectors and the experimental evaluation 
demonstrates the effi ciency of the proposed technique in [28].



10.4.6 Applications of Sketches

A large number of applications can utilize the sketch based strategies. One 
practical issue is the heavy hitters [19, 49, 17]. For this problem, we need to 
detect the most frequent items in the data stream. Recognizing the difference 
among networks in the data stream was explored in [20], and detecting the 
differences among data streams was studied in [25, 26]. Similar issues on 
XML data (or tree data) were presented in [57, 58, 61]. These works aimed 
to construct the synopsis for structured queries, which can be used later to 
improve query processing performance.

Sketches based strategies are also well utilized in network research. 
Improving the communication effi ciency for signals in sensor networks 
is important. Moreover, considering resource limitations (e.g., battery), 
effi cient storage by using concise summarization on the stream data is an 
essential issue for sensor networks. A number of works have been conducted 
to address the aforementioned issues, [15, 38, 46]. Please refer to [8] for 
more details on these issues.

10.4.7 Advantages and Limitations of Sketch Strategies

Sketch-based strategies have several advantages. First is the space usage. 
Sketch-based approaches have been theoretically and experimentally 
proven to obtain an optimal sub-linear space usage in the data size. This 
fi nding can be attributed to the fact that the space requirement is logarithmic 
in the number of distinct items in the stream, which is relevant small by 
considering the large volume of the data.

Despite the advantages of sketch based methods, several challenging 
issues remain. First, almost all related studies use Lp norm as the aggregate 
measure, which may not refl ect the actual data distribution. Thus, the sketch 
summarization may fail to store the essential information of the data.

Another issue is high dimensionality. The existence of hundreds of 
independent dimensions in the data stream may hinder the practical 
usage of the existing state-of-the-art sketch-based techniques. This issue 
has been raised by several researchers [16]. However, the problem remains 
challenging because of its intrinsic complexity.

As highlighted in [8], most sketch-based works only focus on identifying 
the frequent instances and estimating the frequency moments and join size. 
This emphasis on the micro view may neglect the macro trends in the stream 
data, such as the temporal property. Thus, the temporal information may 
be lost because of the transformation process when building the sketches. 
Although several scholars have mentioned this issue and consequently 
introduced effective techniques for temporal analysis [41], the strategy 
requires signifi cant space usage, which makes the approach impractical 
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for real large data streams. Extending the state-of-the-art strategies for 
temporal trends analysis with limited space usage remains an interesting 
and challenging issue.

As previously mentioned, a trade-off exists between space usage and 
data rate. For real applications, considering that we have a suffi cient storage 
resource (i.e., main memory, SSD), addressing data streams with relevant 
slow data update rate (but may have a large volume of distinct items) [37] 
may be practical. The real challenging applications are therefore those that 
need to process very fast data streams such as sensor networks [21, 55, 46, 
47] because of the power and hardware limitation.

10.5 Histogram Method
The histogram approach is another major tool used for analyzing data 
streams. In statistics, the term histogram was fi rst introduced as a graphical 
representation to illustrate the visual impression of the distribution of data 
[2]. A histogram is an estimate of the probability distribution of a continuous 
variable and was fi rst introduced by Pearson [56].

Histograms are commonly used to describe the density of data and 
measure the probability density function of the underlying variable. 
Specifi cally, in database research, the histogram approach partitions the 
data into a series of categories (known as bins or buckets) relative to some 
feature (or dimension). Each count of the bin is stored.

From a formal mathematical view, a histogramis a function m that 
accumulates the number of instances that fall into each of the disjoint 
buckets, whereas the graph of a histogram is one method to describe the 
histogram. Let n be the total number of instances, k be the total number 
of bins, and mi be the histogram, we then have n = k

i=1 mi. A cumulative 
histogram is a mapping that measures the cumulative number of instances 
in all buckets up to the specifi ed bucket. The cumulative histogram Mi of 
a histogram mj is defi ned as Mi = i

j=1 mj.
By analyzing the process of histogram construction, we fi nd that 

the space usage for a histogram is determined by the total number of 
buckets used. Buckets can intuitively be obtained by partitioning the data 
into equal sizes. Such equi-width division technique is related to Haar 
wavelet coeffi cients in that if the wavelet summarization of the frequency 
distribution is built relative to any dimension, then the Haar coeffi cients 
present the difference in relative frequencies in equi-width histogram 
buckets [8].

Although this technique is easily implemented for equi-width 
histogram strategy, it has the drawback of low representation accuracy. 
This low accuracy can be attributed to the fact that the distribution of data 



is not well kept by the equi-width mechanism because of the assumption 
of uniform distribution. The localized data distribution is commonly cut 
by the bucket boundaries. For instance, the number of points distributed in 
different buckets may vary signifi cantly. This issue may lend diffi culty to 
query estimations. Therefore, the histogram technique requires the design 
of an appropriate bucket construction mechanism.

Similar to the idea of kd-tree, we can build buckets to enable each one 
contain approximately equal instances (known as equi-depth histogram). 
Numerous experiments have illustrated that equi-depth histograms are 
considerably more effective than equi-width histograms. Therefore, a large 
number of commercial vendors switched to the equi-depth histograms in 
the years following their introduction [42]. Multidimensional equi-depth 
histograms were introduced in [52]. However, for the special data such as 
a stream, the construction of buckets based on the equi-depth technique is 
diffi cult because the data are dynamic and unknown apriori.

To improve the effectiveness of histograms, Ioannidis et al. introduced 
the V-optimal histograms [43], which aim to minimize the frequency 
variance of different values in buckets. In this way, the assumption of data 
uniform distribution can be satisfi ed. Specifi cally, if a bucket b with count 
c contains the frequency of n instances, then the average frequency of each 
instance in b is c/n. Let f1 . . . fn be the frequencies of the n instances in b. 
The variance v of the frequencies based on the averages is obtained as 
v = l

i=1(fi − c/n)2. Finally, the overall variance V on all the buckets is obtained 
as V = b

v.
Improvement on the V-optimal histogram construction has been 

introduced in [44]. In this work, the Lp-difference function between 
two vectors with cardinalities that are based on the distinct instances is 
considered as the objective function. Other works consider alternative 
objective functions to optimize the histogram construction [60]. The 
advantage and disadvantage of V-optimal histograms is explained as 
follows.

Advantage of V-optimal histogram: V-optimal histograms can optimally 
measure the contents of buckets. However, any histogram could encounter 
an error when used to summarize data. V-optimal histograms binds 
the error by fi nding the smallest variance among all possible buckets. 
As demonstrated in [59], V-optimal histograms can achieve the best 
performance in terms of accuracy in summarizing data.

Limitation of V-optimal histogram: The major drawback of V-optimal 
histograms is that they are diffi cult to update. Rebuilding all histograms 
is necessary when new data are received. By contrast, the equi-width 
histogram technique can address this issue. Moreover, although equi-
depth histograms also have to rebuild, the cost is lower compared with 
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V-optimal histograms because the structure of the former is simpler and 
easier to construct. This intrinsic disadvantage may hinder the V-optimal 
histogram from being appropriate strategy for fast dynamical updating of 
data such as a stream.

Another issue is that numerous studies use absolute errors as the 
accuracy metric. However, as emphasized by [51], the absolute error may 
not always be a good representation of the error, thus necessitating the use 
of other metrics. To address this issue, Guha et al. [40] introduced several 
strategies to improve the relative error.

Another difference between the equi-width histogram and equi-
frequency (V-optimal) histogram is that the former would have almost all 
the samples in one bucket, whereas latter would have numerous narrow 
buckets in one area even with the same number of buckets. If we consider 
the height of a bucket as a variable, then the equi-frequency histogram will 
better spread the available distribution information among the variables.

10.5.1 Dynamic Construction of Histograms

Given the special property of data streams, the requirement of dynamically 
building the histograms exists for a large number of real applications. In this 
section, we fi rst review the static histograms and then explore the dynamic 
histograms. Please refer to [42] for more details.

Static histograms are those that, once built from the original data (or the 
sample instances), will not change later regardless of whether the original 
data (or the samples) is changed.

