

Applied Data Mining

This page intentionally left blankThis page intentionally left blank

Applied Data Mining

Guandong Xu
 University of Technology Sydney

Sydney, Australia

Yu Zong
 West Anhui University

Luan, China

Zhenglu Yang
The University of Tokyo

Tokyo, Japan

A SCIENCE PUBLISHERS BOOK
p,

GL--Prelims with new title page.indd ii 4/25/2012 9:52:40 AM

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130604

International Standard Book Number-13: 978-1-4665-8584-3 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.copyright.com

Preface

The data era is here. It provides a wealth of opportunities, but also poses
challenges for the effective and effi cient utilization of the huge data. Data
mining research is necessary to derive useful information from large data.
The book reviews applied data mining from theoretical basis to practical
applications.

The book consists of three main parts: Fundamentals, Advanced
Data Mining, and Emerging Applications. In the fi rst part, the authors
fi rst introduce and review the fundamental concepts and mathematical
models which are commonly used in data mining.There are fi ve chapters
in this section, which lay a solid base and prepare the necessary skills and
approaches for further understanding the remaining parts of the book. The
second part comprises three chapters and addresses the topics of advanced
clustering, multi-label classifi cation, and privacy preserving, which are
all hot topics in applied data mining. In the fi nal part, the authors present
some recent emerging applications of applied data mining, i.e., data
stream,recommender systems, and social tagging annotation systems.This
part introduces the contents in a sequence of theoretical background, state-
of-the-art techniques, application cases, and future research directions.

This book combines the fundamental concepts, models, and algorithms
in the data mining domain together, to serve as a reference for researchers
and practitioners from as diverse backgrounds as computer science,
machine learning, information systems, artifi cial intelligence, statistics,
operational science, business intelligence as well as social science disciplines.
Furthermore, this book provides a compilation and summarization for
disseminating and reviewing the recent emerging advances in a variety of
data mining application arenas, such as advanced data mining, analytics,
internet computing, recommender systems as well as social computing
and applied informatics from the perspective of developmental practice
for emerging research and practical applications. This book will also be
useful as a textbook for postgraduate students and senior undergraduate
students in related areas.

vi Applied Data Mining

This book features the following topics:

 • Systematically presents and discusses the mathematical background
and representative algorithms for data mining, information retrieval,
and internet computing.

 • Thoroughly reviews the related studies and outcomes conducted on
the addressed topics.

 • Substantially demonstrates various important applications in the
areas of classical data mining, advanced data mining, and emerging
research topics such as stream data mining, recommender systems,
social computing.

 • Heuristically outlines the open research issues of interdisciplinary
research topics, and identifi es several future research directions that
readers may be interested in.

April 2013 Guandong Xu
 Yu Zong

Zhenglu Yang

Contents

Preface v

Part I: Fundamentals

 1. Introduction 3
1.1 Background 3

1.1.1 Data Mining—Defi nitions and Concepts 4
1.1.2 Data Mining Process 6
1.1.3 Data Mining Algorithms 10

1.2 Organization of the Book 16
1.2.1 Part 1: Fundamentals 17
1.2.2 Part 2: Advanced Data Mining 18
1.2.3 Part 3: Emerging Applications 19

1.3 The Audience of the Book 19

 2. Mathematical Foundations 21
2.1 Organization of Data 21

2.1.1 Boolean Model 22
2.1.2 Vector Space Model 22
2.1.3 Graph Model 23
2.1.4 Other Data Structures 26

2.2 Data Distribution 27
2.2.1 Univariate Distribution 27
2.2.2 Multivariate Distribution 28

2.3 Distance Measures 29
2.3.1 Jaccard distance 30
2.3.2 Euclidean Distance 30
2.3.3 Minkowski Distance 31
2.3.4 Chebyshev Distance 32
2.3.5 Mahalanobis Distance 32

2.4 Similarity Measures 33
2.4.1 Cosine Similarity 33
2.4.2 Adjusted Cosine Similarity 34

viii Applied Data Mining

2.4.3 Kullback-Leibler Divergence 35
2.4.4 Model-based Measures 37

2.5 Dimensionality Reduction 38
2.5.1 Principal Component Analysis 38
2.5.2 Independent Component Analysis 40
2.5.3 Non-negative Matrix Factorization 41
2.5.4 Singular Value Decomposition 42

2.6 Chapter Summary 43

 3. Data Preparation 45
3.1 Attribute Selection 46

3.1.1 Feature Selection 46
3.1.2 Discretizing Numeric Attributes 49

3.2 Data Cleaning and Integrity 50
3.2.1 Missing Values 50
3.2.2 Detecting Anomalies 51
3.2.3 Applications 52

3.3 Multiple Model Integration 53
3.3.1 Data Federation 53
3.3.2 Bagging and Boosting 54

3.4 Chapter Summary 55

 4. Clustering Analysis 57
4.1 Clustering Analysis 57
4.2 Types of Data in Clustering Analysis 59

4.2.1 Data Matrix 59
4.2.2 The Proximity Matrix 61

4.3 Traditional Clustering Algorithms 63
4.3.1 Partitional methods 63
4.3.2 Hierarchical Methods 68
4.3.3 Density-based methods 74
4.3.4 Grid-based Methods 77
4.3.5 Model-based Methods 80

4.4 High-dimensional clustering algorithm 83
4.4.1 Bottom-up Approaches 84
4.4.2 Top-down Approaches 86
4.4.3 Other Methods 88

4.5 Constraint-based Clustering Algorithm 89
4.5.1 COP K-means 90
4.5.2 MPCK-means 90
4.5.3 AFCC 91

4.6 Consensus Clustering Algorithm 92
4.6.1 Consensus Clustering Framework 93
4.6.2 Some Consensus Clustering Methods 95

4.7 Chapter Summary 96

 5. Classifi cation 100
5.1 Classifi cation Defi nition and Related Issues 101
5.2 Decision Tree and Classifi cation 103

5.2.1 Decision Tree 103
5.2.2 Decision Tree Classifi cation 105
5.2.3 Hunt’s Algorithm 106

5.3 Bayesian Network and Classifi cation 107
5.3.1 Bayesian Network 107
5.3.2 Backpropagation and Classifi cation 109
5.3.3 Association-based Classifi cation 110
5.3.4 Support Vector Machines and Classifi cation 112

5.4 Chapter Summary 115

 6. Frequent Pattern Mining 117
6.1 Association Rule Mining 117

6.1.1 Association Rule Mining Problem 118
6.1.2 Basic Algorithms for Association Rule Mining 120

6.2 Sequential Pattern Mining 124
6.2.1 Sequential Pattern Mining Problem 125
6.2.2 Existing Sequential Pattern Mining Algorithms 126

6.3 Frequent Subtree Mining 137
6.3.1 Frequent Subtree Mining Problem 137
6.3.2 Data Structures for Storing Trees 138
6.3.3 Maximal and closed frequent subtrees 141

6.4 Frequent Subgraph Mining 142
6.4.1 Problem Defi nition 142
6.4.2 Graph Representation 143
6.4.3 Candidate Generation 144
6.4.4 Frequent Subgraph Mining Algorithms 145

6.5 Chapter Summary 146

Part II: Advanced Data Mining
 7. Advanced Clustering Analysis 153

7.1 Introduction 153
7.2 Space Smoothing Search Methods in Heuristic Clustering 155

7.2.1 Smoothing Search Space and Smoothing Operator 156
7.2.2 Clustering Algorithm based on Smoothed Search Space 161

7.3 Using Approximate Backbone for Initializations in Clustering 163
7.3.1 Defi nitions and Background of Approximate Backbone 164
7.3.2 Heuristic Clustering Algorithm based on 167
 Approximate Backbone

7.4 Improving Clustering Quality in High Dimensional Space 169
7.4.1 Overview of High Dimensional Clustering 169

 Contents ix

x Applied Data Mining

7.4.2 Motivation of our Method 171
7.4.3 Signifi cant Local Dense Area 171
7.4.4 Projective Clustering based on SLDAs 175

7.5 Chapter Summary 178

 8. Multi-Label Classifi cation 181
8.1 Introduction 181
8.2 What is Multi-label Classifi cation 182
8.3 Problem Transformation 184

8.3.1 Binary Relevance and Label Powerset 185
8.3.2 Classifi er Chains and Probabilistic Classifi er Chains 187
8.3.3 Decompose the Label Set 189
8.3.4 Transform Original Label Space to Another Space 191

8.4 Algorithm Adaptation 192
8.4.1 KNN-based methods 192
8.4.2 Learn the Label Dependencies by the Statistical Models 194

8.5 Evaluation Metrics and Datasets 195
8.5.1 Evaluation Metrics 195
8.5.2 Benchmark Datasets and the Statistics 199

8.6 Chapter Summary 200

 9. Privacy Preserving in Data Mining 204
9.1 The K-Anonymity Method 204
9.2 The l-Diversity Method 208
9.3 The t-Closeness Method 210
9.4 Discussion and Challenges 211
9.5 Chapter Summary 211

Part III: Emerging Applications
 10. Data Stream 215

10.1 General Data Stream Models 215
10.2 Sampling Approach 216

10.2.1 Random Sampling 218
10.2.2 Cluster Sampling 219

10.3 Wavelet Method 220
10.4 Sketch Method 222

10.4.1 Sliding Window-based Sketch 223
10.4.2 Count Sketch 224
10.4.3 Fast Count Sketch 225
10.4.4 Count Min Sketch 225
10.4.5 Some Related Issues on Sketches 226
10.4.6 Applications of Sketches 227
10.4.7 Advantages and Limitations of Sketch Strategies 227

10.5 Histogram Method 228
10.5.1 Dynamic Construction of Histograms 230

10.6 Discussion 231
10.7 Chapter Summary 232

 11. Recommendation Systems 236
11.1 Collaborative Filtering 236

11.1.1 Memory-based Collaborative Recommendation 237
11.1.2 Model-based Recommendation 238

11.2 PLSA Method 238
11.2.1 User Pattern Extraction and Latent Factor 240
 Recognition

11.3 Tensor Model 242
11.4 Discussion and Challenges 244

11.4.1 Security and Privacy Issues 244
11.4.2 Effectiveness Issue 245

11.5 Chapter Summary 246

 12. Social Tagging Systems 248
12.1 Data Mining and Information Retrieval 248
12.2 Recommender Systems 250

12.2.1 Recommendation Algorithms 251
12.2.2 Tag-Based Recommender Systems 254

12.3 Clustering Algorithms in Recommendation 257
12.3.1 K-means Algorithm 257
12.3.2 Hierarchical Clustering 259
12.3.3 Spectral Clustering 260
12.3.4 Quality of Clusters and Modularity Method 261
12.3.5 K-Nearest-Neighboring 263

12.4 Clustering Algorithms in Tag-Based Recommender Systems 264
12.5 Chapter Summary 266

Index 271

 Contents xi

This page intentionally left blankThis page intentionally left blank

Part I

Fundamentals

This page intentionally left blankThis page intentionally left blank

CHAPTER 1

Introduction

In the last couple of decades, we have witnessed a signifi cant increase in
the volume of data in our daily life—there is data available for almost all
aspects of life. Almost every individual, company and organization has
created and can access a large amount of data and information recording
the historical activities of themselves when they are interacting with the
surrounding world. This kind of data and information helps to provide the
analytical sources to reveal the evolution of important objects or trends,
which will greatly help the growth and development of business and
economy. However, due to the bottleneck of technological advance and
application, such potential has yet been fully addressed and exploited in
theory as well as in real world applications. Undoubtedly, data mining is a
very important and active topic since it was coined in the 1990s, and many
algorithmic and theoretical breakthroughs have been achieved as a result of
synthesized efforts of multiple domains, such as database, machine learning,
statistics, information retrieval and information systems. Recently, there has
been an increasing focus shift in data mining from algorithmic innovations
to application and marketing driven issues, i.e., due to the increasing
demand from industry and business, more and more people pay attention
to applied data mining. This book aims at creating a bridge between data
mining algorithms and applications, especially the newly emerging topics of
applied data mining. In this chapter, we fi rst review the related concepts and
techniques involved in data mining research and applications. The layout
of this book is then described from three perspectives—fundamentals,
advanced data mining and emerging applications. Finally the readership
of this book and its purpose is discussed.

1.1 Background
We are often overwhelmed with various kinds of data which comes from the
pervasive use of electronic equipment and computing facilities, and whose

4 Applied Data Mining

size is continuously increasing. Personal computing devices are becoming
cheap and convenient, so it is easy to use it in almost every aspect of our
daily life, ranging from entertainment and communication to education and
political life. The dropping down of prices of electronic storage drivers allows
us to purchase disks to save information easily, which had to be discarded
earlier due to the expense reason. Nowadays database and information
systems have been widely deployed in industry and business, and they
have the capability to record the interactions between users and systems,
such as online shoppings, banking transactions, fi nancial decisions and so
on. The interactions between users and database systems form an important
data source for business analysis and business intelligence. To deal with the
overload of information, search engines have been invented as a useful tool
to help us locate and retrieve the needed information over the Internet. The
user navigational and retrieval activities that have been recorded in Web
log servers, undoubtedly can convey the browsing behavior and hidden
intent of users that are explicitly unseen, without in-depth analysis. Thus,
the widespread use of high-speed telecommunication infrastructures, the
easy affordability of data storage equipment, the ubiquitous deployment
of information systems and advanced data analysis techniques have put us
in front of an unprecedented data-intensive and data-centric world. We are
facing an urgent challenge in dealing with the growing gap between data
generation and our understanding capability. Due to the restricted volume
of human brain cells, an individual’s reasoning, summarizing and analyses
is limited. On the contrary, with the increase in data volume, the proportion
of data that people can understand decreases. These two facts bring a real
demand to tackle the realistic problem in current information society—it is
almost impossible to simply rely on human labors to accomplish the data
analysis more scalable and intelligent computational methods are called for
urgently. Data mining is emerging as one kind of such technical solutions
to address these challenges and demands.

1.1.1 Data Mining—Defi nitions and Concepts

Data mining is actually an analytical process to reveal the patterns or
trends hidden in the vast data ocean of data via cutting-edge computational
intelligence paradigms [5]. The original meaning of “mining” represents
the operation of extracting precious resources such as oil or gold from
the earth. The combination of mining with the word “data” refl ects the
in-depth analysis of data to reveal the knowledge “nuggets” that are not
exposed explicitly in the mass of data. As the undiscovered knowledge is
of statistical nature, via statistical means, it is sometimes called statistical
analysis, or multivariate statistical analysis due to its multivariate nature.
From the perspective of scientifi c research, data mining is closely related

to many other disciplines, such as machine learning, database, statistics,
data analytics, operational research, decision support, information systems,
information retrieval and so on. For example, from the viewpoint of data
itself, data mining is a variant discipline of database systems, following
research directions, such as data warehousing (on storage and retrieval) and
clustering (data coherence and performance). In terms of methodologies
and tools, data mining could be considered as the sub-stream of machine
learning and statistics—revealing the statistical characteristics of data
occurrences and distributions via computational or artifi cial intelligence
paradigms.

Thus data mining is defi ned as the process of using one or more
computational learning techniques to analyze and extract useful knowledge
from data in databases. The aim of data mining is to reveal trends and
patterns hidden in data. Hence from this viewpoint, this procedure is very
relevant to the term Pattern Recognition, which is a traditional and active
topic in Artifi cial Intelligence. The emergence of data mining is closely related
to the research advances in database systems in computer science, especially
the evolution and organization of databases, and later incorporating more
computational learning approaches. The very basic database operations
such as query and reporting simulate the very early stages of data mining.
Query and reporting are very functional tools to help us locate and identify
the requested data records within the database at various granularity levels,
and present more informative characteristics of the identifi ed data, such
as statistical results. The operations could be done locally and remotely,
where the former is executed at local end-user side, while the latter over
a distributed network environment, such as the Intranet or Internet. Data
retrieval, similar to data mining, extracts the needed data and information
from databases. In order to fi lter out the needed data from the whole
data repository, the database administrators or end-users need to defi ne
beforehand a set of constraints or fi lters which will be employed at a later
stage. A typical example is the marketing investigation of customer groups
who have bought two products consequently by using the “and” joint
operator to form a fi lter, in order to identify the specifi c customer group. This
is viewed as a simplest business means in marketing campaign. Apparently,
the database itself offers somewhat surface methods for data analysis and
business intelligence but far from the real business requirements such as
customer behavioral modeling and product targeting.

Data mining is different from data query and retrieval because it drills
down the in-depth associations and coherences between the data occurrence
within the repository that are impossible to be known beforehand or via
using basic data manipulating. Instead of query and retrieval operations,
data mining usually utilizes more complicated and intelligent data analysis
approaches, which are “borrowed” from the relevant research domains

 Introduction 5

6 Applied Data Mining

such as machine learning and artifi cial intelligence. Additionally, it also
allows the supportive decision made upon the judgment on the data itself,
and the knowledgeable patterns derived. A similar data analytical method
is called Online Analytical Processing (OLAP), which is actually a graphic
data reporting tool to visualize the multidimensional structure within
the database. OLAP is used to summarize and demonstrate the relations
between available variables in the form of a two-dimensional table. Different
from OLAP, data mining brings together all the attributes and treats them
in a unifi ed manner, revealing the underlying models or patterns for real
applications, such as business analytics. In one word, OLAP is more like
a visualization instrument, whereas, data mining refl ects the analytical
capability for more intelligent use. Although data query, retrieval and
OLAP and data mining have owned a lot of commonplaces, data mining
is distinctive from the counterparts due to its outstanding and competent
advantages of analysis.