However, as more new data come in (or updated), the error will 
accumulate until the requirement for query processing applications can no 
longer be satisfi ed. To address this issue, recomputing all the histograms 
is necessary. Therefore, the cost of histogram reconstruction has to be 
considered as a measure of the performance of different histogram-based 
algorithms. For a few histogram construction strategies such as equi-width 
and equi-depth, this factor is not a major problem because the rebuilding 
process is simple and easy to implement. However, for traditional equi-
frequency strategy (i.e., V-optimal histogram), the cost may be high because 
the number of source parameter values is exponential. Therefore, a trade-off 
exists between the effectiveness and the effi ciency of different histogram 
construction strategies. To address this issue, dynamic programming-based 
approaches have been introduced [44, 39]. The work in [44] built V-optimal 
histograms quadratically based on the number of source parameters and 
linearly based on the number of buckets. This contribution makes the 
V-optimal histograms acceptable for the histogram rebuilding scenario. 
The work in [39] reduced the total cost to be linear to the number of source 
parameters. Despite these achievements, however, building Voptimal 



histograms on multi-dimension data. Thus, [54] introduced the approximate 
strategies.

For dynamic data such as a stream, the aforementioned techniques may 
be ineffective because the data in the stream can be scanned only once, and 
the introduced strategies always need to verify the data multiple times. 
Several studies have been conducted to address this issue. For example, 
Gibbons et al. [33] proposed the equi-depth histograms based approach. 
Gilbert et al. [34] introduced the V-optimal histogram based technique 
for data stream processing. Given the high complexity and importance of 
this issue, histogram construction for data streams remains an open and 
challenging topic in the literature.

10.6 Discussion
A number of challenging issues should be addressed in future research on 
building synopses for data streams.

 • Comparing different kinds of synopsis-based strategies such as 
sampling, wavelet, sketch, and histogram remains diffi cult. Different 
techniques may have their own advantage for specifi c applications yet 
may lose their effectiveness when employed for other applications. 
Thus, comprehensive comparisons among these approaches are 
necessary. For fair assessment, different setting environments have to 
be built for the evaluation of the performances of the strategies relative 
to effectiveness in terms of the error bound, effi ciency in terms of 
synopsis construction and consumed space, as well as usage on high-
dimensional data streams. Furthermore, analyses must be conducted 
not only from a micro view (e.g., frequent item counting), but also 
from a macro view (e.g., temporal trend detection).

 • Workload aware strategy is one of the possible ways to improve the 
effi ciency and effectiveness of synopsis construction. Several groups 
have already studied this issue [54, 50]. However, the complex dynamic 
properties of data streams require more intelligent techniques to 
provide higher effectiveness with lower cost of synopsis construction 
and update.

 • Considering that the current data type taken into account is commonly 
quantitative or categorical, the future direction is to extend the data 
type to others, e.g., text, XML, and so on. Some studies, such as [58, 57], 
have already addressed this issue yet more researches are preferred. 
We believe that there is considerable scope for extension of the current 
synopsis methods to domains such as sensor data mining in which 
the hardware requirements force the use of space-optimal synopsis. 
However, the objective of constructing a given synopsis needs to be 
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carefully calibrated in order to take the specifi c hardware requirements 
into account. While the broad theoretical foundations of this fi eld 
are now in place, it remains to carefully examine how these methods 
may be leveraged for applications with different kinds of hardware, 
computational power, or space constraints.

10.7 Chapter Summary
In this chapter, we presented an overview of the different methods to 
construct synopsis for data streams. We introduced random sampling, 
wavelets, sketches, and histograms. In addition to the properties of different 
strategies, the advantages and limitations of these approaches have been 
thoroughly discussed. We also gave some possible challenges which may 
be the future works explored in the literature.
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CHAPTER 11

Recommendation Systems

Recommendation systems are important applications that are essential for 
numerous business models. Recommendation systems suggest appropriate 
items based on user preference and historical purchase data. These systems 
are based on the principle that if users shared the same interests in the past, 
they will, with high probability, exhibit similar behavior in the future. The 
historical data that refl ect user preference may comprise explicit ratings,Web 
click logs, or tags. Personalization is evidently an important factor in an 
effective recommendation system. In this chapter, we will introduce the 
basic concepts and main strategies for recommendation systems.

The collaborative fi ltering (CF) approach will be presented in Section 
11.1, in which user- and item-based CF methods are introduced. The 
probability latent semantic analysis (PLSA) will be presented in Section 
11.2. The tensor method will be introduced in Section 11.3. A discussion 
on data stream will be presented in Section 11.4. A chapter summary will 
be given in Section 11.5.

11.1 Collaborative Filtering
One of the most basic and important techniques in recommendation 
systems is collaborative fi ltering (CF). The key idea of CF is that automatic 
predictions (or fi ltering) are made about the interests of users by collecting 
preference information from a large number of users (i.e., collaborate). 
The preference data may include explicit ratings, Web click logs, reviews, 
or tags. Through deliberate analysis of the interrelation between people 
(represented as user profi le) and items based on preference information, 
effective recommendations can be suggested. To encode the profi le of a 
user, a common method is to use a vector of the user’s ratings on items. The 
rating values can be either binary (i.e., like or dislike) or numeric values that 



indicate the degree of the rating. Researchers have proposed two categories 
of CF algorithms: memory- and model-based [17, 3, 11]. We will introduce 
these two kinds of methods in the subsequent sections.

11.1.1 Memory-based Collaborative Recommendation

Memory-based collaborative methods always employ the total ratings of 
users in the training data to make a recommendation. These strategies can be 
further divided into two classes: user- and item-based approaches [20].

11.1.1.1 User-based Recommendation

In this section, we introduce one representative user-based recommendation 
algorithm: the user-based k nearest neighborhood algorithm (UBkNN). 
UBkNN fi nds a set of users who have similar preferences as the target user by 
calculating the similarity among users. To fulfi ll this purpose, the algorithm 
applies a number of state-of-the-art kNN (i.e., top-k nearest neighborhood) 
strategies. After the process of fi nding the kNN users, the approach applies 
the common CF algorithm to propose a list of item recommendations to the 
user. Given a query user u, the recommendation of item i is computed as 

follows: pu,i = ,1

1

( ( , ))

( , )

k
j ij

k

j

R sim u j

sim u j
=

=

∑
∑ , where Rj,i denotes the rating by user j on item 

i, whereas the k most similar users (with regard to user i) are considered.

11.1.1.2 Item-based Recommendation

In contrast to the UBkNN algorithm, the item-based kNN method [20] is 
another kind of CF approach that computes the similarity between two 
items, instead of users. In the item-based kNN algorithm, the similarity 
among items is computed by comparing the item vector, after which a 
similarity table is constructed. In this table, each row is modeled as a set of 
ratings by all users on one item, whereas each column is modeled as a set 
of ratings by one user on all the items. To assess the rating on an item i for 
user u, the algorithm computes the ratio of the sum of the ratings given by 
the user on the items that are similar to i with respect to the sum of involved 

item similarities as follows: pu,i = 
,1

1

( ( , ))

( , )

k
u jj

k

j

R sim i j

sim i j
=

=

∑
∑ , where Ru,j denotes rating 

by user u on item j, and the k most similar items (with regard to item i) are 
considered.
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11.1.2 Model-based Recommendation

Another main class of CF algorithms is the model-based approach. Model-
based recommendation constructs a model from the historical data (i.e., 
rating, tag, etc.) and then uses this model to make a recommendation. 
Several approaches can be used to build the model, such as the hidden 
Markov model, decision tree, clustering, Bayesian networks, neural 
networks, latent semantic analysis, and so on.

Mobasher et al. introduced a model-based recommendation system, 
i.e., Profi le Aggregations based on Clustering Transaction that applies 
clustering strategies to aggregate user sessions. Users are then clustered 
based on similar preferences (i.e., access pattern). The clustering model 
learned from the training data can be used to make a recommendation for 
a newcomer, such that the representative of the clustering is suggested to 
the person who has a similar access pattern as the cluster.

Notably, the similarity metric is important for its function in evaluating 
how similar two users (or items) are. Common metrics include cosine, 
jaccard, and so on. However, this subject is not within the scope of this 
chapter, and we direct interested users to [20].

11.2 PLSA Method
The PLSA model was fi rst proposed in [10] to address text mining. The 
basic idea of PLSA is related to that of LSA [5], the difference being the 
fact that the latter is based on linear algebra and downsizes the occurrence 
tables (via a singular value decomposition), whereas the former is built by 
mixture decomposition derived from a latent class model in statistic theory 
[1]. PLSA intuitively aims to recognize the hidden semantic relationships 
among co-occurrence activities, usually based on the aspect model.

To illustrate the PLSA, we present its application on Web usage mining. 
User sessions over Web pages can be deemed as co-occurrence activities to 
deduce the latent usage pattern. The aspect model assumes the existence of 
a latent factor space Z = (z1, z2, . . . , zk), and each co-occurrence observation 
data (si, pj) (i.e., the visit of page pj in user session si) is associated with the 
factor zk  Z by a varying degree to zk. Intuitively, the relationships between 
users and Web pages should be different and determined by a variety of 
factors, which can then be used to represent the latent usage patterns of 
the users.

For example, when applying PLSA on an e-shopping website, we can 
assume k categories of navigational behavior patterns (determined by  k 
latent factors). The  k factors could be the probabilities that: (1) users have 
an interest in the travel-related product category; (2) users merely browse 
different products; (3) users tend to buy entertainment products, and so on. 



To refl ect all of these probabilities, we can project the training data into the 
corresponding latent factor space. The representation of these projections 
can be defi ned as the conditional probability distribution that refl ects the 
relationships among users or Web pages (which are, indeed, latent usage 
patterns). In a brief summary, PLSA aims to identify and represent user 
access behavior in latent semantic spaces, and determine the corresponding 
factors. In the following section, the mathematical theory of PLSA will 
be presented. First, we give several defi nitions that are necessary in the 
framework: P(si) represents the probability that a user session si appears 
in the training data; P(zk|si) indicates that, given a user session si, the 
probability of the latent factor  zk associated with si; and P(pj |zk) denotes 
that, given the latent factor zk, the probability of the pages pj exists.

The algorithm of the PLSA model is executed as the following steps: (1) 
a user session si is selected with probability P(si); (2) a factor zk is chosen with 
probability P(zk|si); and (3) a Web page pj is presented with probability P(pj 
|zk). Through these steps, we can derive the probability of the observation 
data (si, pj) relative to the latent factor zk. The process can be presented by 
the following formula:

   P(si, pj) = P(si) · P(pj|si)    (11.2.1)

where, P(si, pj) = P(si) · P(pj|si). Through the Bayesian rule, the above 
equations can be transformed to:

  P(si, pj) =  ( ) ( | ) ( | )i j
z Z

P z P s z P p z
∈
∑   (11.2.2)

Based on the likelihood rule, the total likelihood of the observation 
data can be presented as:

  Li = 
,

( , ) ( , )
i j

i j i j
s S p P

m s p logP s p
∈ ∈

⋅∑    (11.2.3)

where m(si, pj) denotes the element of the matrix (determined by user sessions 
and web pages) associated with user session si and page access pj.

To maximize the total likelihood, the conditional probabilities P(z), 
P(si|z), and P(pj |z) must be recursively optimized based on the observation 
data. The Expectation Maximization (EM) strategy [6] is known to be an 
effective tool for addressing this issue. In EM, two steps are recursively 
implemented: (1) expectation (E) step, where the posterior probabilities are 
computed for the latent factors based on the current computations of the 
conditional probability; and (2) maximization (M) step, where the estimated 
conditional probabilities are updated and used to maximize the likelihood 
based on the posterior probabilities computed in the previous E step.

The procedure is executed as follows: We fi rst set the initial values of 
P(z), P(si|z), and P(pj |z) randomly. In the E-step, we employ the Bayesian 
rule to compute the following values relative to the observation data:
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         P(zk|si, pj) = 
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In the M-step, we calculate the following values:
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where R = si S,pj P m(si, pj). Substituting Eqs. 11.2.5 with 11.2.7 into Eqs. 
11.2.2 to 11.2.3 will yield the total likelihood Li of the observation data with 
monotonic increasing property. The E-step and M-step are recursively 
executed until convergence occurs, which indicates that the result is 
maximized to be the optimal estimate of the observation data. In terms of 
the complexity of the PLSA algorithm, the computational cost is O(mnk), 
where m denotes the number of sessions, n denotes the number of the Web 
pages, and k denotes number of latent factors.

Through the aforementioned process, we can see that the estimated 
probability distribution intrinsically refl ects the local maximum likelihood 
and therefore encodes the critical information that could be used to deduce 
the latent factors.

11.2.1 User Pattern Extraction and Latent Factor Recognition

In the PLSA model, latent factors (are assumed to) indicate features that 
refl ect usage co-occurrence observation activities. As an intuitive result, 
every latent factor could have a specifi c user access pattern. To address 
the issue of decoding latent factor and extracting user patterns, we can 
build aggregated user profi les to present the user access behaviors based 
on the estimated probability distributions. A simple representation for 
the aggregated user profi les is achieved by using a set of clustered pages 
that are weighted to illustrate their contributions to the clustered group. 
The semantic meaning of the latent factor can be deduced by analyzing 
the aggregated user profi le, that is, the representative topic of the cluster 
group.



11.2.1.1 User Session Partition

Given a user session si, the estimated probability distribution in the factor 
space may indicate the user’s access pattern over the whole latent factor 
space, which can thus be explored to discover the dominant factors by 
recognizing the top probability values. By using Bayesian rule, we can 
calculate a set of probabilities over the latent factor space as follows:

  P(zk|si) = 
( | ) ( )

( | ) ( )
k

i k k

z Z i k k

P s z P z
P s z P z∈∑

   (11.2.8)

Considering that only a few probability distributions can pass 
the predefi ned threshold test, the probability group P(zk|si) is always 
very sparse. To mitigate this problem, the users can be clustered into a 
corresponding probability distribution that is larger than the threshold. 
Notably, a user session can be represented by a set of pages, and a mixture 
model can be utilized based on the latent factor zk relative to the weighted 
pages. The pseudo code of user session partition is shown as follows:

Algorithm 6: User Session Partition

Input: A set of calculated probability values of P (zk|si), a user session-page matrix
SP , and a predefined threshold μ.

Output: A set of session clusters SCL=(SCL1, SCL2, . . . SCLk)
Set SCL1 = SCL2 = . . . = SCLk = ϕ;
for each si ∈ S do

select P (zk|si);
if P (zk|si) ≥ μ then

SCLk = SCLk ∪ si;
end

end
if there are remaining users sessions to be clustered then

go to line 2;
end
Output session clusters SCL = { SCLk};

11.2.1.2 Latent Factor Recognition

Analyzing the latent factor is important because of its signifi cance in the 
PLSA model. To address this issue, similar to the user session partition, 
the probability distribution can be employed to partition Web pages into 
corresponding clusters relative to the latent factors. A threshold-based 
strategy can also be used to identify the conditional probabilities that pass 
the test and possess similar semantic meaning. After clustering, the URLs 
of the pages and the weights deduced from the model will be utilized to 
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analyze the semantic meaning of the latent factors. The pseudo code of the 
algorithm for recognizing latent factors is as follows:

Algorithm 7: Latent Factor Recognition 

Input: A set of conditional probabilities, P (pj |zk), a predefined threshold μ
Output: A set of latent semantic factors represented by several essential pages
Set PCL1 = PCL2 = . . . = PCLk = ϕ;
for each zk do

select the web pages which have P (pj |zk) ≥ μ and P (zk|pj) ≥ μ;
PCLk = pj ∪ PCLk;

end
if there are remaining users pages to be clustered then

go to line 2;
end
Output PCL = { PCLk};

11.3 Tensor Model
Tensors are geometric objects that describe linear relations among vectors, 
scalars, and other tensors [2]. In this section, we will briefl y introduce the 
tensor method, which is a commonly used strategy for recommendation 
systems.