Knowledge Discovery in Database (KDD) is a name frequently used
interchangeably together with data mining. In fact, data mining has a
broader coverage of applicability while KDD is more focused on the
extension of scientifi c methods in data mining. In addition to performing
data mining, a typical KDD process also includes the stages of data
collection, data preprocessing and knowledge utilization, which form a
whole cycle of data preparation, data mining or knowledge discovery and
knowledge utilization. However it is indeed hard to draw a clear border to
differentiate these two kinds of disciplines since there is a big overlapping
between the two from the perspectives of not only the research targets
and approaches, but also the research communities and publications.
More theoretically, data mining is more about data objects and algorithms
involved, while KDD is a synergy of knowledge discovery process and
learning approaches used. In this book, we mainly focus our description
on data mining, presenting a generic and broad landscape to bridge the
gap between theory and application.

1.1.2 Data Mining Process

The key components within a data mining task consist of the following
subtasks:

 • Defi nition of the data analytical purposes and application domain.
 • Data organization and design structure, data preparation, consolidation

and integration.
 • Exploratory analysis of the data and summarization of the preliminary

results.

 • Computational learning approach choosing and devising based on
data analytical purposes.

 • Data mining process using the above approaches.
 • Knowledge representation of results in the form of models or

patterns.
 • Interpretation of knowledge patterns and the subsequent utilization

in decision supports.

1.1.2.1 Defi nition of Aims

Defi nition of aims is to clearly specify the analytical purpose of data mining,
i.e., what kinds of data mining tasks are intended to be conducted, what
major outcomes would be discovered, what the application domain of the
data mining task is, and how the fi ndings are interpreted based on domain
expertise. A clear statement of the problem and the aims to be achieved are
the prerequisite for setting up the mining task correctly and the key for
fulfi lling the aims successfully. The defi nition of the analytical aims also
prepares a guidance for the data organization and the engaged data mining
approaches in the following subtasks:

1.1.2.2 Design of Data Schema

This step is to design the data organization upon which the data analysis
will be performed. Normally in a data analysis task, there are a handful of
features involved, and these features can be accommodated into various
data models. Hence choosing an appropriate data schema and selecting
the related attributes in the chosen schema is also a crucial procedure in
the success of data mining. Mathematically, there exist some well studied
models, such as Vector Space Model (VSM) and graph model to choose
from. We need to choose a practical model to refl ect and accommodate the
engaged features. Features are another important consideration in data
mining, which is used to describe the data objects and characterize the
individual property of the data. For example, given a scenario of customer
credit assessment in banking applications, the considered attributes could
include customers’ age, education background, salary income, asset
amount, historic default records and so on. To induce the practical credit
assessment rules or patterns, we need to carefully select the possibly relevant
attributes to form the features of the chosen model. There are a number of
feature selection algorithms developed in past studies of data mining and
machine learning. An additional concern is the diverse residency of data in
multiple databases due to the current distributed computing environment
and popularization of internal or external networking. In other words, the
selected data attributes are distributed in different databases locally and

 Introduction 7

8 Applied Data Mining

remotely. Thus data federation and consolidation is often a necessary step
to deal with the heterogeneity and homogeneity of multiple databases.
All these operations comprise the data preparation and preprocessing of
data mining.

1.1.2.3 Exploratory Analysis

Exploratory analysis of the data is the process of exploring the basic statistical
property of the data involved. The aim of this preliminary analysis is to
transform the original data distribution to a new visualization form, which
can be better understood. This step provides the start to choose appropriate
data mining algorithms since the suitability of various algorithms is largely
dependent on the data integrity and coherence. The exploratory analysis
of the data is also able to identify the anomalous data—the entries which
exhibit distinctive distribution or occurrence, sometimes also called outliers,
and the missing data. This can trigger the additional data preprocessing
operations to assure the data integrity and quality. Another purpose of
this step is to suggest the need for extraction of additional data since the
obtained data is not rich enough to conduct the desired tasks. In short, this
stage works as a prerequisite to connect the analytical aims and data mining
algorithms, facilitating the analytical tasks and saving the computational
overhead for algorithm design and refi nement.

1.1.2.4 Algorithm Design and Implementation

Data mining algorithm design and implementation is always the most
important part in the whole data mining process. As discussed above,
the selection of appropriate analytical algorithms is closely related to the
analytical purposes, the organization of data, the model of analysis task
and the initial exploratory analysis on the constructed data source. There
is a wide spectrum of data mining algorithms that can be used to tackle
the requested tasks, so it is essential to carefully select the appropriate
algorithms. The choice of data mining algorithms are mainly dependent
on the used data itself and the nature of the analytical task. Benefi ting from
the advances and achievements in related research communities, such as
machine learning, computational intelligence and statistics, many practical
and effective paradigms have been devised and employed in a variety of
applications, and great successes have been made. We can categorize these
methods into the following approaches:

 • Descriptive approach: This kind of approach aims at giving a descriptive
statement on the data we are analyzing. To do this, we have to look
deeply into the distribution of the data, reveal the mutual relations

among the objects, and capture the common characteristics of data
distribution via machine intelligence methods. For example, clustering
analysis is used to partition data objects into various groups unknown
beforehand based on the mutual distance or similarity between them.
The criterion of such partition is to meet the optimal condition that
the objects within the same group are close to each other, while the
objects from different groups should be separated far enough. Topic
modeling is a newly emerging descriptive learning method to detect
the topical coherence with the observations. Through the adjustment
of the statistical model chosen for learning and comparison between
the observation and model derivation, we can identify the hidden topic
distribution underlying the observations and associations between
the topics and the data objects. In this way all the objects are treated
equally and an overall and statistical description is derived from the
machine learning process. As they mainly rely on the computational
power of machines without human interactions, sometimes we also
call them unsupervised approaches.

 • Predictive approach: This kind of approach aims at concluding some
operational rules or regulations for prediction. By generalizing the
linkage between the outcome and observed variables, we can induce
some rules or patterns of classifi cations and predictions. These rules
help us to predict the unknown status of new targeted objects or
occurrence of specifi c results. To accomplish this, we have to collect
suffi cient data samples in advance, which have been already labeled
with the specifi c input labels, for example, the positive or negative in
pathological examination or accept and reject decision in bank credit
assessment. These approaches are mainly developed in the domain of
machine learning such as Support Vector Machine (SVM), decision tree
and so on. The learned results from such approaches are represented
as a set of reasoning conditions and stored as rule to guide the future
prediction and judgment. One distinct feature of this kind approaches is
the presence of labeled samples beforehand and the classifi er are trained
upon the training data, so it is also called supervised approaches (i.e.,
with prior knowledge and human supervision). Predictive approaches
account for majority of analytical tasks in real applications due to its
advantage for future prediction.

 • Evolutionary approach: The above two kinds of approaches are often
used to deal with the static data, i.e., data collected is restricted within
a specifi c time frame. However, with the huge refl ux of massive data
available in a distributed and networked environment, the dynamics
becomes a challenging characteristic in data mining research. This
calls for evolutionary data mining algorithms to deal with the change
of temporal and spatial data within the database. The representative

 Introduction 9

10 Applied Data Mining

methods and applications include sequential pattern mining and data
stream mining. The former is to determine the signifi cant patterns from
the sequential data observations, such as the customer behavior in online
shopping, whereas the latter was proposed to tackle the diffi culties
within data stream applications, such as RFID signal sampling and
processing. The main difference of this with other approaches is the
outstanding capability to deal with continuous signal generating and
processing in real time with affordable computational cost, such as
limited memory and CPU usage. Recently, such approaches highlight
this new active and potential trends within data mining research.

 • Detective approach: the descriptive and predictive approaches are
focused on the exploration of the global property of data rather
than that of local information. Sometimes the analysis at the smaller
granularity will provide us more informative fi ndings than the overall
description or prediction. Detective approaches are the means to
help us uncover the local mutual relations at a lower level. In data
mining, association rule mining or sequential pattern mining are able
to fulfi ll such requirement within a specifi c application domain, such
as business transaction data or online shopping data.

Although four categories from the perspectives of data objects and
analysis aims are presented, it is worth noting that the dividing lines
between all these approaches are blurred and overlap one other. In real
applications, we often take a mixture of these approaches to satisfy the
requirements of complexity and practicality. More often, using the existing
approaches or a mixture of them is a far cry from the success of analytical
tasks in real applications, resulting in the desire to design new innovative
algorithms and implementing them in real scenarios with satisfactory
performance. This inspires researchers from different communities to make
more efforts and fully utilize the fi ndings from relevant areas.

Another signifi cant issue attracting our attention is the increasingly
popularity of data mining in almost every aspect of business, industry and
society. The real analytical questions have raised a bunch of new challenges
and opportunities for researchers to form the synergy to undertake applied
data mining, which lays down a solid foundation and a real motivation for
this new book.

1.1.3 Data Mining Algorithms

1.1.3.1 Descriptive and Predictive

Due to the broad applications and unique intelligent capability of data
mining, a huge amount of research efforts have been invested and a wide

spectrum of algorithms and techniques have been developed [5]. In general,
from the perspective of data mining aims, data mining algorithms can be
categorized into two main streams: descriptive and predictive algorithms.
Descriptive approaches aim to reveal the characteristic data structure hidden
in the data collection, while the predictive methods build up prediction
models to forecast the potential attribute of new data subjects instead.

There are various descriptive data mining approaches that have been
devised in the past decades, such as data characterization, discrimination,
association rule mining, clustering and so on. The common capability of
such kinds of approaches is to present the data property and describe the
data distribution in a mathematical manner, which is not easily seen at
surface analysis. Clustering is a typical descriptive algorithm, indicating
the aggregation behavior of data objects. By defi ning the specifi c distance
or similarity measure, we are able to capture the mutual distance or
similarity between different data points (as shown in Fig.1.1.1). In contrast,
predictive approaches mainly exploit the prior knowledge, such as known
labels or categories, to derive a prediction “model” that best describes
and differentiates data classes. As the model is learned from the available
dataset by using machine learning approaches, the process is also called
model training, while the dataset used is therefore named training data
(i.e., data objects whose class label is known). After the model is trained, it
is used to predict the class label for new data subjects based on the actual
attribute of the data.

Figure 1.1.1: Cluster analysis

1.1.3.2 Association Rule and Frequent Pattern Mining

Association rule mining [1] is one of the most important techniques in the
data mining domain, which is to reveal the co-occurrence relationships of
activities or observations in a large database or data repository. Suppose in a

 Introduction 11

12 Applied Data Mining

traditional e-marketing application, the purchase consequence of “milk” and
“bread” is a commonly observed pattern in any supermarket case, therefore
resulting the generating of association rule bread, milk . Of course, there
may exist a large number of association rules in a huge transaction database
dependent on the setting of the satisfactory (or confi dence) threshold. The
algorithm of association rule mining is thus designed to extract such rules
as are hidden in the massive data based on the analyst’s targets. Figure
1.1.2 gives a typical association rule set in a market-basket transaction
campaign. Here you can observe the common occurrence of various items
in supermarket transaction records, which can be used to improve the
market profi t by adjusting the item-shelf arrangement in daily supermarket
management. Frequent pattern mining is one of the most fundamental
research issues in data mining, which aims to mine useful information
from huge volumes of data [4]. The purpose of searching such frequent
patterns (i.e., association rules) is to explore the historical supermarket
transaction data, which is indeed to discover the customer behavior based
on the purchased items.

Figure 1.1.2: An example of association rules

1.1.3.3 Clustering

Clustering is an approach to reveal the group coherence of data points and
capture the partition of data points [2]. The outcome of clustering operation
is a set of clusters, in which the data points within the same cluster have
a minimum mutual distance, while the data points belonging to different
clusters are suffi ciently separated from each other. Since clustering is
performed relying on the data distribution itself, i.e., the mutual distance,
but not associated with other prior knowledge, it is also called unsupervised
algorithm. Figure 1.1.3 depicts an example of cluster analysis of debt-income
relationships.

Bread, Milk1

2

3

4

5

Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

Bread, Milk, Diaper, Coke

1.1.3.4 Classifi cation and Prediction

Classifi cation is a typical predictive method. The aim of classifi cation is to
determine the class (or category) label for data objects based on the trained
model (sometimes also called classifi er). It is hard to completely differentiate
the prediction approach from classifi cation. In the data mining community,
one commonly agreed opinion is that classifi cation is mainly focused on
determining the categorical attribute of data objects, while prediction is
focused on continuous-values attributes instead, i.e., it is used to predict
the analog values of data objects. As the model learning and prediction is
performed under the prior knowledge of data (e.g., the known label), this
kind of method has an alternative name—supervised learning approaches.
Figure 1.1.4 presents an example of supervised learning based on prior
knowledge—label, where the positive and negative objects are marked
by round and cross symbols respectively. The aim of classifi cation is to
build up a dividing line to differentiate the positive and negative points
from the existing labels. A number of classifi cation algorithms have been
well studied in data mining and machine learning domains, the common
and well used approaches include Decision Trees, Rule-based Induction,
Genetic Algorithms, Neural Networks, Bayesian Networks, Support Vector
Machine (SVM), C4.5 and so on. Figure 1.1.5 is a constructed decision tree
from the observations of whether it is appropriate to play tennis depending
on the weather conditions, such as sunny, rainy, windy, humid conditions
and so on. In this example, the classifi cation rules are expressed as a set of
If-Then clauses. Apart from decision tree, classifi er is another important
classifi cation model. Based on the different classifi cation requirement,
various classifi ers could be trained upon the supervision, e.g., Fig. 1.1.6
demonstrates an example of linear and nonlinear classifi er in the above
example of debt-income relationship case.

Figure 1.1.3: Example of unsupervised learning

 Introduction 13

Income
Income

Debt Debt

14 Applied Data Mining

Figure 1.1.4: Example of supervised learning

Figure 1.1.5: Example of decision tree

Figure 1.1.6: Linear and nonlinear classifi cation

IncomeIncome

Debt Debt

Income

Income Income

Debt

Debt Debt

1.1.3.5 Advanced Data Mining Algorithms

Despite the great success of data mining techniques applied in different
areas and settings, there is an increasing demand for developing new data
mining algorithms and improving state-of-the-art approaches to handle
the more complicated and dynamical problems. In the meantime, with the
prevalence and deployment of data mining in real applications, some new
research questions and emerging research directions have been raised in
response to the advance and breakthrough of theory and technology in
data mining. Consequently, applied data mining is becoming an active and
fast progressing topic which has opened up a big algorithmic space and
developing potential. Here we list some interesting topics, which will be
described in subsequent chapters.

 1. High-Dimensional Clustering In general, data objects to be clustered are
described by points in a high-dimensional space, where each dimension
corresponds to an attribute/feature. A distance measurement between
any two points is used to measure their similarity. The research has
shown that the increasing dimensionality results in the loss of contrast
in distances between data objects. Thus, clustering algorithms that
measure the similarity between data objects based on all attributes/
features tend to degrade in high dimensional data spaces. In additional,
the widely used distance measurement usually perform effectively
only on some particular subsets of attributes, where the data objects
are distributed densely. In other words, it is more likely to form dense
and reasonable clusters of data objects in a low-dimensional subspace.
Recently, several algorithms for discovering data object clusters in
subsets of attributes have been proposed, and they can be classifi ed
into two categories: subspace clustering and projective clustering [8].

 2. Multi-Label Classifi cation In the framework of classifi cation, each
object is described as an instance, which is usually a feature vector
that characterizes the object from different aspects. Moreover, each
instance is associated with one or more labels indicating its categories.
Generally speaking, the process of classifi cation consists of two main
steps: the fi rst is training a classifi er or model on a given set of labeled
instances, the second is using the learned classifi er to predict the
label of unseen instance. However, the instances might be assigned
with multiple labels simultaneously, and problems of this type are
ubiquitous in many modern applications. Recently, there has been a
considerable amount of research concerned with dealing with multi-
label problems and many state-of-the-art methods have already been
proposed [3]. It has also been applied to lots of practical applications,
including text classifi cation, gene function prediction, music emotion
analysis, semantic annotation of video, tag recommendation, etc.

 Introduction 15

16 Applied Data Mining

 3. Stream data mining Data stream mining is an important issue because
it is the basis for many applications, such as network traffi c, web
searches, sensor network processing, etc. The purpose of data stream
mining is to discover the patterns or structures from the continuous
data, which may be used later to infer events that could happen. The
special characteristics for stream data is its dynamics that commonly
stream data can be read only once. This property limits many
traditional strategies for analyzing stream data, because these works
always assume that the whole data could be stored in limited storage.
In other words, stream data mining could be thought as computation
on very large (unlimited large) data.

 4. Recommender Systems These are important applications because they
are essential for many business models. The purpose of recommender
systems is to suggest some good items to people based on their
preference and historical purchased data. The basic idea of these
systems is that if users shared the same interests in the past, they
will, with high probability, have similar behaviors in the future. The
historical data which refl ects users’ preferences may consist of explicit
ratings, web click log, or tags [6]. It is obviously that personalization
plays a critical role in an effective recommendation system [7].