A matrix is an effective tool that encodes the relationship between two 
types of objects, such as the information between the users and their clicked 
Web pages. A common characteristic of a matrix is that each row can be 
considered as a linear combination of values from different column spaces, 
and vice versa, where each column is represented by a vector of elements 
in the row space. Computation based on matrix can effectively address 
a number of real problems because two dimensional model (i.e., matrix-
based model) can fi t these problems well. Nevertheless, high-dimensional 
problems such as user vs. pages vs. time vs. keywords must likewise be 
addressed. A tensor, which can be considered as a high-dimensional version 
of a matrix, can be considered as a general model for high-dimensional 
data. Therefore, the tensor model is employed for all problems that involve 
multiple dimensional issues. The existence of numerous models related 
to tensor also provides a powerful tool. We discuss the mathematical 
background of the tensor model as follows:

We fi rst present a number of basic defi nitions used in the tensor model 
with meanings that differ from those under a two-dimensional situation. 
Specifi cally, the order, mode, and dimension are used to denote the concepts 
of dimensionality, dimension, and attribute value that are used in linear 
algebra. For instance, a third-order tensor is the same as a three-dimensional 
data expression. Furthermore, we defi ne several specifi c symbols for the 



tensor model, which are presented as follows: (1) scalar is denoted by a 
lowercase letter, such as a; (2) vector is denoted by a boldface lowercase 
letter, such as a; (3) the ith entry of a is denoted by ai; (4) matrix is denoted 
by a boldface capital letter, such as A; (5) the j-th column of A is denoted 
by aj , whereas the element of jth column and ith row is denoted by aij ; (6) 
tensor is denoted by an italicized boldface letter, such as X; (7) element (i, 
j, k) of a third-order tensor is denoted by Xijk; and (8) a tensor of order M 
closely resembles a data cube with M dimensions. Formally, we write an 
Mth order tensor X  RN1×N2×...N

m, where Ni(1 ≤ i ≤ M) is the dimensionality 
of the ith mode. For brevity, we often omit the subscript [N1, . . . ,NM]. 
Moreover, more important concepts used in the tensor model are defi ned 
as follows [21].

Figure 11.3.1: Sample multiplication of a third-order tensor with a matrix

Defi nition 2 (Matricizing or Matrix Unfolding) [21]. The mode-d matricizing 
or matrix un-folding of an Mth order tensor X  RN1×N2×...N

m is a vector in RNd 
obtained by keeping index d fi xed and varying the other indices. Therefore, the 
mode-d matricizing X(d) is in R i d Ni×Nd.

Defi nition 3 (Mode Product) [21]. The mode product X ×dU of a tensor 
X  RN1×N2×...N

m and a matrix U  RNd×N’ is the tensor in RN1×...×Nd−1×N’×Nd+1×...×NM 
defi ned by:

 1 1 1 1 1 1
1

( ,..., , , ,..., ) ( ,..., , , ,..., ) ( , )
i

d

N

d d d M d d d M d
i

X U i i j i i X i i i i i U i j− + − +
=

× =∑  (11.3.1)

for all index values.
An example is illustrated in Fig. 11.3.1 for third-order tensor X (i.e., 

three-dimensional data) mode-1 multiplied by a matrix U. The process is 
executed in three steps: (1) matricizing X along mode-1; (2) performing 
matrix multiplication between ×1 and U; and (3) folding the result back as 
a tensor.

Based on Defi nition 2, we can calculate a set of multiplications of a 
tensor X  RN1×N2×...N

mUi|
M

i=1  RNi×Di as: X ×1 U1 . . . ×m UM  RD1×...×DM, which 
can be represented as × M

i=1 ×iUi. Moreover, we present the following 
multiplications of all Uj except the i-th: X ×1 U1 . . . ×i−1 Ui−1 ×i+1 Ui+1 . . . ×M 
UM as X j i ×jUj .
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Definition 4 (Rank-(R1, . . . ,RM) approximation). Given a tensor 
X  RN1×...NM, its best Rank-D1, . . . ,DM approximation is the tensor X
   RD1×...

DM with rank X
 (d) = Dd for 1 ≤ d ≤ M, which satisfi es the optimal criterion 
of least square error argmin||X − X
  ||2

F.
The best Rank-(R1, . . . ,RM) approximation is X
  = Y M

j=1 ×jUj, where the 
tensor Y is the core tensor of approximation Y  RN1×...×NM, and Uj|

M
j =1  RNj×Dj 

is the projection matrices.

11.4 Discussion and Challenges
Recommendation systems are confronted by several issues. The fi rst issue 
is the cold start problem, which refers to a case in which items (or users) 
that are not rated by others (or new user) are not recommended. Numerous 
studies have been conducted to address this issue. Another challenge is the 
sparsity issue, a case in which only a small percentage of the total items 
are rated by users [15]. To address the sparsity issue, several works have 
introduced an award-giving mechanism that encourages users to rate more 
items. Other works focus on the implicit behavior of users, which indicates 
the users’ rating [18]. Other problems for recommendation systems include 
data redundancy, noisy data, and so on [23].

In addition to the aforementioned problems, we will introduce other 
important issues related to the recommendation systems.

11.4.1 Security and Privacy Issues

A recommendation system is known to achieve optimal performance 
when more information is known about the users, which means that the 
users need to present as much personal information as possible to the 
system to obtain good suggestions. This process, however, may give rise to 
privacy problem. Personal information typically includes the user’s name, 
birth date, postal code, email, and so on. A registration process is always 
necessary if a user hopes to obtain a recommendation from the system. As 
explained in Chapter 9 (i.e., issues on privacy preservation), combinations 
of such personal information may be highly identifying (Quasi-identifi er1). 
Therefore, the personal data submitted to the recommendation systems may 
become quasi-identifi ers [12]. Moreover, such personal information may be 
disseminated, intended or unintended, by the recommendation system.

1 Quasi-identifi er: “Variable values or combinations of variable values within a dataset that are 
not structural uniques but might be empirically unique and therefore in principle uniquely 
identify a population unit.”(OECD, Glossary of statistical term, 2010)



In an ideal environment, users should trust that not only will 
recommendation systems protect their privacy, but will also provide highly 
accurate resultant recommendations [12]. Nevertheless, this condition is 
not true for numerous real applications.

Considering these problems, recommendation systems should prevent 
the disclosure or misuse of user’ data. Other security-related issues also 
exist. For instance, a product creator may manipulate the recommendation 
provided by the system such that his product will be recommended to 
users [4, 13].

11.4.2 Effectiveness Issue

Recommendation systems primarily aim to provide good suggestions 
to users. This aim embodies the effectiveness issue. The evaluation of 
effectiveness has thus been an important and thoroughly studied subject 
over the past several decades [8, 9, 14, 22]. A large number of commonly used 
evaluation metrics are based on coverage and accuracy. Coverage estimates 
the percentage of items that a recommendation system can recommend [8]. 
Accuracy can be calculated through statistical or decision support-based 
methods [8].

Statistics-based metrics include root mean squared error, mean absolute 
error, and so on. The basic idea for statistics-based metrics is that computed 
ratings are compared with real ratings. Decision support-based metrics 
include those commonly used in the information retrieval literature, such 
as precision (the percentage of real “high” ratings compared with those 
computed to be “high” by recommendation systems), recall (the percentage 
of real computed to be “high” ratings compared with those known to be 
“high”), F measure, and so on [8]. Support-based metrics compute how 
well recommendation systems make suggestions.

Despite the given metrics, tests of recommendation effectiveness on 
an unbiased random sample remain limited because uncovering the real 
scenario is time consuming [14]. Thus, existing experimental evaluations 
only test data that users have already selected to rate, which may introduce 
bias, that is, users may rate mostly the items that they like. Moreover, for 
real recommendation systems, relying solely on accuracy, recall, or any of 
the given metrics is impractical. For instance, in a supermarket application, 
recommending obvious items (e.g., via the association rule) will yield high 
precision but may not be helpful to the user because the user is already 
familiar with such items. Thus, recommendation systems must provide 
uncommon and useful recommendations based on economics-oriented 
measures, similar to those given [7, 16, 19].

   Recommendation Systems 245



246 Applied Data Mining

11.5 Chapter Summary
In this chapter, we provided an overview of the basic concepts and 
different methods for recommendation systems. We discussed the CF, 
PLSA, and tensor methods. In addition, we discussed the important issues 
and problems related to recommendation systems, including cold start, 
data sparsity, privacy, and effectiveness. This chapter explored the basic 
methodologies that could be further explored for interested readers.
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CHAPTER 12

Social Tagging Systems

In this chapter, we present the literature review on works on tag-based 
systems. First, we introduce the background of this chapter. The purpose of 
literature review is to gain insight in research that has been done already; 
in turn this process enables us to identify useful ideas, unsolved issues and 
shortcomings in the current methods.

Accordingly, this chapter is structured as follows: in Section 12.1 we 
explore the literature on the basic concept of data mining and information 
retrieval which links this chapter to the whole book; in Section 12.2 
the related work in recommender systems in details, we review the 
recommendation algorithms, and discuss the tag-based recommender 
system; subsequently we review the clustering algorithms which helps to 
improve the recommendation in Section 12.3. Following that in Section 12.4 
we discuss the Clustering algorithms in Tag-Based Recommender Systems 
in details. Finally, a summary is given in Section 12.5.

12.1 Data Mining and Information Retrieval
Data mining is one of the popular research areas which has a long processing 
of research period. Data mining can take the evolutionary process and 
analyze data from various perspectives, and then summarize the useful 
information for the users [53]. We want to utilize the techniques and 
algorithms from data mining to process the data in the various fi elds to 
fi nd the correlations with the different attributes.

Information Retrieval is a broad but full of challenge part of research 
areas. It also has a long history, as early as 1968, when Lancaster [33] gave 
the perfectly straightforward idea. It mainly focuses on providing useful 
and helpful information to users by easy access.



Information retrieval (IR) should provide the useful and interesting 
information according to the users’ need with easy access from the dataset. 
And it also helps to represent, store and reorganize the information items 
[3].

When a user enters a query into an information retrieval system, the 
system will compute a numeric score based on the similarity between each 
object and such query, and then rank the objects to generate the ranking 
list, so the value will present how well each object in the database matches 
the query [34].

There are various IR systems based on the different user queries, such 
as text documents, images, [18] audio, [14] mind maps [4] or videos. We 
involved different approaches to improve the calculation of ranking scores 
with different degrees of relevancies; they can obtain the top ranked objects 
to generate better recommendations.

In [8], an information retrieval system is composed in three parts:

Feedback

Processor

Documents

Queries

Input
Output

Figure 12.1.1: Framework of Information Retrieval System ([8])

The representation of the documents in the dataset and the query from 
user will initialize as the input part in the beginning.

And then, some of the techniques and algorithms will involve to 
structure information in an appropriate way. It will also involve performing 
the actual retrieval function. The output part is usually a set of document 
lists.
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12.2 Recommender Systems
The search engines based on the data mining technique can help user to 
obtain suffi cient information resources; however, they have to fi lter the 
bulky information resources themselves to get proper information. So how 
to deal with the problems of ambiguity and redundancy represents the 
urgent and challenging needs. Thus the recommender systems came into 
birth according to the basic needs for the different users.

The recommender system provides a list of recommended items to 
the user by calculating the similarity between the collected data and the 
documents in the dataset. It can also help users to discover the useful items 
they might not have found by themselves.

The fi rst overview of recommender systems was from an intelligent 
agent’s perspective which was provided by Montaner [44]. Herlocker et al. 
[23] surveyed the evaluation techniques for recommender systems.

The recommender systems improve the performance of the search 
engines to index the non-traditional data. Tag has been widely used as an 
additional attribute in recommender systems. Tag is a kind of metadata 
which helps to describe an item and allows it to be found again by 
browsing or searching. It is assigned by the individual user to the web 
resource which can represent the user’s personal opinion expression [7]. 
The websites like Del.icio.us, Last.fm, and Flickr are the masterpieces of 
Web 2.0’s applications. They allow users to express their own preferences 
on the original resources with freely annotated words. So how to use the 
social tagging data for better recommendation in appropriate way becomes 
an active research topic recently.

Tags are used as an additional feature to re-model users or resources 
over the tag vector space, and the annotation attribute can improve the 
personalized recommendation. Different users can annotate the various 
tags on the same resource, and the same tags also can be annotated by 
different users as well [40].

Figure 12.2.1: Relationship of Users, Tags, Resources in Tagging System



Before we start digging into tag based recommender systems we 
will shortly discuss developments in the recommender systems area in 
general.

12.2.1 Recommendation Algorithms

In the previous subsection, we introduced the primary processing of 
recommendation, and we will review the current recommendation 
algorithms in this section. Overall, the recommendation algorithms are 
utilized to recommend items which users are searching for currently, or 
predict the items that they have not considered yet. Adomavicius and 
Tuzhilin formulate the recommendation problem as follows [15]:

Let U = {u1, · · · um} be a set of users, and let I = {i1, · · · im} be a set of items. 
Let U × I  R, where R is a totally ordered set, and the g(um, in) measures 
the similarity between item in to user um. Then, we want to recommend 
unknown item imax,u  I to the user u  U, which maximize the function g:

u  U, imax,u = arg max ( , )
i I

g u i
∈

The basic concept of recommendation algorithms is shown as above, 
which provides the fundamental background to the research. Below we 
will introduce the Collaborative Filtering techniques and Content-based 
techniques which are two basic types of recommendation methods.

12.2.1.1 Collaborative Filtering Recommendation

Collaborative Filtering (CF) is a mellow technique which has been widely 
used in the recommender systems. It processes for fi ltering information 
or patterns using techniques involving collaboration among multiple 
conditions [24]. The collaborative fi ltering typically focuses on user data 
from very large data sets. Generally speaking, it is based on the user’s 
historical behavior that means when the user is interested in an item in the 
past; it will be the same in future. If another user who is interested in the 
same item, the system will defi ne them have one of the common options. 
Then the system will provide recommendation according to the same 
preferences of them.

It can produce personal recommendations by computing the similarity 
between the user’s preference and other related people. 
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Figure 12.2.2: Principle of Collaborative Filtering Recommendation

The basic mechanism behind collaborative filtering systems is the 
following:

 • Collect a large group of people’s preferences;
 • Analyze the similarity among a subgroup of people;
 • Select the people who has the similar preferences as the person who 

seeks advice;
 • Calculate the average preferences score for that subgroup people;
 • Generate the recommended items to the user based on preference 

function.

The collaborative fi ltering has several mechanisms as below:

12.2.1.1.1 Memory-based It utilizes users’ rating data to compute similarity 
between users or items. In principle, there are neighborhood-based 
collaborative fi ltering and item-based or user-based top-N recommendations 
[62].

The neighborhood-based algorithm calculates the similarity between 
two users or items. It predicts the average preferences score for all of the 
rating items. We involve the mechanisms of cosine similarity on vector space 
for our research work. The approach we implemented is as below:

Firstly the algorithm calculates the similarity value on the vector model, 
secondly it collects the k most similar users by using top-N recommendation 
algorithm, and then, it aggregates the user item matrices corresponding to 
the identifi ed k most similar users; fi nally it can identify the set of items to 
be recommended.

In addition, another popular method used to fi nd the similar users is 
called the Locality Sensitive Hashing. It implements the nearest neighbor 
mechanism in linear time.

The advantages of this approach are: The result is convenient to explain; 
the implementation is easy to create and use; when the system has the 
new data, it can be updated easily and incrementally; the content of the 
recommended items do not need to be considered.

However, there are several disadvantages of this approach: First, it 
depends on the users’ rating histories, so it has the limitation called “cold-
start”, meaning that systems can only generate the recommendation when 
there are enough user data. Second, it has the poor prediction with the large 
dataset especially when data get sparse or the number of similar users is 



small. Third, it cannot generate the recommendation for the new users or 
the users without rating histories.

12.2.1.1.2 Model-based Models are developed by using data mining and 
machine learning algorithms to fi nd patterns based on training data. 
There are many algorithms such as Bayesian Networks, clustering models, 
Markov decision process based models, and so on. The classifi cation and 
clustering techniques help the models to identify the user with the different 
parameters. The number of the parameters can be changed by different 
types according to principal component analysis [63].

The advantages of this approach are: It has the better preference on 
the sparsity, so it is more suitable for large data sets on the prediction 
performance. It provides the recommendation with more intuitive 
rationale.

The disadvantages of this approach are: It is diffi cult to explain the 
predictions for some of the models. Modeling process is more complex. It 
is diffi cult to gain both well prediction performance and scalability. Some 
of the useful information would be lost by reducing models.