1.2 Organization of the Book
This book is structured into three parts. Part 1: Fundamentals, Part 2:
Advanced Data Mining and Part 3: Emerging Applications. In Part 1, we
mainly introduce and review the fundamental concepts and mathematical
models which are commonly used in data mining. Starting from various data
types, we introduce the basic measures and data preprocessing techniques
applied in data mining. This part includes fi ve chapters, which will lay down
a solid base and prepare the necessary skills and approaches for further
understanding the subsequent chapters. Part 2 covers three chapters and
addresses the topics of advanced clustering, multi-label classifi cation and
stream data mining, which are all hot topics in applied data mining. In
addition, we report some recently emerging application directions in applied
data mining. Particularly, we will discuss the issues of privacy preserving,
recommender systems and social tagging annotation systems, where we
will structure the contents in a sequence of theoretical background, state-
of-the-art techniques, application cases and future research questions. We
also aim to highlight the applied potential of these challenging topics.

1.2.1 Part 1: Fundamentals

1.2.1.1 Chapter 2

Mathematics plays an important role in data mining. As a handbook
covering a variety of research topics mentioned in related disciplines, it is
necessary to prepare some basic but crucial concepts and backgrounds for
readers to easily proceed to the following chapters. This chapter forms an
essential and solid base to the whole book.

1.2.1.2 Chapter 3

Data preparation is the beginning of the data mining process. Data mining
results are heavily dependent on the data quality prepared before the
mining process. This chapter discusses related topics with respect to data
preparation, covering attribute selection, data cleaning and integrity, data
federation and integration, etc.

1.2.1.3 Chapter 4

Cluster analysis forms the topic of Chapter 4. In this chapter, we classify the
proposed clustering algorithms into four categories: traditional clustering
algorithm, high-dimensional clustering algorithm, constraint-based
clustering algorithm, and consensus clustering algorithm. The traditional
data clustering approaches include partitioning methods, hierarchical
methods, density-based methods, grid-based methods, and model-based
methods. Two different kinds of high-dimensional clustering algorithms are
also described. In the constraint-based clustering algorithm subsection, the
concept is defi ned; the algorithms are described and comparison of different
algorithms are presented as well. Consensus clustering algorithm is based on
the clustering results and is a new way to fi nd robust clustering results.

1.2.1.4 Chapter 5

Chapter 5 describes the methods for data classifi cation, including decision
tree induction, Bayesian network classifi cation, rule-based classifi cation,
neural network technique of back-propagation, support vector machines,
associative classification, k-nearest neighbor classifiers, case-based
reasoning, genetic algorithms, rough set theory, and fuzzy set approaches.
Issues regarding accuracy and how to choose the best classifi er are also
discussed.

 Introduction 17

18 Applied Data Mining

1.2.1.5 Chapter 6

The original motivation for searching frequent patterns (i.e., association
rules) came from the need to analyze supermarket transaction data, which
is indeed to discover customer behavior based on the purchased items.
Association rules present the fact that how frequently items are bought
together. For example, an association rule “beer-diaper (70%)” indicates
that 70% of the customers who bought beer also bought diapers. Such
rules can be used to make predictions and recommendations for customers
and design then store layout. Stemming from the basic itemset data, rule
discovery on more general and complex data (i.e., sequence, tree, graph) has
been thoroughly explored for the past decade. In this chapter, we introduce
the basic techniques of frequent pattern mining on different types of data,
i.e., itemset, sequence, tree, and graph.

1.2.2 Part 2: Advanced Data Mining

1.2.2.1 Chapter 7

This chapter reports the latest research progress in clustering analysis
from three different aspects: (1) improve the clustering result quality of
heuristic clustering algorithm by using Space Smoothing Search methods;
(2) use approximate backbone to capture the common optimal information
of a given data set, and then use the approximate backbone to improve
the clustering result quality of heuristic clustering algorithm; (3) design
a local signifi cant unit (LSU) structure to capture the data distribution in
high-dimensional space to improve the clustering result quality based on
kernel estimation and spatial statistical theory.

1.2.2.2 Chapter 8

Recently, there has been a considerable amount of research dealing with
multi-label problems and many state-of-the-art methods have already been
proposed. It has also been applied to lots of practical applications. In this
chapter, a comprehensive and systematic study of multi-label classifi cation
is carried out in order to give a clear description of what multi-label
classifi cation is, and what are the basic and representative methods, and
what are the future open research questions.

1.2.2.3 Chapter 9

Data stream mining is the process of discovering structures or rules from
rapid continuous data, which can commonly be read only once with limited
storage capabilities. The issue is important because it is the basis of many

real applications, such as sensor network data, web queries, network traffi c,
etc. The purpose of the study on data stream mining is to make appropriate
predictions, by exploring the historical stream data. In this chapter, we
present the main techniques to tackle the challenge.

1.2.3 Part 3: Emerging Applications

1.2.3.1 Chapter 10

Privacy-preserving data mining is an important issue because there is an
increasing requirement of storing personal data for users. The issue has been
thoroughly studied in several areas such as the database community, the
cryptography community, and the statistical disclosure control community.
In this chapter, we will discuss the basic concepts and main strategies of
privacy-preserving data mining.

1.2.3.2 Chapter 11

Recommender systems present people with interesting items based on
information from other people. The basic idea of these systems is that
if users shared the same interests in the past, they will also have similar
behaviors in the future. The information that other people provide may
come from explicit ratings, tags, or reviews. Specially, the recommendations
may be personalized to the preferences of different users. In this chapter,
we introduce the basic concepts and strategies for recommender systems.

1.2.3.3 Chapter 12

With the popularity of social web technologies social tagging systems
have become an important application and service. The social web data
produced by the collaborative practice of mass provides a new arena in
data mining research. One emerging research trend in social web mining
is to make use of the tagging behavior in social annotation systems for
presenting the most demanded information to users—i.e., personalized
recommendations. In this chapter, we aim at bridging the gap between
social tagging systems and recommender systems. After introducing the
basic concepts in social collaborative annotation systems and reviewing
the advances in recommender systems, we address the research issues of
social tagging recommender systems.

1.3 The Audience of the Book
This book not only combines the fundamental concepts, models and
algorithms in the data mining domain together to serve as a referential

 Introduction 19

20 Applied Data Mining

handbook to researchers and practitioners from as diverse backgrounds
as Computer Science, Machine Learning, Information Systems, Artifi cial
Intelligence, Statistics, Operational Science, Business Intelligence as well as
Social Science disciplines but also provides a compilation and summarization
for disseminating and reviewing the recently emerging advances in a
variety of data mining application arenas, such as Advanced Data Mining,
Analytics, Internet Computing, Recommender Systems, Information
Retrieval as well as Social Computing and Applied Informatics from the
perspective of developmental practice for emerging researches and real
applications. This book will also be useful as a text book for postgraduate
students and senior undergraduate students in related areas.

The salient features of this book is that it:

 • Systematically presents and discusses the mathematical background
and representative algorithms for Data Mining, Information Retrieval
and Internet Computing.

 • Thoroughly reviews the related studies and outcomes conducted on
the addressed topics.

 • Substantially demonstrates various important applications in the areas
of classical Data Mining, Advanced Data Mining and emerging research
topics such as Privacy Preserving, Stream Data Mining, Recommender
Systems, Social Computing etc.

 • Heuristically outlines the open research questions of interdisciplinary
research topics, and identifi es several future research directions that
readers may be interested in.

References
 [1] R. Agrawal, R. Srikant et al. Fast algorithms for mining association rules. In: Proc. 20th

Int. Conf. Very Large Data Bases, VLDB, Vol. 1215, pp. 487–99, 1994.
 [2] M. Anderberg. Cluster analysis for applications. Technical report, DTIC Document,

1973.
 [3] B. Fu, Z. Wang, R. Pan, G. Xu and P. Dolog. Learning tree structure of label dependency

for multi-label learning. In: PAKDD (1), pp. 159–70, 2012.
 [4] J. Han, H. Cheng, D. Xin and X. Yan. Frequent pattern mining: current status and future

directions. Data Mining and Knowledge Discovery, 15(1): 55–86, 2007.
 [5] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann,

2006.
 [6] G. Xu, Y. Gu, P. Dolog, Y. Zhang and M. Kitsuregawa. Semrec: a semantic enhancement

framework for tag based recommendation. In: Proceedings of the Twenty-fi fth AAAI
Conference on Artifi cial Intelligence (AAAI-11), 2011.

 [7] G. Xu, Y. Zhang and L. Li. Web Mining and Social Networking: Techniques and Applications,
Vol. 6. Springer, 2010.

 [8] Y. Zong, G. Xu, P. Jin, X. Yi, E. Chen and Z. Wu. A projective clustering algorithm based
on signifi cant local dense areas. In: Neural Networks (IJCNN), The 2012 International Joint
Conference on, pp. 1–8. IEEE, 2012.

CHAPTER 2

Mathematical Foundations

Data mining is a data analysis process involving in data itself, operators
and various numeric metrics. Before we go deeply into the algorithm and
technique part, we fi rst summarize and present some relevant basic but
important expressions and concepts from mathematical books and open
available sources (e.g., Wikipedia).

2.1 Organization of Data
As mentioned earlier, data sets come in different forms [1]: these forms are
known as schemas. The simplest form of data is a set of vector measurements
on objects o(1), · · · , o(n). For each object we have measurements of p variables
X1, · · · ,Xp. Thus, the data can be viewed as a matrix with n rows and p
columns. We refer to this standard form of data as a data matrix, or simply
standard data. We can also refer to data set as a table.

Often there are several types of objects we wish to analyze. For example,
in a payroll database, we might have data both of employees, with variables
of name, department-name, age and salary, and about departments with
variables such as department-name, budget and manager. These data
matrices are connected to each other. Data sets consisting of several such
matrices or tables are called multi-relational data.

But some data sets do not fi t well into the matrix or table form. A
typical example is a time series, which can use only a related ordered data
type named event-sequence. In some applications, there are more complex
schemas, such as graph-based model, hierarchical structure, etc.

To summarize, in any data mining application it is crucial to be aware
of the schema of the data. Without such an awareness, it is easy to miss
important patterns in the data, or perhaps worse, to rediscover patterns
that are part of the fundamental design of the data. In addition, we must
be particularly careful about data schemas.

22 Applied Data Mining

2.1.1 Boolean Model
There is no doubt that the Boolean model is one of the most useful random
set models in mathematical morphology, stochastic geometry and spatial
statistics. It is defi ned as the union of a family of independent random compact
subsets (denoted in short as “objects”) located at the points of a locally fi nite
Poisson process. It is stationary if the objects are identically distributed (up
to their location) and the Poisson process is homogeneous, otherwise it is
non-stationary. Because the defi nition of set is very intuitive, the Boolean
model provides an uncomplicated framework for information retrieval
system users. Unfortunately, the Boolean model has some drawbacks. First,
the search strategy is based on binary criteria, the lack of the concept of
document classifi cation is well known, so the search function is limited.
Second, Boolean expressions have precise semantics, but it is often diffi cult to
convert the user’s information to Boolean expressions. In fact, most users fi nd
it is not so easily to converted to a Boolean query information they need. To
get rid of these defects, Boolean model is still the main model for document
database system. The major advantage of the Boolean model has a clear and
simple form, but the major drawback is that complete match will lead to a
result of too much or too little of the document being returned. As we all
know, the weight of the index terms fundamentally improves the function of
the retrieval system, resulting in the generation of the vector model.

2.1.2 Vector Space Model
Vector space model is an algebraic model for representing text documents
(and any object in general) as vectors of identifi ers, such as, for example,
index terms. It is used in information fi ltering, information retrieval,
indexing and relevancy rankings. In vector space model, documents and
queries are represented as vectors.

Each dimension corresponds to a separate term. The defi nition of term
depends on the application. Typically, terms are single words, keywords, or
longer phrases. If words are chosen to be the terms, the dimensionality of
the vector is the number of words in the vocabulary (the number of distinct
words occurring in the corpus).

If a term occurs in the document, its value in the vector is non-zero.
Several different ways of computing these values, also known as (term)
weights, have been developed. One of the best known schemes is tf-idf
weighting, and the model is known as term frequency-inverse document
frequency model. Unlike the term count model, tf-idf incorporates local and
global information. The weighted vector for document d is vd = (w1,d,w2,d,
· · · ,wN,d)

T , where term weight is defi ned as:

 wi,d = tfi,d *
,

log
i d

D
df

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.1.1)

where tfi,d is the term frequency (term counts) or number of times a term i
occurs in a document. This accounts for local information; dfi,d = document
frequency or number of documents containing term i; and D= number of
documents in a database.

As a basic model, the term vector scheme discussed above has several
limitations. First, it is very calculation intensive. From the computational
standpoint it is very slow, requiring a lot of processing time. Second, each
time we add a new term into the term space we need to recalculate all the
vectors. For example, computing the length of the query vector requires
access to every document term and not just the terms specifi ed in the query.
Other limitations include long documents, false negative matches, semantic
content, etc. Therefore, this model can have a lot of improvement space.

2.1.3 Graph Model

Graph is a combination of nodes and edges. The nodes represent different
objects while edges are the inter-connection among them. In mathematics,
a graph is a pair G = (V,E) of sets such that E [V]2. The elements of V are
the nodes of the graph G, the elements of E are its edges. Figure 2.1.1 depicts
an example of a Graph model.

 Mathematical Foundations 23

e1

e2
e3

e4 e5

V1 V4

V2

V3

Figure 2.1.1: Example of a Graph model

The most typical graph in real world is the global internet, in which
computers, routers and switches are the nodes while network wires or
wireless connections are the edges. Similar data sets are easily depicted in the
form of graph models, since it is one of the most convenient and illustrative
mathematical models to describe the real world phenomenons.

An important concept in the graph model is the adjacent matrix, usually
noted as A = (Aij)

 Aij =
1,
0, otherwise

i j⎧
⎨
⎩

∼
 (2.1.2)

24 Applied Data Mining

Here, the sign i ~ j means there is an edge between the two nodes. The
adjacent matrix contains the structural information of the whole network,
moreover, it has a matrix format fitting in both simple and complex
mathematical analysis. For a general case extended, we have A defi ned
as

 Aij =
,

0, otherwise
ijw i j⎧

⎨
⎩

∼
 (2.1.3)

in which wij is the weight parameter of the edge between i and j. The basic
point of this generalization is the quantifi cation on the strength of the edges
in different positions.

Another important matrix involved is the Laplacian matrix L = D–A.
Here, D = Diag(d1, · · · , dn) is the diagonal degree matrix where di = Σn

j=1 Aij is
the degree of the node i. Scientists use this matrix to explore the structure,
like communities or synchronization behaviors, of graphs with appropriate
mathematical tools.

Notice that if the graph is undirected, we have Aij= Aij, or on the other
side, two nodes share different infl uence from each other, which form a
directed graph.

Among those specifi c graph models, trees and forests are the most
studied and applied. An acyclic graph, one not containing any cycles, is
called a forest. A connected forest is called a tree. (Thus, a forest is a graph
whose components are trees.) The vertices of degree 1 in a tree are its
leaves.

Another important model is called Bipartite graphs. The vertices in a
Bipartite graph can be divided into two disjoint sets U and V such that every
edge connects a vertex in U to one in V; that is, U and V are independent
sets. Equivalently, a bipartite graph is a graph that does not contain any
odd-length cycles. Figure 2.1.2 shows an example of a Bipartite graph:

Figure 2.1.2: Example of Bipartite graph

The two sets U and V may be thought of as of two colors: if one colors
all nodes in U blue, and all nodes in V green, each edge has endpoints of
differing colors, as is required in the graph coloring problem. In contrast,
such a coloring is impossible in the case of a non-bipartite graph, such
as a triangle: after one node is colored blue and another green, the third
vertex of the triangle is connected to vertices of both colors, preventing it
from being assigned either color. One often writes G = (U, V, E) to denote
a Bipartite graph whose partition has the parts U and V. If |U| = |V |,
that is, if the two subsets have equal cardinality, then G is called a Balanced
Bipartite graph.

Also, scientists have established the Vicsek model to describe swarm
behavior. A swarm is modeled in this graph by a collection of particles
that move with a constant speed but respond to a random perturbation by
adopting at each time increment the average direction of motion of the other
particles in their local neighborhood. Vicsek model predicts that swarming
animals share certain properties at the group level, regardless of the type of
animals in the swarm. Swarming systems give rise to emergent behaviors
which occur at many different scales, some of which are turning out to be
both universal and robust, as well an important data representation.