12.2.1.1.3 Hybrid It is based on the combination of the memory-based and 
the model-based CF algorithms. Such technique improves the scalability 
of model-based approach and the accuracy of memory-based approach; 
therefore, it performs more effectively than both of them. In addition, it 
solves the problem of data sparsity. However, it increases the complexity 
to implement [64].

12.2.1.2 Content-based Recommendation

Content-based fi ltering recommendation is based on the content similarity 
of the items. It aims on recommending items based on the idea that if a 
user liked an item in the past which had been recorded by the system, 
he/she might probably like other similar items in the future. The system 
collected attributes for the items from the previous information, and then 
provided the recommended items. The recommendation decision is made 
by comparing the candidate items with the previously rated item. The best-
matching items are recommended to the users [65].

In content-based recommendation approaches, the function g(um, in) is 
formulated as:

g(um, in) = sim(ContentBasedUserProfi le(um),ContentBasedItemProfi le(In))

Where ContentBasedUserProfi le(um) is composed by content-based user 
preferences of a user u  U, and the ContentBasedItemProfi le(In) is the set of 
content features characterizing item i  I .
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Basically, the above method characterizes items within the system by 
item profi le. Then, different characteristics of item are expressed as a score 
vector. Finally, the system forms a content-based profi le of users based on 
score vector.

Overall, the recommendation scores denote the importance of each 
characteristic to the user. The recommendation scores can be calculated 
from individually rated content vectors.

Alternatively, calculating the similarity between the attributes that the 
user preferred and those are not preferred is also a method of generating 
the recommendation score. The scores can then be used to estimate the 
probability of a specifi c part of the attributes that is potentially preferred by 
the same user. Some other methods to calculate the recommendation scores 
estimate the preferences of the users over the items by utilizing machine 
learning techniques [66].

Figure 12.2.3: Principle of Content-based Recommendation

Web pages or other kinds of documents can be clustered into the same 
group by the same characteristics; the system stores the relationship among 
users, tags and documents. When the users have the similar preferred 
document, the system can recommend other documents to him which can 
be collected from the other users with the same experience hobbies.

The advantages of this approach are: It is easy to establish the content-
based user profi le based on the weighted vector of item attributes, without 
a need of other users’ data; it can explain the recommendation by listing 
content-feature items; there is no “First-Rater Problem” for the new item.

The disadvantages of this approach are: It excessively depends on the 
particular user relevance; it provides recommendation relying on all content 
information, whereas there is only a very shallow analysis of content that 
can be supplied, and the content must be encoded as meaningful features; 
it also has the problem of “over-specialization”, that means, the system 
can only recommend users with the similar items that they have already 
preferred, to the user according to the highest score.

12.2.2 Tag-Based Recommender Systems

Tagging system has some advantages in [48] as: Low cognitive cost and 
entry barriers; immediate feedback and communication; individual needs 
and information of organization.



The simple tagging system allows any web user to annotate the free 
words on their favorite web resources rather than the predefi ned vocabulary. 
Users can communicate with each other implicitly by the tag suggestions 
to describe resources on the web. Therefore, the tagging system provides 
a convenient way for users to organize their favorite web resources. In 
addition, due to the development of the system, the user can fi nd other 
people who are interested in similar projects. Consensus around stable 
distributions and shared vocabularies emerge [21], even in the absence of 
a centrally controlled vocabulary.

12.2.2.1 Folksonomy

When users want to annotate web documents for better organization and 
use the relevant information to retrieve their needed resources later, they 
often comment such information with free-text terms. Tagging is a new 
way of defi ning characteristics of data in Web 2.0 services. The tags help 
users to collectively classify and fi nd information and they also represent 
the preference and interests of users. Similarly, each tagged document also 
expresses the correlation and the attribute of the document. A kind of data 
structure can be established based on the tagging annotation.

Hotho et al. [26] combined users, tags and resources in a data model 
called folksonomy. It is a system which classifi es and interprets contents. It 
is the derivative of the method of collaboratively creating and organizing 
tags.

Folksonomy is a three-dimensional data model of social tagging 
behaviors of users on various documents. It reveals the mutual relationships 
between these three-fold entities, i.e. user, document and tag. A folksonomy 
F according to [26] is a tuple F = (U, T, D, A), where U is a set of users, T 
is a set of tags, D is a set of web documents, and A  U×T×D is a set of 
annotations. The activity in folksonomy is tijk  {(ui, dj, tk) : ui  U, dj  D, tk 

T}, where U = {U1, U2, · · · , UM} is the set of users, D = {D1, D2, · · · , DN} 
is the set of documents, and T = {T1, T2, · · · , TK} is the set of tags. tijk = 1 if 
there is an annotation (ui, dj, tk); otherwise tijk = 0.

Therefore a social tagging system can be viewed as a tripartite hyper-
graph [43] with users, tags and resources represented as nodes and the 
annotations represented as hyper-edges connecting users, resources and 
tags. There are some social applications which are based on the folksonomy 
such as social bookmarking and movies annotation.

In this section, the preliminary approach for recommender system 
is based on the folksonomy model, which helps us to obtain the tagging 
information, and generate the user profi le, document profi le and group 
profi ling.
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The advantage of the folksonomy is to combine the three-dimensional 
data into one data model; each two parts can represent the related 
information, furthermore it is much more convenient for analyzing the 
users’ behaviors and the documents’ attributes in the folksonomy model.

12.2.2.2 Standard Recommendation Model in Social Tagging System

Standard social tagging systems may vary in the ways of their ability of 
handling recommendation. In this subsection, we focus our discussion on 
the folksonomy model, which is derived from the information retrieval 
principle. In folksonomy model, each user can be represented in the tag set 
vector. Tag frequency represents the popularity of different tags. We use the 
tag frequency as [25], TF = |a = u, r, t   A : u  U, r  R, t  T|, to calculate 
the weight of the vector, which means, if a user u, has an annotation A, and 
he assigns a tag t, on a resource r, such behavior will be assigned as “1” 
in the tagging matrix; otherwise “0”, so the user can be represented as u = 
utf (t1), utf (t2) , · · · , utf (t|T|) , Likewise each resource, r, can be modelled as r = 
rtf (t1), rtf (t2) , · · · , rtf (t|T|) .

There are various similarity measures such as the Jaccard Coeffi cient, 
Pearson Correlation or Cosine similarity to calculate the similarity scores, 
and there are different approaches based on the user vector or resource 
vector. The system provides top-N items as the recommendation list 
according to the ranked similarity values.

There are several other recommendation algorithms proposed 
to generate the recommendation list, such as FolkRank algorithm, 
LocalRank algorithm, and so on. The FolkRank is enlightened by the 
[67], the basic idea for FolkRank is that if an important user annotated a 
resource by an important tag, then, such resource would be important, the 
recommendation is based on calculating the importance weight [26]. Kubatz 
et al. [68] improved the FolkRank by utilizing a neighborhood-based tag 
recommendation algorithm called LocalRank, focuses on the relevant ones 
only, and the recommendation accuracy is on a par with or slightly better 
than FolkRank.

Figure 12.2.4: Relationship of Users, Tags, Resources in Folksonomy



12.3 Clustering Algorithms in Recommendation
The traditional recommendation algorithms such as collaborative fi ltering 
approach, content-based fi ltering approach, and so on, are too much reliant 
on users’ data and such data generally has the problem of sparseness. 
When collecting the user profi les by the approaches above, the sparse data 
would exacerbate the computational complexity and reduce the precision 
of recommendation. So we consider involving the clustering algorithms 
to reduce the dimensions of users and documents data. With the help of 
clustering algorithms, both recommendation performance and results can 
be improved.

Clustering algorithms refer to algorithms which are trying to fi nd 
hidden structures in unlabeled data. The clustering algorithms are used to 
estimate, summarize and explain the main characteristic of the data. There 
are many cluster methods which are based on data mining [30].

We will introduce the K-means, hierarchical clustering and density 
based clustering in the following sections.

12.3.1 K-means Algorithm

The K-means clustering algorithm assigns the objects into k number of 
clusters based on the various factors; it is a top-down algorithm. k is a 
positive integer number and specifi ed apriority by users. The processing is 
fi nished by minimizing the sum of squares of distances between data and 
the corresponding cluster centroid [52].