PageRank [2] is a link analysis algorithm, used by the Google
Internet search engine, that assigns a numerical weight to each element
of a hyperlinked set of documents, such as the World Wide Web, with the
purpose of “measuring” its relative importance within the set. The algorithm
may be applied to any collection of entities with reciprocal quotations and
references. A PageRank results from a mathematical algorithm based on the
web-graph, created by all World Wide Web pages as nodes and hyperlinks
as edges, taking into consideration authority hubs such as cnn.com or
usa.gov. The rank value indicates an importance of a particular page. A
hyperlink to a page counts as a vote of support. The PageRank of a page is
defi ned recursively and depends on the number and PageRank metric of
all pages that link to it (“incoming links”). A page that is linked by many
pages with high PageRank receives a high rank itself. If there are no links
to a web page there is no support for that page. The following Fig. 2.1.3
shows an example of a PageRank:

 Mathematical Foundations 25

26 Applied Data Mining

2.1.4 Other Data Structures

Besides relational data schemas, there are many other kinds of data that have
versatile forms and structures and rather different semantic meanings. Such
kinds of data can be seen in many applications: time-related or sequence data
(e.g., historical records, stock exchange data, and time-series and biological
sequence data), data streams (e.g., video surveillance and sensor data,
which are continuously transmitted), spatial data (e.g., maps), engineering
design data (e.g., the design of buildings, system components, or inter-rated
circuits), hypertext and multimedia data (including text, image, video,
and audio data). These applications bring about new challenges, like how
to handle data carrying special structures (e.g., sequences, trees, graphs,
and networks) and specifi c semantics (such as ordering, image, audio and
video contents, and connectivity), and how to mine patterns that carry rich
structures and semantics.

It is important to keep in mind that, in many applications, multiple
types of data are present. For example, in informatics, genomic sequences,
biological networks, and 3-D spatial structures of genomes may co-exist
for certain biological objects. Mining multiple data sources of complex
data often leads to fruitful findings due to the mutual enhancement
and consolidation of such multiple sources. On the other hand, it is also
challenging because of the diffi culties in data cleaning and data integration,
as well as the complex interactions among the multiple sources of such data.
While such data require sophisticated facilities for effi cient storage, retrieval,

Figure 2.1.3: Example of PageRank execution

ID=7

ID=6

ID=2

ID=3

ID=4ID=5

ID=1

.061
.061

.023

.304.045

.045

.105

.045
.045.061

.061

.061

.141
.071

.061

.166

.166

.071

.035

.035

.061

.179

.023
.035

.045

and updating, they also provide fertile ground and raise challenging
research and implementation issues for data mining. Data mining on such
data is an advanced topic.

2.2 Data Distribution

2.2.1 Univariate Distribution

In probability and statistics, a univariate distribution [3] is a probability
distribution of only one random variable. This is in contrast to a multivariate
distribution, the probability distribution of a random vector.

A random variable or stochastic variable is a variable whose value is
subject to variations due to chance (i.e., randomness, in a mathematical
sense). As opposed to other mathematical variables, a random variable
conceptually does not have a single, fi xed value (even if unknown); rather,
it can take on a set of possible different values, each with an associated
probability. The interpretation of a random variable depends on the
interpretation of probability:

 • The objectivist viewpoint: As the outcome of an experiment or event
where randomness is involved (e.g., the result of rolling a dice, which
is a number between 1 and 6, all with equal probability; or the sum of
the results of rolling two dices, which is a number between 2 and 12,
with some numbers more likely than others).

 • The subjectivist viewpoint: The formal encoding of one’s beliefs about the
various potential values of a quantity that is not known with certainty
(e.g., a particular person’s belief about the net worth of someone like
Bill Gates after Internet research on the subject, which might have
possible values ranging between 50 billion and 100 billion, with values
near the center more likely).

 • Random variables can be classifi ed as either discrete (i.e., it may assume
any of a specifi ed list of exact values) or continuous (i.e., it may assume
any numerical value in an interval or collection of intervals). The
mathematical function describing the possible values of a random
variable and their associated probabilities is known as a probability
distribution. The realizations of a random variable, i.e., the results
of randomly choosing values according to the variable’s probability
distribution are called random variates.

A random variable’s possible values might represent the possible
outcomes of a yet-to-be-performed experiment or an event that has
not happened yet, or the potential values of a past experiment or event
whose already-existing value is uncertain (e.g., as a result of incomplete
information or imprecise measurements). They may also conceptually

 Mathematical Foundations 27

28 Applied Data Mining

represent either the results of an “objectively” random process (e.g., rolling
a dice), or the “subjective” randomness that results from incomplete
knowledge of a quantity. The meaning of the probabilities assigned to the
potential values of a random variable is not part of probability theory itself,
but instead related to philosophical arguments over the interpretation of
probability. The mathematics works the same regardless of the particular
interpretation in use.

The basic concept of “random variable” in statistics is real-valued.
However, one can consider arbitrary types such as boolean values,
complex numbers, vectors, matrices, sequences, trees, sets, shapes,
manifolds, functions, and processes. The term “random element” is used
to encompass all such related concepts. A related concept is the stochastic
process, a set of indexed random variables (typically indexed by time or
space). This more general concept is particularly useful in fi elds such as
computer science and natural language processing where many of the basic
elements of analysis are non-numerical. These general random variables
are typically parameterized as sets of real-valued random variables often
more specifi cally as random vectors.

2.2.2 Multivariate Distribution

In probability theory and statistics, the multivariate normal distribution
or other multivariate distribution model [4], such as multivariate complex
Gaussian distribution, is a generalization of the one-dimensional (univariate)
normal distribution to higher dimensions. One possible defi nition is that
a random vector is said to be p-variate normally distributed if every linear
combination of its p components has a univariate normal distribution.
However, its importance derives mainly from the multivariate central limit
theorem. The multivariate normal distribution is often used to describe, at
least approximately, any set of (possibly) correlated real-valued random
variables each of which clusters around a mean value.

The multivariate normal distribution is undoubtedly one of the most
well-known and useful distributions in statistics, playing a predominant
role in many areas of applications. In multivariate analysis, for example,
most of the existing inference procedures for analyzing vector-valued data
have been developed under the assumption of normality. In linear model
problems, such as the analysis of variance and regression analysis, the error
vector is often assumed to be normally distributed so that statistical analysis
can be performed using distributions derived from the normal distribution.
In addition to appearing in these areas, the multivariate normal distribution
also appears in multiple comparisons, in the studies of dependence of
random variables, and in many other related areas.

There are, of course, many reasons for the predominance of the
multivariate normal distribution in statistics. These result from some of its
most desirable properties as listed below:

 1. It represents a natural extension of the univariate normal distribution
and provides a suitable model for many real-life problems concerning
vector-valued data.

 2. Even if in an experiment, the original data cannot be fi tted satisfactorily
with a multivariate normal distribution (as is the case when the
measurements are discrete random vectors), by the central limit
theorem, the distribution of the sample mean vector is asymptotically
normal. Thus the multivariate normal distribution can be used for
approximating the distribution of the same mean vector in the large
sample case.

 3. The density function of a multivariate normal distribution is uniquely
determined by the mean vector and the covariance matrix of the
random variable.

 4. Zero correlations imply independence; that is, if all the correlation
coeffi cients between two sets of components of a multivariate normal
variable are zero, then the two sets of components are independent.

 5. The family of multivariate normal distributions is closed under
linear transformations and linear combinations. In other words, the
distributions of linear transformations or linear combinations of
multivariate normal variables are again multivariate normal.

 6. The marginal distribution of any subset of components of a multivariate
normal variable is also multivariate normal.

 7. The conditional distribution in a multivariate normal distribution
is multivariate normal. Furthermore, the conditional mean vector
is a linear function and the conditional covariance matrix depends
only on the covariance matrix of the joint distribution. This property
yields simple and useful results in regression analysis and correlation
analysis.

 8. For the bivariate normal distribution, positive and negative dependence
properties of the components of a random vector are completely
determined by the sign and the size of the correlation coeffi cient.
Similar results also exist for the multivariate normal distribution. Thus
it is often chosen as an ideal model for studying the dependence of
random variables.

2.3 Distance Measures
We now take a short detour to study the general notion of distance
measures [5].

 Mathematical Foundations 29

30 Applied Data Mining

2.3.1 Jaccard distance

The Jaccard similarity is a measure of how close sets are, although it is not
really a distance measure. That is, the closer the sets are, the higher the
Jaccard similarity, which is

 J(A,B) =
| | .
| |
A B
A B
∩
∩

 (2.3.1)

Rather, 1 minus the Jaccard similarity is a distance measure, as we shall
see; it is called the Jaccard distance:

 Jδ(A, B) = 1 − J(A, B) =
| | | | .

| |
A B A B

A B
∪ − ∩

∪
 (2.3.2)

However, Jaccard distance is not the only measure of closeness that
makes sense. We shall examine in this section some other distance measures
that have applications.

2.3.2 Euclidean Distance

The most familiar distance measure is the one we normally think of as
“distance”. An n-dimensional Euclidean space is one where points are
vectors of n real numbers. The conventional distance measure in this space,
which we shall refer to as the L2-norm, is defi ned:

 d ([x1, x2, · · · , xn], [y1, y2, · · · , yn]) = 2

1
() .

n

i i
i

x y
=

−∑ (2.3.3)

That is, we square the distance in each dimension, sum the squares,
and take the positive square root.

It is easy to verify that the fi rst three requirements for a distance
measure are satisfi ed. The Euclidean distance between two points cannot
be negative, because the positive square root is intended. Since all squares
of real numbers are nonnegative, any i such that xi = yi forces the distance
to be strictly positive. On the other hand, if xi = yi for all i, then the distance
is clearly 0. Symmetry follows because (xi − yi)

2 = (yi − xi)
2. The triangle

inequality requires a good deal of algebra to verify. However, it is well
understood to be a property of Euclidean space: the sum of the lengths of
any two sides of a triangle is no less than the length of the third side.

There are other distance measures that have been used for Euclidean
spaces. For any constant r, we can defi ne the Lr-norm to be the distance
measure defi ned by:

d ([x1, x2, · · · , xn] , [y1, y2, · · · , yn]) =

1/

1
| | .

r
n

r
i i

i
x y

=

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
∑ (2.3.4)

The case r = 2 is the usual L2-norm just mentioned. Another common
distance measure is the L1-norm, or Manhattan distance. There, the distance
between two points is the sum of the magnitudes of the differences in each
dimension. It is called “Manhattan distance” because it is the distance one
would have to travel between points if one were constrained to travel along
grid lines, as on the streets of a city such as Manhattan.

Another interesting distance measure is the L∞ -norm, which is the limit
as r approaches infi nity of the Lr-norm. As r gets larger, only the dimension
with the largest difference matters, so formally, the L∞ -norm is defi ned as
the maximum of|xi − yi|over all dimensions i.

2.3.3 Minkowski Distance

The Minkowski distance is a metric on Euclidean space which can be
considered as a generalization of the Euclidean distance. The Minkowski
distance of order p between two points

 P = (x1, x2, · · · , xn) and Q = (y1, y2, · · · , yn) Rn (2.3.5)

is defi ned as:

 1/

1
(| |)

n
p p

i i
i

x y
=

−∑ (2.3.6)

The Minkowski distance is a metric as a result of the Minkowski
inequality. Minkowski distance is typically used with p being 1 or 2. The
latter is the Euclidean distance, while the former is sometimes known as
the Manhattan distance. In the limiting case of p reaching infi nity we obtain
the Chebyshev distance:

1/

11
lim (| |) max | |

n n
p p

i i i ip ii
x y x y

→∞ ==

− = −∑
 (2.3.7)

Similarly, when p reaches negative infi nity we have

1/

11
lim (| |) min | |

n n
p p

i i i ip ii
x y x y

→−∞ =
=

− = −∑
 (2.3.8)

The Minkowski distance is often used when variables are measured
on ratio scales with an absolute zero value. Variables with a wider range
can overpower the result. Even a few outliers with high values bias the
result and disregard the alikeness given by a couple of variables with a
lower upper bound.

 Mathematical Foundations 31

32 Applied Data Mining

2.3.4 Chebyshev Distance

In mathematics, Chebyshev distance is a metric defi ned on a vector space
where the distance between two vectors is the greatest of their differences
along any coordinate dimension. It is also known as chessboard distance,
since in the game of chess the minimum number of moves needed by
the king to go from one square on a Chessboard to another equals the
Chebyshev distance between the centers of the squares. The Chebyshev
distance between two vectors or points p and q, with standard coordinates
pi and qi, respectively, is

 DChebyshev(p, q) = max | |i ii
p q− (2.3.9)

This equals the limit of the Lp metrics. In one dimension, all Lp metrics
are equal—they are just the absolute value of the difference:

 1/

1
lim(| |) .

n
k k

i ik i
p q

→∞
=

−∑ (2.3.10)

Mathematically, the Chebyshev distance is a metric induced by the
supremum norm or uniform norm. It is an example of an injective metric.
In two dimensions, i.e., plane geometry, if the points p and q have Cartesian
coordinates (x1, y1) and (x2, y2) , their Chebyshev distance is

 DChess = max(|x2 − x1|, |y2 − y1|). (2.3.11)

In fact, Manhattan distance, Euclidean distance above and Chebyshev
distance are Minkowski distance in special conditions.

2.3.5 Mahalanobis Distance

In statistics, Mahalanobis distance is another distance measure. It is based
on correlations between variables by which different patterns can be
identifi ed and analyzed. It gauges similarity of an unknown sample set to
a known one. It differs from Euclidean distance in that it takes into account
the correlations of the data set and is scale-invariant. In other words, it is a
multivariate effect size. Formally, the Mahalanobis distance of a multivariate
vector x = (x1, x2, x3, · · · , xN)T from a group of values with mean µ = (µ1, µ2,
µ3, · · · , µN)T and covariance matrix S is defi ned as:

 DM(x) = 1() ().Tx S xμ μ−− − μμ (2.3.12)

Mahalanobis distance can also be defi ned as a dissimilarity measure

between two random vectors x and y of the same distribution with the
covariance matrix S:

 1(,) () ().Td x y x y S x y−= − −
� �� � �� � ��

 (2.3.13)

If the covariance matrix is the identity matrix, the Mahalanobis distance
reduces to the Euclidean distance. If the covariance matrix is diagonal,
then the resulting distance measure is called the normalized Euclidean
distance:

2

2
1

()(,) .
N

i i

i i

x yd x y
s=

−
= ∑

� �� (2.3.14)

where si is the standard deviation of the xi and yi over the sample set.
Mahalanobis’ discovery was prompted by the problem of identifying the
similarities of skulls based on measurements. And now, it is widely used
in cluster analysis and classifi cation techniques.

2.4 Similarity Measures

2.4.1 Cosine Similarity

In some applications, the classic vector space model is used generally,
such as Relevance rankings of documents in a keyword search. It can be
calculated, using the assumptions of document similarities theory, by
comparing the deviation of angles between each document vector and the
original query vector where the query is represented as same kind of vector
as the documents.

An important problem that arises when we search for similar items of
any kind is that there may be far too many pairs of items to test each pair
for their degree of similarity, even if computing the similarity of any one
pair can be made very easy. Finally, we explore notions of “similarity” that
are not expressible as inter-section of sets. This study leads us to consider
the theory of distance measures in arbitrary spaces. Cosine similarity is
often used to compare documents in text mining.

In addition, it is used to measure cohesion within clusters in the
fi eld of data mining. The cosine distance makes sense in spaces that have
dimensions, including Euclidean spaces and discrete versions of Euclidean
spaces, such as spaces where points are vectors with integer components or
boolean (0 or 1) components. In such a space, points may be thought of as
directions. We do not distinguish between a vector and a multiple of that
vector. Then the cosine distance between two points is the angle that the
vectors to those points make. This angle will be in the range of 0º to 180º,
regardless of how many dimensions the space has.

We can calculate the cosine distance by fi rst computing the cosine of the
angle, and then applying the arc-cosine function to translate to an angle in
the 0–180º range. Given two vectors x and y, the cosine of the angle between

 Mathematical Foundations 33

34 Applied Data Mining

them is the dot product of x and y divided by the L2-norms of x and y (i.e.,
their Euclidean distances from the origin). Recall that the dot product of

vectors x = [x1, x2, · · · , xn] and y = [y1, y2, · · · , yn] is
1

n

i i
i

x y
=

∗∑ , the cosine
similarity is defi ned as:

 CosSim (,)
|| || || ||

x yx y
x y

⋅
=

∗

� ��
� ��

� �� (2.4.1)

We must show that the cosine similarity is indeed a distance measure.
We have defi ned that the angle of two vector is in the range of 0 to 180, no
negative similarity value is possible. Two vectors have an angle of zero if
and only if they are along the same direction but with possible different
length magnitude. Symmetry is obvious: the angle between x and y is the
same as the angle between y and x. The triangle inequality is best argued
by physical reasoning.

One way to rotate from x to y is to rotate to z and thence to y. The sum of
those two rotations cannot be less than the rotation directly from x to y.

2.4.2 Adjusted Cosine Similarity

Although the prejudices of individuals can be certainly amended by Cosine
similarity, but only to distinguish the individual differences between the
different dimensional cannot measure the value of each dimension, it would
lead to such a situation, for example, the content ratings by 5 stars, two user
X and Y, on the two resources ratings are respectively (1, 2) and (4, 5), using
the results of the cosine similarity is 0.98, both are very similar. But with
the score of X, it seems X don’t like these two resources, and Y. The reason
for this situation is that likes it more the distance metric is a measure of
space between each points’ absolute distance with each location coordinates
directly; and the cosine similarity measure relies on space vector angle and is
refl ected in the direction of the difference, not location. So the adjust cosine
similarity appeared. All dimension values are subtracted from an average
value, such as X and Y scoring average is 3, so after adjustment for (-2, -1)
and (1,2), then the cosine similarity calculation, -0.8, similarity is negative
and the difference is not small, but clearly more in line with the reality.
Based on the above exposition, computing similarity using basic cosine
measure in item-based case has one important drawback—the difference in
rating scale between different users are not taken into account. The adjusted
cosine similarity offsets this drawback by subtracting the corresponding
user average from each co-rated pair. Formally, the similarity between items
i and j using this scheme is given by

 sim(i, j) = , ,

2 2
, ,

() ()
.

() ()

u uu i u ju U

u uu i u ju U u U

R R R R

R R R R
∈

∈ ∈

− −

− −

∑
∑ ∑

 (2.4.2)

Here –R is the average of the u-th user’s ratings.

2.4.3 Kullback-Leibler Divergence

In probability theory and information theory, the Kullback-Leibler
divergence is a nonsymmetric measure of the difference between two
probability distributions P and Q. KL measures the expected number of extra
bits required to code samples from P when using a code based on Q, rather
than using a code based on P. Typically P represents the “true” distribution
of data, observations, or a precisely calculated theoretical distribution.
The measure Q typically represents a theory, model, description, or
approximation of P.

Although it is often intuited as a metric or distance, the KL divergence
is not a true metric—for example, it is not symmetric: the KL from P to Q
is generally not the same as the KL from Q to P. However, its infi nitesimal
form, specifi cally its Hessian, is a metric tensor: it is the Fisher information
metric.

For probability distributions P and Q of a discrete random variable
their KL divergence is defi ned to be

 DKL(P Q) =
()() In .
()i

P iP i
Q i∑ (2.4.3)

In words, it is the average of the logarithmic difference between the
probabilities P and Q, where the average is taken using the probabilities P.
The KL divergence is only defi ned if P and Q both sum up to 1 and if Q(i) >
0 for any i is such that P(i) > 0. If the quantity 0 ln 0 appears in the formula,
it is interpreted as zero. For distributions P and Q of a continuous random
variable, KL divergence is defi ned to be the integral:

 DKL(P Q) = ∫ –∞

∞

()() In ,
()

p xp x dx
q x

 (2.4.4)

where p and q denote the densities of P and Q. More generally, if P and Q
are probability measures over a set X, and Q is absolutely continuous with
respect to P, then the Kullback-Leibler divergence from P to Q is defi ned
as

 DKL(P Q) = ∫X In ,dQdP
dP

 (2.4.5)

 Mathematical Foundations 35

36 Applied Data Mining

where
dQ
dp is the Radon-Nikodym derivative of Q with respect to P, and

provided the expression on the right-hand side exists. Likewise, if P is
absolutely continuous with respect to Q, then

 DKL(P Q) = ∫X In In .
X

dP dP dPdP dQ
dQ dQ dQ

= ∫ (2.4.6)

which we recognize as the entropy of P relative to Q. Continuing in this

case, if µ is any measure on X for which p = dP
dµ

 and q =
dQ
dµ exist, then the

Kullback-Leibler divergence from P to Q is given as

 DKL(P Q) = ∫X
In pp

q
dµ. (2.4.7)

The logarithms in these formulae are taken to base 2 if information is
measured in units of bits, or to base e if information is measured in nats.
Most formulas involving the KL divergence hold irrespective of log base.
For probability distributions P and Q of a discrete random variable, their
KL divergence is defi ned as

 DKL(P Q) =
()() In .
()i

P ip i
Q i∑ (2.4.8)

In other words, it is the average of the logarithmic difference between
the probabilities P and Q, where the average is taken using the probabilities
P. The KL divergence is only defi ned if P and Q both sum up to 1 and if
Q(i) > 0 for any i is such that P(i) > 0. If the quantity 0 ln 0 appears in the
formula, it is interpreted as zero. For distributions P and Q of a continuous
random variable, KL divergence is defi ned to be the integral:

 DKL(P Q) = ∫ –∞

∞

 p(x) ln
() ,
()

p x dx
q x

 (2.4.9)

where p and q denote the densities of P and Q. More generally, if P and Q
are probability measures over a set X, and Q is absolutely continuous with
respect to P, then the Kullback-Leibler divergence from P to Q is defi ned
as

 DKL(P Q) = –∫X ln
dQ dP
dP

, (2.4.10)

where dQ
dP is the Radon-Nikodym derivative of Q with respect to P, and

provided the expression on the right-hand side exists. Likewise, if P is
absolutely continuous with respect to Q, then

 DKL(P Q) = ∫X ln
dP dP
dQ

 ∫X
In ,dP dP dQ

dQ dQ (2.4.11)

which we recognize as the entropy of P relative to Q. Continuing in this
case, if µ is any measure on X for which p = dP

dµ and q = dQ
dµ exist, then the

Kullback-Leibler divergence from P to Q is given as

 DKL(P Q) = ∫X p ln
p
q

dµ, (2.4.12)

The logarithms in these formulae are taken to base 2 if information is
measured in units of bits, or to base e if information is measured in nats.
Most formulas involving the KL divergence hold irrespective of log base.
The Kullback-Leibler divergence is a widely used tool in statistics and
pattern recognition. In Bayesian statistics the KL divergence can be used
as a measure of the information gain in moving from a prior distribution
to a posterior distribution. And the KL divergence between two Gaussian
Mixture Models (GMMs) is frequently needed in the fi elds of speech and
image recognition.

2.4.4 Model-based Measures

Distance or similarity functions play a central role in all clustering algorithms.
Numerous distance functions have been reported in the literature and used
in applications. Different distance functions are also used for different
types of attributes (also called variables). A most commonly used distance
functions for numeric attributes is Manhattan (city block) distance. This
distance measures in special cases of a more general distance function is
called the Minkowski distance. But the above distance measures are only
appropriate for numeric attributes. For binary and nominal attributes (also
called unordered categorical attributes), we need different functions. Thus,
an algorithm might be required to test the similarity functions for their
appropriation on different specifi c models or attributes. Below is a popular
method to establish the accuracy level of similarity functions.

Consider a graph G(V, E) with the same defi nition mentioned above.
The multiple links and self-connections are not allowed. For each pair
of nodes, x, y V, we assign a score, sxy, according to a given similarity
measure. Higher score means higher similarity between x and y, and vice
versa. Suppose G is undirected, the score is also supposed to be symmetry
as the adjacent matrix, say sxy = syx. All the nonexistent links are sorted in
a descending order according to their scores, and the links at the top are
most likely to exist. To test the algorithm’s accuracy, the observed links, E,
is randomly divided into two parts: the training set, ET, is treated as known
information, while the probe set, EP, is used for testing and no information
therein is allowed to be used for prediction. Clearly, E = ET EP and ET
EP = . We can choose different portion rate of these two sets for the test. To

 Mathematical Foundations 37

38 Applied Data Mining

quantify the prediction accuracy, we use a standard metric called precision,
which is defi ned as the ratio of relevant items selected to the number of items
selected. We focus on the top L predicted links, if there are Lr relevant links
(i.e., the links in the probe set), the precision equals Lr/L. Clearly, higher
precision means higher prediction accuracy, or that the similarity is quite
convincingly reasonable.

2.5 Dimensionality Reduction
High dimensional datasets present many mathematical challenges as
well as some opportunities, and are bound to give rise to new theoretical
developments. One of the problems with high dimensional datasets is
that, in many cases, not all the measured variables are “important” for
understanding the underlying phenomena of interest. While certain
methods can construct predictive models with high accuracy from high
dimensional data, it is still of interest in many applications to reduce the
dimension of the original data prior to any modeling of the data.

 In machine learning, dimensionality reduction is the process of
reducing the number of random variables under consideration, and can
be divided into feature selection and feature extraction.

Feature selection approaches try to fi nd a subset of the original variables
(also called features or attributes). Two strategies are fi lter and wrapper
approaches. See also combinatorial optimization problems. In some cases,
data analysis such as regression or classifi cation can be done in the reduced
space more accurately than in the original space.

Feature extraction transforms the data in the high-dimensional space to
a space of fewer dimensions. The data transformation may be linear, as in
principal component analysis (PCA), but many nonlinear dimensionality
reduction techniques also exist.

2.5.1 Principal Component Analysis

Principal component analysis (PCA) is a mathematical procedure that uses
an orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated variables
called principal components. The number of principal components is less
than or equal to the number of original variables. This transformation is
defi ned in such a way that the fi rst principal component has the largest
possible variance (that is, accounts for as much of the variability in the data
as possible), and each succeeding component in turn has the highest variance
possible under the constraint that it be orthogonal to (i.e., uncorrelated
with) the preceding components. Principal components are guaranteed to

be independent only if the data set is jointly normally distributed. PCA is
sensitive to the relative scaling of the original variables.

Defi ne a data matrix, XT, with zero empirical mean (the empirical
(sample) mean of the distribution has been subtracted from the data set),
where each of the n rows represents a different repetition of the experiment,
and each of the m columns gives a particular kind of datum (say, the results
from a particular probe). (Note that XT is defi ned here and not X itself, and
what we are calling XT is often alternatively denoted as X itself.) The singular
value decomposition of X is X = W VT, where the m × m matrix W is the
matrix of eigenvectors of the covariance matrix XXT , the matrix is an
m × n rectangular diagonal matrix with nonnegative real numbers on the
diagonal, and the n × n matrix V is the matrix of eigenvectors of XTX. The
PCA transformation that preserves dimensionality (that is, gives the same
number of principal components as original variables) is then given by:

YT = XTW = V TWTW = V T,

V is not uniquely defi ned in the usual case when m < n−1, but Y will
usually still be uniquely defi ned. Since W (by defi nition of the SVD of a real
matrix) is an orthogonal matrix, each row of YT is simply a rotation of the
corresponding row of XT . The fi rst column of YT is made up of the “scores”
of the cases with respect to the “principal” component, the next column has
the scores with respect to the “second principal” component, and so on.
If we want a reduced-dimensionality representation, we can project X down
into the reduced space defi ned by only the fi rst L singular vectors, WL:

Y = WT
L X = LV

T,

where L = IL×m with IL×m the L × m rectangular identity matrix. The matrix
W of singular vectors of X is equivalently the matrix W of eigenvectors of
the matrix of observed covariances C = XXT,

XXT = W TWT,

Given a set of points in Euclidean space, the fi rst principal component
corresponds to a line that passes through the multidimensional mean and
minimizes the sum of squares of the distances of the points from the line.
The second principal component corresponds to the same concept after all
correlation with the fi rst principal component has been subtracted from the
points. The singular values (in) are the square roots of the eigenvalues
of the matrix XXT. Each eigenvalue is proportional to the portion of the
“variance” (more correctly of the sum of the squared distances of the points
from their multidimensional mean) that is correlated with each eigenvector.
The sum of all the eigenvalues is equal to the sum of the squared distances

 Mathematical Foundations 39

40 Applied Data Mining

of the points from their multidimensional mean. PCA essentially rotates
the set of points around their mean in order to align with the principal
components. This moves as much of the variance as possible (using an
orthogonal transformation) into the fi rst few dimensions. The values in
the remaining dimensions, therefore, tend to be small and may be dropped
with minimal loss of information. PCA is often used in this manner for
dimensionality reduction PCA is sensitive to the scaling of the variables. If
we have just two variables and they have the same sample variance and are
positively correlated, then the PCA will entail a rotation by 45 degrees and
the “loadings” for the two variables with respect to the principal component
will be equal. But if we multiply all values of the fi rst variable by 100, then
the principal component will be almost the same as that variable, with a
small contribution from the other variable, whereas the second component
will be almost aligned with the second original variable. This means that
whenever the different variables have different units (like temperature and
mass), PCA is a somewhat arbitrary method of analysis.

2.5.2 Independent Component Analysis

Independent component analysis (ICA) is a computational method for
separating a multivariate signal into additive subcomponents supposing
the mutual statistical independence of the non-Gaussian source signals.
When the independence assumption is correct, blind ICA separation of
a mixed signal gives very good results. It is also used for signals that are
not supposed to be generated by a mixing for analysis purposes. A simple
application of ICA is the “cocktail party problem”, where the underlying
speech signals are separated from a sample data consisting of people talking
simultaneously in a room. Usually the problem is simplifi ed by assuming
no time delays or echoes. An important note to consider is that if N sources
are present, at least N observations (e.g., microphones) are needed to get
the original signals. This constitutes the square case (J = D, where D is the
input dimension of the data and J is the dimension of the model). Other
cases of under-determined (J < D) and overdetermined (J > D) have been
investigated. Linear independent component analysis can be divided into
noiseless and noisy cases, where noiseless ICA is a special case of noisy
ICA. Nonlinear ICA should be considered as a separate case.

So the general defi nition is as follows: the data is represented by the
random vector x = (x1, · · · , xm)T and the components as the random vector
s = (s1, · · · , sn)

T. The task is to transform the observed data x using a linear
static transformation W as s = Wx into maximally independent components s
measured by some function F(s1, · · · , sn) of independence. In Linear noiseless
ICA model, the components of the observed random vector x = (x1, · · · , xm)T
are generated as a sum of the independent components sk, k = 1, · · · , n:

xi = ai,1s1 + · · · + ai,ksk + · · · + ai,nsn

weighted by the mixing weights ai,k. The same generative model can be
written in vectorial form as x = n

k=1 skak, where the observed random vector
x is represented by the basis vectors ak = (a1,k, · · · , am,k)

T. The basis vectors ak
form the columns of the mixing matrix A = (a1, · · · , an) and the generative
formula can be written as x = As, where s = (s1, · · · , sn)

T. Given the model
and realizations (samples) x1, · · · , xN of the random vector x, the task is
to estimate both the mixing matrix A and the sources s. This is done by
adaptively calculating the vectors and setting up a cost function which
either maximizes the non-gaussianity of the calculated sk = (T × x) or
minimizes the mutual information. In some cases, a prior knowledge of the
probability distributions of the sources can be used in the cost function. The
original sources s can be recovered by multiplying the observed signals x
with the inverse of the mixing matrix W = A−1, also known as the unmixing
matrix. Here it is assumed that the mixing matrix is square (n = m). If the
number of basis vectors is greater than the dimensionality of the observed
vectors, n > m, the task is overcomplete but is still solvable with the pseudo
inverse. In Linear noisy ICA model, with the added assumption of zeromean
and uncorrelated Gaussian noise n ~ N(0, diag()), the ICA model takes the
form x = As + n. And in Non-linear ICA model, the mixing of the sources
does not need to be linear. Using a nonlinear mixing function f(·|θ) with
parameters θ, non-linear ICA model is x = f(s|θ) + n.

2.5.3 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) is a group of algorithms in
multivariate analysis and linear algebra where a matrix, X, is factorized
into (usually) two matrices, W and H: nmf(X) WH.

Factorization of matrices is generally non-unique, and a number
of different methods of doing so have been developed (e.g., principal
component analysis and singular value decomposition) by incorporating
different constraints; non-negative matrix factorization differs from these
methods in that it enforces the constraint that the factors W and H must be
non-negative, i.e., all elements must be equal to or greater than zero.

Let matrix V be the product of the matrices W and H such that:

WH = V

Matrix multiplication can be implemented as linear combinations of
column vectors in W with coeffi cients supplied by cell values in H. Each
column in V can be computed as follows:

vi =
1

N

ji j
j

H w
=
∑

 Mathematical Foundations 41

42 Applied Data Mining

where N is the number of columns in W, vi is the ith column vector of the
product matrix V, Hji is the cell value in the jth row and ith column of the
matrix H, wj is the jth column of the matrix W. When multiplying matrices
the factor matrices can be of signifi cantly lower rank than the product matrix
and it is this property that forms the basis of NMF. If we can factorize a
matrix into factors of signifi cantly lower rank than the original matrix, then
the column vectors of the fi rst factor matrix can be considered as spanning
vectors of the vector space defi ned by the original matrix.

Here is an example based on a text-mining application:

 • Let the input matrix (the matrix to be factored) be V with 10000 rows
and 500 columns where words are in rows and documents are in
columns. In other words, we have 500 documents indexed by 10000
words. It follows that a column vector v in V represents a document.

 • Assume we ask the algorithm to fi nd 10 features in order to generate a
features matrix W with 10000 rows and 10 columns and a coeffi cients
matrix H with 10 rows and 500 columns.

 • The product of W and H is a matrix with 10000 rows and 500 columns,
the same shape as the input matrix V and, if the factorization worked,
also a reasonable approximation to the input matrix V.

 • From the treatment of matrix multiplication above it follows that each
column in the product matrix WH is a linear combination of the 10
column vectors in the features matrix W with coeffi cients supplied by
the coeffi cients matrix H.

This last point is the basis of NMF because we can consider each original
document in our example as being built from a small set of hidden features.
NMF generates these features.

It is useful to think of each feature (column vector) in the features matrix
W as a document archetype comprising a set of words where each word’s
cell value defi nes the word’s rank in the feature: The higher a word’s cell
value the higher the word’s rank in the feature. A column in the coeffi cients
matrix H represents an original document with a cell value defi ning the
document’s rank for a feature. This follows because each row in H represents
a feature. We can now reconstruct a document (column vector) from our
input matrix by a linear combination of our features (column vectors in
W) where each feature is weighted by the feature’s cell value from the
document’s column in H.