The basic idea behind K-means is as follows: In the beginning the number 
of clusters k is determined. Then the algorithm assumes the centroids or 
centers of these k clusters. These centroids can be randomly selected or 
designed deliberately. One special case is when the number of objects is 
less than the number of clusters. If such case exists, each object is set as 
the centroid of the individual cluster and assigned a cluster number. If 
the number of objects is bigger than the number of clusters, the algorithm 
calculates the distance (i.e., Euclidean distance) between each object and all 
of the centroids to obtain the minimum distance. When the process starts, 
the centroid location is unknown, so algorithm updates centroid location 
according to the processed information, such as the minimum distance 
between the objects and the new centroids. When all of the objects are 
assigned to the k clusters, the centroids have fi nished updating. Such above 
process repeats until there are no longer large changes for assigning the 
objects into the clusters, or centroids do not change in successive iterations. 
So the iteration convergence can be proved mathematically [19].
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Description: Given a set of observations (x1, x2, · · · , xn), where each 
observation is a d-dimensional real vector, k-means clustering aims to 
partition the n observations into k sets (k ≤ n), S = {S1, S2, · · · , Sk} so as to 
minimize the Within-Cluster Sum of Squares (WCSS), where µi is the mean 
of points in Si.
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The advantages of the K-means algorithm are: The low time 
consumption and the fast processing speed on the condition of value k is 
small; the compacted clusters production performance is satisfactory; the 
clusters do not overlap since they are in non-hierarchical structure.

There are some disadvantages of K-means algorithm: The algorithm 
is not able to calculate the applicable number of clusters automatically; 
the user has to assign the value k as an input to the algorithm in advance. 
Simultaneously, the specifi c number of clusters restricts the prediction of 
what the real k should be. Various initial partitions lead to different number 
of clusters, and the results for different composition of clusters can be 
distinct in some of the experiments.

Figure 12.3.1: Frame Structure of K-Means Algorithm
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There are extensive related research works on it. The author in [27] 
theorized that K-means was a classical heuristic clustering algorithm. Due 
to the sensitivity problem of K-means, some modifi ed approaches have 
been proposed in the literature. Fast Global K-means [51] (FGK means), 
for example, is an incremental approach of clustering that dynamically 
adds one cluster centre at a time through a deterministic global search 
procedure consisting of D executions of the K-means algorithm with 
different suitable initial positions. Zhu et al. presented a new clustering 
strategy, which can produce much lower Q(C) value than affinity 
propagation (AP) by initializing K-means clustering with cluster centre 
produced by AP [45]. In [42], the authors were motivated theoretically and 
experimentally by a use of a deterministic divisive hierarchical method 
and use of PCA-part (Principal Component Analysis Partitioning) as the 
initialization of K-means. In order to overcome the sensitivity problem of 
heuristic clustering algorithm, Han et al. proposed CLARANS based on 
the random restart local search method [4]. VSH [9] used the iteratively 
modifying cluster centre method to deal with initiation problem. More 
modifi ed methods addressing the initialization sensitivity problem of 
clustering algorithm are referred to [20, 36, 59] .

12.3.2 Hierarchical Clustering

The K-means algorithm has the limitation of choosing the specifi c number of 
clusters, and it has the problem of non-determinism. It returns the clusters in 
an unstructured set. As a result of such limitations, if we require hierarchy 
structure, we need to involve the hierarchical clustering.

Hierarchical clustering constructs a hierarchy of clusters that can 
be illustrated in a tree structure as a dendrogram. Each node in the 
tree structure, including the root, represents the relationship between 
parents and children, so it is able to explore different levels of clustering 
granularity [19]. Hierarchical clustering algorithms are either top-down 
or bottom-up, the bottom-up algorithms treat each fi le as a separate 
cluster in the beginning and then begin to merge, until all cluster clusters 
have been merged into a single cluster, such cluster contains all the 
fi les.

The bottom-up hierarchical clustering is called hierarchical agglomerative 
clustering.

The top-down clustering requires a method for dividing a cluster. It 
splits clusters recursively until the individual documents are reached [69]

The advantages of the hierarchical clustering are [5, 19]: It has a high 
fl exibility with respect to the level of granularity; it is easy to deal with any 
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form of similarity metric or the distance; it does not require pre-assignment 
of the number of clusters, and therefore has high applicability.

The disadvantages of the hierarchical clustering are summarized as 
[70]: The termination judgment conditions and the interpretation of the 
hierarchy are complex; if an incorrect assignment exists, most hierarchical 
algorithms do not rebuild intermediate clusters; the single pass of analysis 
and local decisions are the infl uencing factor of the clusters.

12.3.3 Spectral Clustering

The spectral clustering combines some of the benefits of the two 
aforementioned approaches. It refers to a class of techniques which rely on 
the eigenvalues of the adjacency similarity matrix; it can partition all of the 
elements into disjoint clusters, the elements that have high similarity will 
end up in the same cluster. Elements within one cluster have low similarity 
with other clusters’ elements. The spectral clustering is based on the graph 
partition. It maps the original inherent relationships onto a new spectral 
space. The whole items are simultaneously partitioned into disjoint clusters 
with minimum cut optimization. Spectral clustering techniques make use of 
the spectrum of the similarity matrix of the data to perform dimensionality 
reduction for clustering in fewer dimensions [71].

The original formula for the spectral clustering is:

L = I − D−1/2WD−1/2

where W is the corresponding similarity matrix, and D is the diagonal 
matrix, Dii = ij

j
S∑ .

According to the spectral graph theory in [13], the k singular vectors of 
the reformed matrix RMUser = D−1/2 SMUserD

−1/2 present a best approximation 
to the projection of user-tag vectors on the new spectral space.

Compared to those clustering algorithms above, spectral clustering 
algorithm has many fundamental advantages: It is very simple to 
implement; it performs well with no local minima, so it could be solved 
effi ciently by standard linear algebra methods; it also can keep the shapes 
and densities in the cluster invariantly; the performance of obtained result 
is better.

The disadvantages of the spectral clustering are summarized as: The 
high time complexity and space complexity lead the processing ineffi cient. 
In some cases, the clustering processing is unstable.
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Figure 12.3.2: Example of the Spectral Clustering [37]

Figure 12.3.3: Example of the Spectral Clustering [37]

12.3.4 Quality of Clusters and Modularity Method

There are various categories of methods to measure the quality of clusters, 
such as ”Compactness”, a measure of similarity of objects within an 
individual cluster to the other objects outside the cluster; or the ”Isolation”, 
a measure of separation among the objects outside the cluster [54]. In the 
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research, we combine such attributes together, so as to utilize the modularity 
method to evaluate the clustering algorithms. It is one of the quantitative 
measures for the ”goodness” of the clusters discovered.

The modularity value is computed by the differences between the actual 
number of edges within a cluster and the expected number of such edges. 
The high value of the modularity shows the good divisions; that means, 
the nodes within the same cluster have the concentrated connections but 
only sparse connections between different clusters. It helps to evaluate the 
quality of the cluster; here ”quality of cluster” consists of two criteria, i.e., 
the number of clusters and the similarity of each cluster [32].

Consider a particular division of a network into k clusters. We can 
defi ne a k×k symmetric matrix SM whose element smij is the fraction of all 
edges in the network that link vertices in cluster p to vertices in cluster q. 
Take two clusters Cp and Cq randomly, the similarity smCpq between them 
can be defi ned as
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where cpq is the element in the similarity matrix for the whole objects. When 
p=q, the smCpq is the similarity between the elements inside the clusters, 
while p  q, the smCpq is the similarity between the cluster Cp and the 
cluster Cq. So the condition of a high quality cluster is max( pp

p
smC∑ ) and 

min(
,

pq
p q

smc∑ ), p  q, p, q = 1, 2, · · ·m.

Summing over all pairs of vertices in the same group, the modularity, 
denoted Q, is given by:
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where the value m is the amount of clusters. The trace of this matrix TrSM 

1

m

pp
p

smC
=
∑  gives the fraction of edges in the network that connect vertices

in the same cluster, and a good division into clusters should have a high 
value of it. If we place all vertices in a single cluster, the value of TrSM 
would get the maximal value of 1 because there is no information about 
cluster structure at all.