2.5.4 Singular Value Decomposition

A number of data sets are naturally described in matrix form. Examples
range from microarrays to collaborative fi ltering data, to the set of pairwise

distances of a cloud of points. In many of these examples, singular value
decomposition (SVD) provides an effi cient way to construct a low-rank
approximation thus achieving both dimensionality reduction, and effective
denoizing. SVD is also an important tool in the design of approximate linear
algebra algorithms for massive data sets.

In linear algebra, the singular value decomposition (SVD) is a
factorization of a real or complex matrix, with many useful applications in
signal processing and statistics. Formally, the singular value decomposition
of an mn real or complex matrix M is a factorization of the form

M = U V*,

where U is an m × m real or complex unitary matrix, is an m × n rectangular
diagonal matrix with non-negative real numbers on the diagonal, and V*
(the conjugate transpose of V) is an n × n real or complex unitary matrix.
The diagonal entries i,i of are known as the singular values of M. The
m columns of U and the n columns of V are called the left-singular vectors
and right-singular vectors of M, respectively.

The singular value decomposition and the eigendecomposition are
closely related. Namely:

 • The left-singular vectors of M are eigenvectors of MM*
 • The right-singular vectors of M are eigenvectors of MM*
 • The non-zero-singular values of M (found on the diagonal entries of

) are the square roots of the non-zero eigenvalues of both M*M and
MM*.

Applications which employ the SVD include computing the pseudo
inverse, least squares fi tting of data, matrix approximation, and determining
the rank, range and null space of a matrix.

2.6 Chapter Summary
In this chapter, we have systematically presented the mathematical
foundations used in this book. We start with data organization and
distribution followed by the intensive discussion on distance and similarity
measures. This chapter also covers the important issue of dimensionality
reduction approaches that is commonly used in vector space models. The
aim of this chapter is to lay down a solid foundation for readers to better
understand the techniques and algorithms mentioned in later chapters.

 Mathematical Foundations 43

44 Applied Data Mining

References
 [1] Chandrika Kamath. Scientifi c Data Mining: A Practical Perspective, Lawrence Livermore

National Laboratory, Livermore, California, 2009.
 [2] S. Brin and L. Page. Anatomy of a Large-scale Hypertextual Web Search engine, Proc. 7th

Intl. World-Wide-Web Conference, pp. 107C117, 1998.
 [3] Norman Lloyd Johnson, Samuel Kotz, N. Balakrishnan. Continuous Univariate

Distributions, John Wiley and Sons, 2005.
 [4] N. Samuel Kotz, Balakrishnan and Norman L. Johnson. Continuous Multivariate

Distributions, Models and Applications, John Wiley and Sons, 2000.
 [5] Anand Rajaraman and Jeffrey D. Ullman. Mining of Massive Datasets, Palo Alto, CA, pp.

74C79, 2011.
 [6] J. C. Christopher, Burges. Dimension Reduction, Now Publishers Inc., 2010.

CHAPTER 3

Data Preparation

Data preparation is the start of the data mining process. The data mining
results heavily rely on the data quality prepared before the mining process.
It is a process that involves many different tasks and which cannot be fully
automated. Many of the data preparation activities are routine, tedious, and
time consuming. It has been estimated that data preparation accounts for
60 percent to 80 percent of the time spent on a data mining project. Figure
3.0.1 shows the main steps of data mining. From the fi gure, we can see that
the data preparation takes an important role in data mining.

Data preparation is essential for successful data mining. Poor quality
data typically result in incorrect and unreliable data mining results. Data
preparation improves the quality of data and consequently helps improve
the quality of data mining results. The well known saying “garbage-in
garbage-out” is very relevant to this domain. This chapter contributes to the
related topics with respect to data preparation, covering attribute selection,
data cleaning and integrity, multiple model integration and so on.

Cleaned
Data

Prepared
Data

Cleaning
Integration

Prepared
Data

Data
Mining

Patterns

Evaluation

Knowledge

Figure 3.0.1: Main steps of data mining

46 Applied Data Mining

3.1 Attribute Selection

3.1.1 Feature Selection

Feature selection, also known as variable selection, attribute reduction,
feature selection or variable subset selection, is the technique of selecting
a subset of relevant features for building robust learning models. Attribute
selection is a particularly important step in analyzing the data from many
experimental techniques in biology, such as DNA microarrays, because
they often entail a large number of measured variables (features) but a
very low number of samples. By removing most irrelevant and redundant
features from the data, feature selection helps improve the performance of
learning models by:

 • Alleviating the effect of the curse of dimensionality
 • Enhancing generalization capability
 • Speeding up learning process
 • Improving model interpretability.

Feature selection also helps people to acquire better understanding
about their data by telling them which are the important features and how
they are related with each other.

Simple feature selection algorithms are ad hoc, but there are also more
methodical approaches. From a theoretical perspective, it can be shown
that optimal feature selection for supervised learning problems requires an
exhaustive search of all possible subsets of features of the chosen cardinality.
If large numbers of features are available, this is impractical. For practical
supervised learning algorithms, the search is for a satisfactory set of features
instead of an optimal set. Feature selection algorithms typically fall into
two categories: feature ranking and subset selection. Feature ranking ranks
the features by a metric and eliminates all features that do not achieve an
adequate score. Subset selection searches the set of possible features for the
optimal subset. In statistics, the most popular form of feature selection is
stepwise regression. It is a greedy algorithm that adds the best feature (or
deletes the worst feature) at each round. The main control issue is deciding
when to stop the algorithm. In machine learning, this is typically done by
cross-validation. In statistics, some criteria are optimized. This leads to the
inherent problem of nesting. More robust methods have been explored,
such as branch and bound and piecewise linear network.

3.1.1.1 Subset Selection

Subset selection evaluates a subset of features as a group for suitability.
Subset selection algorithms can be broken into Wrappers, Filters and

Embedded. Wrappers use a search algorithm to search through the space of
possible features and evaluate each subset by running a model on the subset.
Wrappers can be computationally expensive and have a risk of over fi tting to
the model. Filters are similar to Wrappers in the search approach, but instead
of evaluating against a model, a simpler fi lter is evaluated. Embedded
techniques are embedded in and specifi c to a model. Many popular search
approaches use greedy hill climbing, which iteratively evaluates a candidate
subset of features, then modifi es the subset and evaluates if the new subset
is an improvement over the old. Evaluation of the subsets requires a scoring
metric that grades a subset of features. Exhaustive search is generally
impractical, so at some implementor (or operator) defi ned stopping point,
the subset of features with the highest score discovered up to that point is
selected as the satisfactory feature subset. The stopping criterion varies by
algorithm; possible criteria include: a subset score exceeds a threshold, a
program’s maximum allowed run time has been surpassed, etc. Alternative
search-based techniques are based on targeted projection pursuit which
fi nds low-dimensional projections of the data that score highly: the features
that have the largest projections in the lower dimensional space are then
selected. Search approaches include:

 • Exhaustive
 • Best fi rst
 • Simulated annealing
 • Genetic algorithm
 • Greedy forward selection
 • Greedy backward elimination
 • Targeted projection pursuit
 • Scatter search
 • Variable neighborhood search.

Two popular fi lter metrics for classifi cation problems are correlation and
mutual information, although neither are true metrics or ’distance measures’
in the mathematical sense, since they fail to obey the triangle inequality and
thus do not compute any actual ’distance’—they should rather be regarded
as ’scores’. These scores are computed between a candidate feature (or
set of features) and the desired output category. There are, however, true
metrics that are a simple function of the mutual information; see here. Other
available fi lter metrics include:

 • Class reparability
 • Error probability
 • Inter-class distance
 • Probabilistic distance
 • Entropy

 Data Preparation 47

48 Applied Data Mining

 • Consistency-based feature selection
 • Correlation-based feature selection.

3.1.1.2 Optimality Criteria

There are a variety of optimality criteria that can be used for controlling
feature selection. The oldest are Mallows’ Cp statistic and Akaike
information criterion (AIC). These add variables if the t-statistic is bigger
than 2. Other criteria are Bayesian information criterion (BIC) which
uses log n , minimum description length (MDL) which asymptotically
uses log n , Bonnferroni/RIC which use 2log p, maximum dependency
feature selection, and a variety of new criteria that are motivated by false

discovery rate (FDR) which use something close to 2log p
q

.

3.1.1.3 Correlation Feature Selection

The Correlation Feature Selection (CFS) measure evaluates subsets of
features on the basis of the following hypothesis: “Good feature subsets
contain features highly correlated with the classifi cation, yet uncorrelated
to each other [2]. The following equation gives the merit of a feature subset

S consisting of k features:MeritSK
 =

(1)
cf

ff

kr

k k k r+ −
, where rcf is the average value

of all feature-classifi cation correlations, and rff is the average value of all
feature-feature correlations.

The CFS criterion is defi ned as follows:

CFS = 1 2

1 1

,...,
max

2(... ...k

cf cf cfk

S
f f fifj fkfk

r r r
k r r r

⎡ ⎤+ + +
⎢ ⎥

+ + + + +⎢ ⎥⎣ ⎦
.

The rcfi
 and rfifj

 variables are referred to as correlations, but are not necessarily
Pearson’s correlation coeffi cient or Spearman’s. Dr Mark Hall’s dissertation
uses neither of these, but uses three different measures of relatedness,
minimum description length (MDL), symmetrical uncertainty, and relief.

Let xi be the set membership indicator function for feature
fi; then the above can be rewritten as an optimization problem:

CFS = 1

{0.1}
1

()
max

2n

n
i ii

nx
i ij i ji i j

a x

x b x x
=

∈
= ≠

⎡ ⎤
⎢ ⎥
⎢ ⎥+⎣ ⎦

∑
∑ ∑

. The combinatorial problems above are, in

fact, mixed 0–1 linear programming problems that can be solved by using
branch-and-bound algorithms.

3.1.1.4 Software for Feature Selection

Many standard data analysis software systems are often used for feature
selection, such as SciLab, NumPy and the R language. Other software
systems are tailored specifi cally to the feature-selection task [1]:

 • Weka—freely available and open-source software in Java.
 • Feature Selection Toolbox 3—freely available and open-source software

in C++.
 • RapidMiner—freely available and open-source software.
 • Orange—freely available and open-source software (module

orngFSS).
 • TOOLDIAG Pattern recognition toolbox - freely available C toolbox.
 • Minimum redundancy feature selection tool - freely available C/Matlab

codes for selecting minimum redundant features.
 • A C# Implementation of greedy forward feature subset selection for

various classifi ers (e.g., LibLinear, SVM-light).
 • MCFS-ID (Monte Carlo Feature Selection and Interdependency

Discovery) is a Monte Carlo method-based tool for feature selection.
It also allows for the discovery of interdependencies between the
relevant features. MCFS-ID is particularly suitable for the analysis of
high-dimensional, ill-defi ned transactional and biological data.

 • RRF is an R package for feature selection and can be installed from
R. RRF stands for Regularized Random Forest, which is a type of
Regularized Trees. By building a regularized random forest, a compact
set of non-redundant features can be selected without loss of predictive
information. Regularized trees can capture non-linear interactions
between variables, and naturally handle different scales, and numerical
and categorical variables.

3.1.2 Discretizing Numeric Attributes

We can turn a numeric attribute into a nominal/categorical one by using
some sort of discretization. This involves dividing the range of possible
values into sub-ranges called buckets or bins. For example: an age attribute
could be divided into these bins:
child: 0–12
teen: 12–17
young: 18–35
middle: 36–59
senior: 60–
What if we don’t know which sub-ranges make sense? [5, 7, 6]

 Data Preparation 49

50 Applied Data Mining

 • Equal-width binning divides the range of possible values into
N subranges of the same size and bin width = (max value - min
value)/N

For example: if the observed values are all between 0 and 100, we could
create 5 bins as follows:

 (1) width = (100–0)/5 = 20
 (2) bins: [0–20], (20–40], (40–60], (60–80], (80–100] [or] means the endpoint

is included (or) means the endpoint is not included
 (3) typically, the fi rst and last bins are extended to allow for values outside

the range of observed values (-infi nity-20], (20–40], (40–60], (60–80],
(80-infi nity).

 • Equal-frequency or equal-height binning divides the range of possible
values into N bins, each of which holds the same number of training
instances.

For example: let’s say we have 10 training examples with the following
values for the attribute that we are discrediting: 5, 7, 12, 35, 65, 82, 84, 88, 90,
95 to create 5 bins, we would divide up the range of values so that each bin
holds 2 of the training examples: 5–7, 12–35, 65–82, 84–88, 90–95. To select
the boundary values for the bins, this method typically chooses a value
halfway between the training examples on either side of the boundary. For
example: (7 + 12)/2 = 9.5 (35 + 65)/2 = 50

3.2 Data Cleaning and Integrity

3.2.1 Missing Values

Imagine that you need to analyze All Electronics sales and customer data.
You note that many tuples have no recorded value for several attributes,
such as customer income. How can you go about fi lling in the missing values
for this attribute? Let’s look at the following methods [9, 8]:

 • Ignore the tuple: This is usually done when the class label is missing
(assuming the mining task involves classifi cation or description). This
method is not very effective, unless the tuple contains several attributes
with missing values. It is especially poor when the percentage of
missing values per attribute varies considerably.

 • Fill in the missing value manually: In general, this approach is time-
consuming and may not be feasible given a large data set with many
missing values.

 • Use a global constant to fi ll in the missing value: Replace all missing
attribute values by the same constant, such as a label like “Unknown”.
If missing values are replaced by, say, “Unknown”, then the mining

program may mistakenly think that they form an interesting concept,
since they all have a value in common—that of “Unknown”. Hence,
although this method is simple, it is not recommended.

 • Use the attribute mean to fi ll in the missing value: For example, suppose
that the average income of All Electronics customers is $28,000. Use
this value to replace the missing value for income.

 • Use the attribute mean for all samples belonging to the same class as
the given tuple: For example, if classifying customers according to
credit_risk, replace the missing value with the average income value
for customers in the same credit_risk category as that of the given
tuple.

 • Use the most probable value to fi ll in the missing value: This may be
determined with inference-based tools using a Bayesian formalism or
decision tree induction. For example, sing the other customer attributes
in your data set, you may construct a decision tree to predict the missing
values for income.

Methods 3 to 6 bias the data. The fi lled-in value may not be correct.
Method 6, however, is a popular strategy. In comparison to the other
methods, it uses the most information from the present data to predict
missing values.

3.2.2 Detecting Anomalies

Anomaly detection, also referred to as outlier detection [2], refers to detecting
patterns in a given data set that do not conform to an established normal
behavior. The patterns thus detected are called anomalies and often translate
to critical and actionable information in several application domains.
Anomalies are also referred to as outliers, change, deviation, surprise,
aberrant, peculiarity, intrusion, etc. In particular in the context of abuse
and network intrusion detection, the interesting objects are often not rare
objects, but unexpected bursts of activity. This pattern does not adhere to the
common statistical defi nition of an outlier as a rare object, and many outlier
detection methods (in particular unsupervised methods) will fail on such
data, unless it has been aggregated appropriately. Instead, a cluster analysis
algorithm may be able to detect the micro clusters formed by these patterns.
Three broad categories of anomaly detection techniques exist. Unsupervised
anomaly detection techniques detect anomalies in an unlabeled test data set
under the assumption that the majority of the instances in the data set are
normal by looking for instances that seem to fi t least to the remainder of the
data set. Supervised anomaly detection techniques require a data set that has
been labeled as ”normal” and ”abnormal” and involves training a classifi er
(the key difference to many other statistical classifi cation problems is the

 Data Preparation 51

52 Applied Data Mining

inherent unbalanced nature of outlier detection). Semi-supervised anomaly
detection techniques construct a model representing normal behavior from
a given normal training data set, and then testing the likelihood of a test
instance to be generated by the learnt model.

3.2.3 Applications

Anomaly detection is applicable in a variety of domains, such as intrusion
detection, fraud detection, fault detection, system health monitoring, event
detection in sensor networks, and detecting eco-system disturbances. It is
often used in preprocessing to remove anomalous data from the dataset. In
supervised learning, removing the anomalous data from the dataset often
results in a statistically signifi cant increase in accuracy.

(1) Popular techniques

Several anomaly detection techniques have been proposed in literature.
Some of the popular techniques are:

 • Distance based techniques (k-nearest neighbor, Local Outlier Factor)
 • One class support vector machines
 • Replicator neural networks
 • Cluster analysis based outlier detection
 • Pointing at records that deviate from association rules
 • Conditional anomaly concept.

(2) Application to data security

Anomaly detection was proposed for Intrusion Detection Systems (IDS)
by Dorothy Denning in 1986. Anomaly detection for IDS is normally
accomplished with thresholds and statistics, but can also be done with soft
computing and inductive learning. Types of statistics proposed by 1999
included profi les of users, workstations, networks, remote hosts, groups of
users, and programs based on frequencies, means, variances, covariances,
and standard deviations. The counterpart of Anomaly Detection in Intrusion
Detection is Misuse Detection.

(3) Time series outlier detection

Parametric tests to fi nd outliers in time series are implemented in almost
all statistical packages: Demetra+, for example, uses the most popular ones.
One way to detect anomalies in time series is a simple non-parametric
method called washer. It uses a non-parametric test to fi nd one or more
outliers in a group of even very short time series. The group must have
a similar behaviour, as explained more fully below. An example is that of
municipalities cited in the work of Dahlberg and Johanssen (2000). Swedish

municipalities expenditures between 1979 and 1987 represent 256 time
series. If you consider three years such as, for example, 1981,1982 and 1983,
you have 256 simple polygonal chains made of two lines segments. Every
couple of segments can approximate a straight line or a convex downward
(or convex upward) simple polygonal chain. The idea is to fi nd outliers
among the couples of segments that performs in a too much different way
from the other couples. In the washer procedure every couple of segments
is represented by an index and a non-parametric test (Sprent test) is applied
to the unknown distribution of those indices. For implementing washer
methodology you can download an open source R (programming language)
function with a simple numeric example.

3.3 Multiple Model Integration

3.3.1 Data Federation

Data federation is a brand new idea for integration of data from many
diffract sources. Many organizations and companies store their data in
different ways, like transactional databases, data warehouses, business
intelligence systems, legacy systems and so on. The problem arises, when
someone needs to access data from some of these sources [8, 4, 3]. There
is no easy way to retrieve the data, because every storage system has its
own way of accessing it. In order to help getting to the data from many
sources, there are some ways to integrate the data, and the most advanced of
them is data federation. To integrate the data it has to be copied and moved,
because the integrated data need to be kept together. Of course it has its
defects, like the time needed to copy and move the data, and some copyright
infringements during copying. The data also occupied more disk space
than it actually needed, because it was kept in few instances. There were
also some problems with data refreshing, because if there was more than
one instance of the data, only the modifi ed instance was up to date, so all
others instances of the data has to be refreshed. Of course it slowed down
the integration system. In response to these problems, the IT specialists
created a new data integration system called data federation. The idea of
data federation is to integrate data from many individual sources and make
access to them as easy as possible. The target has to be reached without
moving or copying the data. In fact, the data sources can be in any location.
It only has to be online. Also, every data source can be made using different
technology, standard and architecture. For the end user it will feel like one
big data storage system. The data federation supports many data storage
standards. From the SQL relational databases like Mysql, PostgreSQL,
InterBase, IBM DB2, Firebird and Oracle through directory services and
object-based databases like LDAP and OpenLDAP, to data warehouses

 Data Preparation 53

54 Applied Data Mining

and Business-Intelligence systems. The goal is to make the data federation
system work with every standard that is used to store data in companies
and other organizations. The data that is already integrated with the data
federation system is called a federated database or a virtual database.
Federated database allows users to read and write the data without even
knowing that it comes from many different sources. The user doesn’t need
to know how to use a database system, or how to access data in a directory
service. All he needs is to know is how to use the unifi ed front-end of the
data federation system. The data federation system in many cases might
be the best way to unify the data kept in different places in many different
ways. It’s simple, easy for the end users, and an effi cient solution that will
make accessing the data a lot easier.

3.3.2 Bagging and Boosting

(1) Bagging

The concept of bagging (voting for classifi cation, averaging for regression-
type problems with continuous dependent variables of interest) applies to
the area of predictive data mining, to combine the predicted classifi cations
(prediction) from multiple models, or from the same type of model for
different learning data. It is also used to address the inherent instability of
results when applying complex models to relatively small data sets. Suppose
your data mining task is to build a model for predictive classifi cation,
and the dataset from which to train the model (learning data set, which
contains observed classifi cations) is relatively small. You could repeatedly
sub-sample (with replacement) from the dataset, and apply, for example,
a tree classifi er (e.g., C&RT and CHAID) to the successive samples. In
practice, very different trees will often be grown for the different samples,
illustrating the instability of models often evident with small datasets. One
method of deriving a single prediction (for new observations) is to use all
trees found in the different samples, and to apply some simple voting: The
fi nal classifi cation is the one most often predicted by the different trees. Note
that some weighted combination of predictions (weighted vote, weighted
average) is also possible, and commonly used. A sophisticated (machine
learning) algorithm for generating weights for weighted prediction or voting
is the Boosting procedure.

(2) Boosting

The concept of boosting applies to the area of predictive data mining, to
generate multiple models or classifi ers (for prediction or classifi cation),
and to derive weights to combine the predictions from those models into
a single prediction or predicted classifi cation (see also Bagging). A simple

algorithm for boosting works like this: Start by applying some method
(e.g., a tree classifi er such as C&RT or CHAID) to the learning data, where
each observation is assigned an equal weight. Compute the predicted
classifi cations, and apply weights to the observations in the learning sample
that are inversely proportional to the accuracy of the classifi cation. In other
words, assign greater weight to those observations that were diffi cult to
classify (where the misclassifi cation rate was high), and lower weights to
those that were easy to classify (where the misclassifi cation rate was low).
In the context of C&RT for example, different misclassifi cation costs (for
the different classes) can be applied, inversely proportional to the accuracy
of prediction in each class. Then apply the classifi er again to the weighted
data (or with different misclassifi cation costs), and continue with the next
iteration (application of the analysis method for classifi cation to the re-
weighted data). Boosting will generate a sequence of classifi ers, where
each consecutive classifi er in the sequence is an “expert” in classifying
observations that were not well classifi ed by those preceding it. During
deployment (for prediction or classifi cation of new cases), the predictions
from the different classifi ers can then be combined (e.g., via voting, or
some weighted voting procedure) to derive a single best prediction or
classifi cation. Note that boosting can also be applied to learning methods
that do not explicitly support weights or misclassifi cation costs. In that case,
random sub-sampling can be applied to the learning data in the successive
steps of the iterative boosting procedure, where the probability for selection
of an observation into the subsample is inversely proportional to the
accuracy of the prediction for that observation in the previous iteration (in
the sequence of iterations of the boosting procedure).

3.4 Chapter Summary
In this section, we summarize the techniques involved in data preparation,
which is an essential step for the success of data mining. Particularly, we
discuss the issues of feature selection, data cleaning, missing values and
data federation.

References
 [1] http://en.wikipedia.org/wiki/Feature_selection# Correlation feature selection.
 [2] M.A. Hall and L.A. Smith. Feature selection for machine learning: Comparing a

correlation-based fi lter approach to the wrapper. In: FLAIRS Conference, pp. 235–39,
1999.

 [3] Z. Huang, M.-L. Shyu and J. M. Tien. Multi-model integration for long-term time series
prediction. In: IRI’12, pp. 116–23, 2012.

 [4] A. Lazarevic, A. Lazarevic and Z. Obradovic. Data reduction using multiple models
integration, 2000.

 Data Preparation 55

56 Applied Data Mining

 [5] H. Liu and R. Setiono. Chi2: Feature selection and discretization of numeric attributes.
In: Proceedings of the Seventh International Conference on Tools with Artifi cial Intelligence,
pp. 388–391, 1995.

 [6] H. Liu and R. Setiono. Chi2: Feature selection and discretization of numeric attributes.
Tools with Artifi cial Intelligence, IEEE International Conference on, 0: 388, 1995.

 [7] H. Liu and R. Setiono. Feature selection via discretization. IEEE Transactions on Knowl-
edge and Data Engineering, 9: 642–645, 1997.

 [8] J. I. Maletic and A. Marcus. Data Cleansing: Beyond Integrity Analysis, 2000.
 [9] E. Rahm and H. H. Do. Data Cleaning: Problems and Current Approaches. IEEE Data

Engineering Bulletin, 23: 2000, 2000.

CHAPTER 4

Clustering Analysis

4.1 Clustering Analysis
Clustering analysis is an important learning method which doesn’t need any
prior knowledge. Clustering is usually performed when no information is
available concerning the membership of data items to predefi ned classes. For
this reason, clustering is traditionally seen as part of unsupervised learning.
We nevertheless speak here of unsupervised clustering to distinguish it from
a more recent and less common approach that makes use of a small amount
of supervision to “guide” or “adjust” clustering. In this chapter, we focus
on discussing this unsupervised learning method. The aim of clustering
analysis is to divide data into groups (clusters) that are meaningful, useful
or both. For meaningful groups, the goal of clustering is to capture the
natural structure of data. In some cases, however, clustering is only a useful
starting point for other purposes, such as data summarization. Whether for
understanding or utility, clustering analysis has played an important role in
a wide variety of fi elds: computer science, pattern recognition, information
retrieval, machine learning, biology, data mining etc. Many data mining
queries are concerned either with how the data objects are grouped or which
objects could be considered remote from natural groupings. There have been
many works on cluster analysis, but we are now witnessing a signifi cant
resurgence of interest in new clustering techniques. Scalability and high
dimensionality are not the only focus of the recent research in clustering
analysis. Indeed, it is getting diffi cult to keep track of all the new clustering
strategies, their advantages and shortcomings. The following are the typical
requirements for a good clustering technique in data mining [30, 29]:

 • Scalability: The cluster method should be applicable to huge databases
and performance should decrease linearly with data size increase.

 • Versatility: Clustering objects could be of different types—numerical
data, boolean data or categorical data. Ideally a clustering method
should be suitable for all different types of data objects.

58 Applied Data Mining

 • Ability to discover clusters with different shapes: This is an important
requirement for spatial data clustering. Many clustering algorithms
can only discover clusters with spherical shapes.

 • Minimal input parameter: This method should require a minimum
amount of domain knowledge for correct clustering. However, most
current clustering algorithms have several key parameters and are
thus not practical for use in real world applications.

 • Robust with regard to noise: This is important because noise exists
everywhere in practical problems. A good clustering algorithm should
be able to perform successfully even in the presence of a great deal of
noise.

 • Insensitive to the data input order: The clustering method should give
consistent results irrespective of the order the data is presented.

 • Scaleable to high dimensionality: The ability to handle high dimensionality
is very challenging but real data sets are often multidimensional.

There is no single algorithm that can fully satisfy all the above requirements.
It is important to understand the characteristics of each algorithm so that
the proper algorithm can be selected for the clustering problem at hand.
Recently, there are several new clustering techniques offering useful
advances, possibly even complete solutions. During the past decades,
clustering analysis has been used to deal with practical problems in many
applications, as summed up by Han [30, 29]. Biology. Biologists have spent
many years creating a taxonomy (hierarchical classifi cation) of all living
things: kingdom, class, order, family, genus and species. More recently,
biologists have applied clustering to analyze the large amounts of genetic
information that are now available. For example, clustering has been used
to fi nd groups of genes that have similar functions from high dimensional
genes data.

It has been used for Information Retrieval. The World Wide Web consists
of billions of Web pages, and the results of a query to a search engine can
return thousands of pages. Clustering can be used to group these search
results into a small number of clusters, each of which captures a particular
aspect of the query.

Climate. Understanding the earth’s climate requires fi nding patterns in the
atmosphere and ocean. To that end, clustering analysis has been applied
to fi nd patterns in the atmospheric pressure of polar regions and areas of
the ocean that have a signifi cant impact on land climate.

Psychology and Medicine. All illness or condition frequently has a number
of variations, and cluster analysis can be used to identify these different
subcategories. For example, clustering has been used to identify types of

depression. Cluster analysis can also be used to detect patterns in the spatial
or temporal distribution of a disease.

Business. Businesses collect large amounts of information on current and
potential customers. Clustering can be used to segment customers into a
small number of groups for additional analysis and marketing activities.

This chapter provides an introduction to clustering analysis. We
begin with the discussion of data types which have been met in clustering
analysis, and then, we will introduce some traditional clustering algorithms
which have the ability to deal with low dimension data clustering. High-
dimensional problem is a new challenge for clustering analysis, and lots of
high-dimensional clustering algorithms have been proposed by researchers.
Constraint-based clustering algorithm is a kind of semi-supervised
learning method, and it will be briefl y discussed in this chapter as well.
Consensus cluster algorithm focuses on the clustering results derived by
other traditional clustering algorithms. It is a new method to improve the
quality of clustering result.

4.2 Types of Data in Clustering Analysis
As we know, clustering analysis methods could be used in different
application areas. So for clustering, different types of data sets will be
met. Data sets are made up of data objects (also referred to as samples,
examples, instance, data points, or objects) and a data object represents
an entity. For example, in a sales database, the objects may be customers,
store items and sales; in a medical database, the objects may be patients; in
a university database, the objects may be students, course, professor, salary;
in a webpage database, the objects maybe the users, links and pages; in a
tagging database, the objects may be users, tags and resources, and so on.
In clustering scenario, there have two traditional ways to organize the data
objects: Data Matrix and Proximity Matrix.

4.2.1 Data Matrix

A set of objects is represented as an m by n matrix, where there are m rows,
one for each object, and n columns, one for each attribute. This matrix
has different names, e.g., pattern matrix or data matrix, depending on
the particular fi eld. Figure 4.2.1 below, provides a concrete example of
web usage data objects and their corresponding data matrix, where si,
i=1,...,m indicates m user sessions and pj, j=1,...,n indicates n pages, aij=1
indicates si has visited pj, otherwise, aij=0. Because different attributes may
be measured on different scales, e.g., centimeter and kilogram, the data
is sometimes transformed before being used. In cases where the range of

 Clustering Analysis 59

60 Applied Data Mining

values differs widely from attribute to attribute, these differing attribute
scales can dominate the results of the cluster analysis and it is common to
standardize the data so that all attributes are on the same scale. In order
to introduce these approaches clearly, we denote that xi is the i-th data
object, xij is the value of the j-th attribute of the i-th object, and xij' is the
standardized attribute value. There have some common approaches for
data standardization as follows:

 (1) x'ij =
max | |

ij

iji

x
x

. Divide each attribute value of an object by the

maximum observed absolute value of that attribute. This restricts all
attribute values to lie between -1 and 1. If all the values are positive,
all transformed values lie between 0 and 1. This approach may not
produce good results unless the attributes are uniformly distributed,
and this approach is also sensitive to outliers.

 (2)
x'ij = xij−µj'

j

. For each attribute value subtract off the mean of that

attribute and then divide it by the standard deviation of the attribute,

where µj = 1

1 m
iji

x
m =∑ is the mean of the j-th feature, and j =

1
m

2
1
()m

ij ji
x μ

=
−∑ μ is the standard deviation of the j-th feature.

Kaufman et al. indicate that if the data are normally distributed, then
most transformed attribute values will be lie between -1 and 1. This
approach has no request for the data distribution, but it is also sensitive
to the outliers like the fi rst approach.

 (3) x'ij = xij−µj'
A

j

. For each attribute value subtract off the mean of that

attribute and divide i+ by the attribute’s absolute deviation (KR 90),

where A
j = 1

1 | |m
ij ji

x
m

μ
=

−∑ μ is the absolute standard deviation of the

j-th attribute. Typically, most attribute values will lie between -1 and
1. This approach is the most robust in the presence of outliers among
three approaches.

Figure 4.2.1: An example of data matrix

 p1 p2 … Pn

s1

s2 aij

…

sm

aij

p1

S1

S2

Sm

p2
pn

4.2.2 The Proximity Matrix

While cluster analysis sometimes uses the original data matrix, many
clustering algorithms use a similarity matrix, S, or a dissimilarity matrix,
D. For convenience, both matrices are commonly referred to as a proximity
matrix, P. A proximity matrix, P, is an m by m matrix containing all the
pairwise dissimilarities or similarities between the objects being considered.
If xi and xj are the i-th and j-th objects respectively, then the entry of pij
is the similarity, sij, or the dissimilarity, dij, between xi and xj, where, pij
denotes the element at the i-th row and j-th column of the proximity matrix
P. For simplicity, we will use pij to represent either sij or dij. Figure 4.2.2
gives an example of proximity matrix in social tagging mining, where the
element in the matrix represents the cosine similarity between tags. From
the description of data objects, we could see the fact that data objects

1

0.41 1

0 0.5 1

0.58 0 0 1

0.41 0.50 0.50 0.71 1

Figure 4.2.2: An example of Proximity Matrix

are typically described by attribute. An attributes is a data fi eld which
represents a characteristic or a feature of a data object. In the proposed
literature, the nouns attribute, dimension, feature, and variable are often
used interchangeably. The term “dimension” is commonly used in data
warehousing, while the term “feature” is tended to be used in machine
learning. For the term “variable”, it used to be occurred in statisticians. In
data mining and database area, the researchers prefer the term “attribute”.
For example, attributes describing a user object in a webpage database can
include, userID, page1, page2, · · · , pagen. A set of attributes used to describe a
given object is called an attribute vector or feature vector. The distribution of
data involving one attribute is called univariate, and a bivariate distribution
involves two attributes, and so on. The type of an attribute is determined
by the possible values, that is, nominal, binary, ordinal or numeric.

Nominal Attributes. The values of enumerations attribute are symbols
or names of things, that is, enumerations is related to names. Each value
represents some kind of category, code, or state. There is no meaningful
order for the value of these kind of attributes. As we know, in some cases,

 Clustering Analysis 61

62 Applied Data Mining

the values are also known as enumeration attributes. For example, suppose
that course is an attribute describing student objects in a university database.
The possible values for course are software engineering, mathematics,
English writing, and so on. Another example of an enumeration attributes
is the color attribute, the possible values of it are red, black, blue, and so
on. As we said earlier, the values of enumeration attributes are symbols,
however, it is possible to represent such symbols with numbers. In order
to achieve this goal, we can assign a code of 0 to red, 1 to black, 2 to blue,
and so on.