This quantity measures the fraction of the edges in the network that 
connect vertices of the same type minus the expected value of the same 
quantity in a network with the same cluster divisions. Utilize the value Q to 
evaluate the clusters [4]: Values approaching Q=1, which is the maximum, 



indicate that the whole network has a strong cluster structure. In practice, 
values for such networks typically fall in the range from about 0 to 1. The 
higher value of Q, the better quality for the cluster the Cp and Cq is, so that 
we can get the optimal number of clusters.

12.3.5 K-Nearest-Neighboring

In KNN algorithm, the object is classifi ed by the neighbors who have been 
separated into several groups, and the object is assigned into the class which 
has the most common neighbors amongst its k nearest majority infl uence 
neighbors. The KNN algorithm is sensitive to the local data structure. The 
training data of the algorithm is the neighbors who are taken from a set of 
objects with the correct classifi cation. In order to identify neighbors, the 
objects are represented in the multidimensional feature space vectors [22]. 

k is a positive integer, it is typically small. Take an example in Fig. 12.3.4, 
if k=1, then the object is simply assigned the class of its nearest neighbor. In 
binary (two class) classifi cation problems, it is helpful to choose k to be an 
odd number as this avoids diffi culties with tied votes [12, 49].

The test sample red triangles should be classifi ed either to the fi rst 
class of green circle or to the second class of blue star. If k = 3 it should be 
classifi ed to the fi rst class because there are 2 green circles and only 1 blue 
star inside the inner circle. If k = 5 it should be classifi ed to second class 
since there are 3 stars and only 2 circles inside the outer circle.

Figure 12.3.4: Example of KNN Classifi cation [1]

The advantages of the KNN algorithm are: Such algorithm is easy to 
implement; it has a strong applicability, although the prediction accuracy 
can be quickly degraded when the number of attributes grows.

The disadvantages of the KNN algorithm are: It needs to compare the 
test item with all of the items in the training set, so the time complexity 
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is higher than the linear classifi er when it makes the predictions; and its 
performance depends too much upon the similarity and the k value.

KNN algorithm adaptation methods have been widely used in the tag 
classifi cation. Cheng et al. combine the KNN method and logistic regression 
to exploit the multiple dependence [11]. Zhang et al. propose ML-KNN, a 
lazy method that fi rstly fi nds k neighbors of the test instance, and then gives 
the predicted label set by maximizing each labels posterior [57].

In this chapter, we aim on the major problem of most social tagging 
systems resulting from the severe diffi culty of ambiguity, redundancy and 
less semantic nature of tags. We employ the KNN algorithm to establish the 
structure for potential relationship information of the tags neighbors. Then we 
combine the KNN graph with the clustering algorithm to fi lter the redundant 
tags neighbors for improving the recommendation performance.

12.4 Clustering Algorithms in Tag-Based Recommender 
Systems

As tags are of syntactic nature, in a free style and do not refl ect suffi cient 
semantics, the problems of redundancy, ambiguity and less semantics of tags 
are often incurred in all kinds of social tagging systems [47]. For example, 
for one resource, different users will use their own words to describe their 
feeling of likeness, such as “favourite, preference, like” or even the plural 
form of “favourites”; and another obstacle is that not all users are willing 
to annotate the tags, resulting in the severe problem of sparseness.

In order to deal with these difficulties, clustering methods have 
been introduced recently into social tagging systems to fi nd meaningful 
information conveyed by tag aggregates. In past years, many studies have 
been carried out on tags clustering. Gemmell et al [16, 50] demonstrated how 
tag clusters serving as coherent topics can aid in the social recommendation 
of search and navigation. The aim of tag clustering is to reveal the coherence 
of tags from the perspective of how resources are annotated and how users 
annotate in the tagging behaviors. Undoubtedly, the tag cluster form is able 
to deliver user tagging interest or resource topic information in a more 
concise and semantic way. It handles to some extent the problems of tag 
sparseness and redundancy, in turn, facilitating the tag-based recommender 
systems. Thus this demand mainly motivates the research of tag clustering 
in social annotation systems. In general, the tag clustering algorithm could 
be described as: (1) Defi ne a similarity measure of tags and construct 
a tag similarity matrix; (2) Execute a traditional clustering algorithm 
such as K-Means [16, 50], or Hierarchical Agglomerative Clustering on 
this similarity matrix to generate the clustering results; (3) abstract the 
meaningful information from each cluster and do recommendation [59].



Martin [38] et al. propose to reduce tag space by exploiting clustering 
techniques so that the quality of the recommendations and execution time 
are improved and memory requirements are decreased. The clustering is 
motivated by the fact that many tags in a tag space are semantically similar 
thus the tags can be grouped.

Astrain et al. fi rstly combines a syntactic similarity measure based in 
a fuzzy automaton with ε-moves and a cosine relatedness measure, and 
then design a clustering algorithm for tags to fi nd out the short length tags 
[2]. In general, tags lack organizational structure limiting their utility for 
navigation. Simpson proposes a hierarchical divisive clustering algorithm 
to release these infl uence of the inherent drawback of tag data [4]. In [6], an 
approach that monitors users’ activity in a tagging system and dynamically 
quantifi es associations among tags is presented and the associations are 
then used to create tags clusters. Zhou et al. propose a novel method to 
compute the similarity between tag sets and use it as the distance measure 
to cluster web documents into groups [58].

In [10], clusters of resources are shown to improve recommendation 
by categorizing the resources into topic domains. A framework named 
Semantic Tag Clustering Search, which is able to cope with the syntactic 
and semantic tag variations, is proposed in [55]. And in [39] topic relevant 
partitions are created by clustering resources rather than tags. By clustering 
resources, it improves recommendations by distinguishing between 
alternative meanings of query. While P. Lehwark et al. use Emergent-Self- 
Organizing Maps (ESOM) and U-Map techniques to visualize and cluster 
tagged data and discover emergent structures in collections of music [35]. 
State-of-the-art methods suffi ce for simple search, but they often fail to 
handle more complicated or noisy web page structures due to the key 
limitations. Miao et al. propose a new method for record extraction that 
captures a list of objects in a more robust way based on a holistic analysis of a 
web page [41]. In [17], a co-clustering approach is employed, which exploits 
joint groups of related tags and social data resources, in which both social 
and semantic aspects of tags are considered simultaneously. The common 
characteristic of aforementioned tagging clustering algorithm is that they 
use K-Means or hierarchical clustering algorithms on tag dataset to fi nd out 
the similar tag groups. In [46], however, the authors introduce Folks Engine, 
a parametric searching engine for folksonomies allowing specifying any tag 
clustering algorithm. In a similar way, Jiang et al., make use of the concept 
of ensemble clustering to fi nd out a consensus tag clustering results of a 
given topic and propose tag groups with better quality [29]. The effi cient 
way which improves tag clustering result is to use the common parts of 
several tag clustering results. Approximate Backbone, the intersection of 
different solutions of a dataset, is often used to investigate the characteristic 
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of a dataset [61, 28]. Zong et al. use approximate backbone to deal with the 
initialization problem of heuristic clustering algorithm [60].

Alexandros et al. [31] focused on the complexity of social tagging data. 
They developed a data-modeling scheme and a tag-aware spectral clustering 
procedure. They used tensors to store the multi-graph structures and capture 
the personalized aspects of similarity. They present the similarity-based 
clustering of tagged items, and capture and exploit the multiple values 
of similarity refl ected in the tags assigned to the same item by different 
users. Also they extend spectral clustering by capturing multiple values of 
similarity between any two items. The authors above focus on calculating 
similarity approach to improve the spectral clustering, however, how to 
evaluate the quality of clusters is not mentioned.

In this section, we investigate the clustering algorithms used in social 
tagging systems. With the help of clustering algorithms, we can obtain the 
potential relationship information among the different users and various 
resources, and clustering also reduces the dimensionality in calculation. The 
clusters can reduce the time complexity in recommendation processing. In a 
word, the clustering algorithms help to enhance the tag expression quality 
and improve the recommendation in social tagging systems.

12.5 Chapter Summary
In this chapter, we have reviewed the basic concept of data mining and 
information retrieval techniques used in recommender systems, such as 
clustering and K-Nearest-Neighboring. This chapter has also discussed the 
data mining problems existed in the social tagging system, raised some of the 
current techniques, and investigated advantages and disadvantages of such 
approaches, which provide a guideline for dealing with recommendation 
problems and improving the performance of recommendation.
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