Binary Attributes. During the application, some binary attributes will be
accounted. A binary attribute is a nominal attribute with only two states: 0
or 1, where 0 indicates the attribute is absent and 1 means that it is present.
In some sense, binary attributes are referred to as Boolean if the two states
correspond to false and true. There are two types of binary attributes:
symmetric and asymmetric. For symmetric binary attributes, the states
are equally valuable and can carry the same weight, that is, there is no
preference on which outcome should be coded as 0 or 1. For instance, the
attribute gender having the states male and female. For asymmetric binary
attributes, the outcomes of the states are not equally important, such as the
positive and negative outcomes of a medical test for HIV.

Ordinal Attributes. An ordinal attribute is an attribute with possible values
that have a meaningful order among them, but the magnitude between
successive values is not known [30, 29]. Take for example, the grade attribute
for a student’s test score. The possible values of grade could be A+, A,
A-, B+ and so on. Ordinal attributes are useful for registering subjective
assessments of qualities that cannot be measured objectively. Thus, ordinal
attributes are often used in surveys for rating. For example, in social network
area, the participants were asked to rate how good was a movie which they
have seen. The rating of the movie had the following categories: 0: excellent,
1: good, 2: normal, 3: bad, 4: very bad. In some cases, ordinal attributes may
also be obtained from the discrimination of numeric quantities by splitting
the value range into a fi nite number of ordered categories.

Numeric Attributes. A numeric attribute is represented in integer or real
value and it is quantitative. There are two types of numeric attributes:
interval-scaled and ratio-scaled. Interval-scaled attributes are measured on a
scale of equal size units. The values of interval-scaled attributes have order
and can be positive, 0, or negative. In other words, such attributes allow us
to compare and quantify the difference between values. For instance, height
is a numeric attribute of a person, the height value of Tom is 175 cm and that
of Jack is 185 cm. We can then say that Jack is taller than Tom. Ratio-scaled
attribute is numeric attribute with the chrematistic that a value as being a

multiple (or ratio) of another value. For example, you are 100 times richer
with 100thanwith1. Data scales and types are important since the type of
clustering used often depends on the data scale and type.

4.3 Traditional Clustering Algorithms
As clustering is an important technology related to applications, researchers
use different models to defi ne clustering problem and propose different
ways to deal with the models. According to facts, in this chapter, we category
the clustering algorithms into Partitional methods, Hierarchical methods,
Density-methods, Grid-based methods and Model-based methods.

4.3.1 Partitional methods

Partitional methods have the following defi nition:

Defi nition 1: Given a set of input data set D = {x1, x2, · · · , xN}, where xi
Rd, i = 1, ...N. Partitional methods attempt to seek K partitions of D, C

= {C1, C2, · · · ,CK}, (K ≤ N), such that the quality measure function Q(C) =

1 ,
(,)

i k j k

K
i jk x C x C

dist x x
= ∈ ∈∑ ∑ is minimized, where dist() is the distance function

between the data objects.
Partitional methods create a one-level partitioning of the data objects.

If K is the desired number of clusters, then partitional methods fi nd all K
clusters at once. Drineas et al. have proved that this problem is NP-hard
[13]. In order to deal with the clustering problem described in defi nition
1, a number of partitional methods have been proposed. However, in this
chapter, we shall only describe two approaches: K-means and K-medoid.
Both these partitional methods are based on the idea that a center point
can represent a cluster. However, there have been differences about the
defi nition of ‘center’: For K-means we use the notion of a centroid which
is the mean or median object of a group of data objects. In this case, the
centroid almost never corresponds to an actual data object. For K-medoid
we use the notion of a medoid which is the most central data object of a
group of objects. According to the defi nition of a medoid, it is required to
be an actual data object.

4.3.1.1 K-means

 • The Framework of K-means.
 The K-means clustering algorithm, a top-ten algorithm in data mining

area, is a very simple and widely used method. We immediately begin
with a description of the framework of K-means, and then discuss

 Clustering Analysis 63

64 Applied Data Mining

the details of each step in the framework. Algorithm 4.1 gives the
framework of K-means [40]. Algorithm 4.1 gives a common framework
of K-means. In the following:

 Algorithm 4.1: K-means

 Input: Data set D, Cluster number K

 Output: Clustering result C

 (1) Select K objects as the initial centroids
 (2) Assign all data objects to the closest centroid
 (3) Recompute the centroid of each cluster
 (4) Repeat steps 2 and 3 until the centroids don’t change to generate the cluster

result C
 (5) Return the cluster result C

we will discuss the details of each step in the framework.

 • Initialization
 The fi rst step of K-means is the initialization that choosing the K

proper initial centroids, in this chapter, we call them as the seed
objects. Seed objects can be the fi rst K objects or K objects chosen
randomly from the data set. A set of K objects that are separated from
each other can be obtained by taking the centroid of the data as the
fi rst seed object and selecting successive seed objects which are at
least a certain distance from the seed object already chosen [37]. The
initial clustering result is formed by assigning each data object to the
closest seed object. Different selection of the K seed objects could be
introduced to different clustering results. This phenomenon is called as
initialization sensitivity problem. There are two common ways to deal
with the problem: the fi rst one is to perform multiple runs, each with a
different set of randomly chosen initial centroids, and the second one is
based on the application knowledge. We will discuss the initialization
sensitivity problem in Section 5.

 • Updating partition
 Steps 2 and 3 in the framework are the updating partition part of

K-means. Partitions are updated by reassigning objects to the clusters
in an attempt to reduce the value. McQueen [37] defi ned a K-means
pass as an assignment of all data objects to the closest cluster centroid,
while the term ’pass’ refers to the process of examining the cluster label
of every object. The centroid of the gaining cluster is to re-computer
after each new assignment. Otherwise, Forgy’s [37] re-computering
the cluster centroid after all patterns have been examined. In K-means,
steps 2 and 3 are iteratively run until the Q(C) value cannot be
improved.

 • Time and Space Complexity
 Since only the vectors are stored, the space requirements are basically

O(m*n), where m is the number of the data objects and n is the number
of attributes. The time cost are O(I*K*m*n), where I is the number of
iterations required for convergence, K is the number of clusters and
I¡¡m, K¡¡m. Thus, K-means is linear in m, the number of points and is
effi cient, as well as simple.

 • Adjusting the cluster number K
 The selection of the cluster number K is one of the biggest drawbacks

of K-means. When performing K-means, it is important to run
diagnostic checks for determining the number of clusters in the
data set at fi rst. However, for real application, people cannot know
how many clusters embedded in the data set. Adjusting the cluster
number K is an acceptable way for dealing the selection of the cluster
number K problem. Some clustering algorithms adjust the cluster
number K by creating new clusters or by merging existing clusters if
certain conditions are met. In one of the popular partitional clustering
algorithms called ISODATA [37], these conditions are determined from
parameters by the user of the program, for example, if a cluster has too
many objects, it will be split; two clusters are merged if their cluster
centroids are suffi ciently close. Algorithm 4.2 shows the framework
of ISODATA.

4.3.1.2 K-medoid Clustering

The K-medoid algorithm is a clustering algorithm related to the K-means
algorithm and the medoid shift algorithm. The objective of K-medoid
clustering is to fi nd a non-overlapping set of clusters such that each cluster
has a most representative object, i.e., an object that is most centrally located
with respect to some measure, such as distance. These representative objects
are called medoids and a medoid can be defi ned as the object of a cluster,
whose average dissimilarity to all the objects in the cluster is minimal,
i.e., it is a most centrally located point in the cluster. The most common
realization of K-medoids clustering is the Partitioning Around Medoids
(PAM) algorithm and as shows in Algorithm 4.3. It is more robust to noise
and outliers as compared to K-means because it minimizes a sum of pairwise
dissimilarities instead of a sum of squared Euclidean distances. However,
fi nding a better medoid requires trying all points that are currently not
medoids and are computationally expensive, it costs O(K(m − K)2).

 Clustering Analysis 65

66 Applied Data Mining

Algorithm 4.2: the framework of ISODATA

Input: Data set D, Cluster number K

Output: Clustering result C

 (1) Objects are assigned to the closest centroid and cluster centroids are re-
computered. Iteratively repeated until no objects change clusters

 (2) Clusters with “two few” objects are discarded
 (3) Clusters are merged or split

 (a) If there are “too few” clusters compared to the number desired, then
clusters are split;

 (b) If there are “too many” clusters compared to the number desired, then
clusters are merged.

 (c) Otherwise the cluster splitting and merging phases alternate: clusters are
merged if their centroids are close, while clusters are split if it contains
“too many” objects.

Algorithm 4.3: Partitioning Around Medoids (PAM)

Input: Data Set D, Cluster number K
Output: Clustering result C

 (1) Initialize: randomly select K of the m data objects as the mediods;
 (2) Associate each data object to the closest medoid;
 (3) for each medoid k

(a) for each non-medoid data object o;
 (i) swap k and o and compute the total cost of the confi guration;
 (4) Select the confi guration with the lowest cost;
 (5) repeat steps 2 to 4 until there is no change in the medoid.

4.3.1.3 CLARA

CLARA (Clustering LARge Applications) is an adaptation of PAM for
handling larger data sets, which was designed by Kaufman and Rousseeum
in 1990. Instead of fi nding representative objects for the whole data set,
CLARA, fi rstly, draws a sample of the data set by using sampling method;
and then, applies PAM on the sample to fi nd the medoids of the sample.
The point is that, if the sample is drawn in a suffi ciently random way,
the medoids of the sample would approximate the medoids of the entire
data set. To come up with better approximations, CLARA draws multiple
samples and gives the best clustering as the output. In the accuracy case,
the quality of a clustering is measured based on the average dissimilarity of
all objects in the entire data set, and not only of the objects in the samples.
Experiments results which reported in [46] indicate that fi ve samples of

size 40+2K give satisfactory results. Algorithm 4.4 shows the framework
of CLARA algorithm. CLARA performs satisfactorily for large data sets by
using PAM algorithm. Recall from Section 4.3.2 that each iteration of PAM
is of O(K(m − K)2). But, for CLARA, by applying PAM just to the samples,
each iteration is of O(K(40+K)2 +K(m−K)). This explains why CLARA is
more effi cient than PAM for large values of m.

Algorithm 4.4: CLARA

Input: Data set D, Cluster number K;

Output: Clustering result C;

 (1) i=1;
 (2) while i<5

(a) Draw a sample of 40 + 2K objects randomly from the entire data set, and
call PAM algorithm to fi nd K medoids of the sample.

(b) For each object Oj in the entire data set, determine which of the K medoids
is the most similar to Oj;

(c) Calculate the average dissimilarity of the clustering obtained in the
previous step. If this value is less than the current minimum, use this
value as the current minimum, and retain the K medoids found in step 2
as the best set of medoids obtained so far;

 (3) i=i+1;
 (4) Return clustering result C

4.3.1.4 CLARANS

CLARANS uses a randomized search approach to improve on both CLARA
and PAM. Algorithm 4.5 gives the conceptual description of CLARANS.
From algorithm 4.5, we can see the difference between CLARANS and PAM:
For a given current confi guration, CLARANS algorithm does not consider
all possible swaps of medoid and non-medoid objects, but rather, only a
random selection of them and only until it fi nds a better confi guration. Also,
we can see the difference between CLARANS and CLARA: CLARANS
works with all the data objects, however, CLARA only works with part
of the entire data set. SD(CLARANS) and NSD(CLARAN) are two spatial
data mining tools which contain CLARANS as a base algorithm. These
tools added some capabilities related to cluster analysis.

 Clustering Analysis 67

68 Applied Data Mining

Algorithm 4.5: CLARANS

Input: Data set D, Cluster number K;

Output: Clustering result C.

 (1) Randomly select K candidate medoids;
 (2) Randomly consider a swap of one of the selected medoid for a non-selected

object;
 (3) If the new confi guration is better, then repeat step 2 with a new confi guration;
 (4) Otherwise, repeat step 2 with the current confi guration unless a parameterized

limit has been exceeded;
 (5) Compare the current solution with any previous solutions and keep track of

the best;
 (6) Return to step 1 unless a parameterized limit has been exceeded;
 (7) Return to the clustering result C

4.3.2 Hierarchical Methods

In hierarchical clustering, the goal is to produce a hierarchical series of
nested clusters, ranging from clusters of individual points at the bottom
to an all-inclusive cluster at the top. A diagram is used to graphically
represent this hierarchy and is an inverted tree that describes the order in
which objects are merged or clusters are split. The mathematical structure
which a hierarchical clustering imposes on data is described as following.
Give m objects which need to be clustered are denoted by the set D=x1,...,xm,
where xi is the i-th object. A partition C of D breaks D into subsets C1,C2,...,CK
satisfying the following: Ci Cj = , i, j = 1, . . .K, i j and C1 C2...CK =
D, where stands for set intersection, stands for set union, and is the
empty set. A clustering is a partition and the components of the partition
are called clusters. Partition C is nested into partition C' if every component
of C is a subset of a component of C'. That is, C' is formed by merging
components of C.

For example, if the clustering C’ with three clusters and clustering C
with fi ve clusters are defi ned as follows, then C is nested into C'. Both C
and C’ are the clustering of the set of objects x1,x2,...,x10 C=(x1,x3), (x5,x7),
(x2), (x4,x6,x8), (x9,x10) C'=(x1,x3,x5,x7), (x2,x4,x6,x8), (x9,x10). Clusters
(x1,x3), (x5,x7) in C are merged into cluster (x1,x3,x5,x7) in C’. In the same
way, clusters (x2), (x4,x6,x8) in C are merged into cluster (x2,x4,x6,x8) in
C'. However, cluster (x9,x10) in C does not merge with any other clusters.
But for partition C”=(x1,x2,x3,x4), (x5,x6,x7,x8), (x9,x10), neither C nor C'
is nested into it.

4.3.2.1 Agglomerative and Divisive algorithm

There are two basic approaches to generating a hierarchical clustering:
agglomerative and divisive algorithms. An agglomerative algorithm for
hierarchical clustering:

 (1) assigns each of the m objects into an individual cluster to form the fi rst
clustering result;

 (2) merges two or more of these trivial clusters according to the similarity
measure, thus nesting the trivial clustering into a second partition;

 (3) iteratively run step 2 until a single cluster containing all m objects or
some requirements are achieved. A divisive algorithm performs the
task in the reverse order: Start with one all-inclusive cluster and, at
each step, split a cluster until only singleton cluster of individual point
remains.

Figure 4.3.1 shows the steps of these two kinds of methods. From the
diagram aspect, the agglomerative clustering algorithms are working in a
bottom-up manner, on the contrary, the divisive clustering algorithms are
working in a top-down manner.

a

b

c

d

e

a,b

c,d

e

a,b

c,d,e

a,b,c,d,e

Agglomerative

Divisive

Figure 4.3.1: An example of Agglomeration and Division

4.3.2.2 Cluster Dissimilarity

In order to decide which clusters should be combined (for agglomerative),
or where a cluster should be split (for divisive), a measure of dissimilarity
between sets of observations is required. In most methods of hierarchical
clustering, this is achieved by use of an appropriate metric (a measure of
distance between pairs of observations), and a linkage criterion which

 Clustering Analysis 69

70 Applied Data Mining

specifi es the dissimilarity of sets as a function of the pairwise distances of
observations in the sets. The choice of an appropriate metric will infl uence
the shape of the clusters, as some elements may be close to one another
according to one distance and farther away according to another. For
example, in a 2-dimensional space, the distance between the point (1,0)
and the origin (0,0) is always 1 according to the usual norms, but the
distance between the point (1,1) and the origin (0,0) can be 2, or 1 under
Manhattan distance, Euclidean distance or maximum distance respectively.
Some commonly used metrics for hierarchical clustering are described as
follows:

 • Euclidean distance:||xi − xj||2 = 2
1
()n

il jll
x x

=
−∑ i, j = 1, ..., m

 • Squared Euclidean distance:||xi − xj||2
2 = 1

n

l=∑ (xil − xjl)
2 i, j = 1, ...,m

 • Manhattan distance:||xi − xj||1 = 1

n

l=∑ |xil − xjl|i, j = 1, ..., m

 • Maximum distance:||xi − xj||∞ = max
l
|xil − xjl|l = 1, ..., n i, j = 1, ...,m

 • Cosine similarity: cos(xi, xj) =
.

|| |||| ||
i j

i j

x x
x x

 i, j = 1, ...,m.

4.3.2.3 Divisive Clustering Algorithms

 • Minimum Spanning Tree
 Let us introduce Minimum Spanning Tree, a simple divisive algorithm.

This approach is the modifi ed version of the single-link agglomerative
method. The following framework shows the main steps of Minimum
Spanning Tree:

Algorithm 4.6: Minimum Spanning Tree

 (1) Compute a minimum spanning tree for the proximity graph;
 (2) Create a new cluster by breaking the link corresponding to the smallest

similarity;
 (3) Repeat step 2 until only singleton cluster remains or some requirements

achieved.

 • Bi-Section-K-means
 Bi-Section-K-means is a variant of K-means. It is a good and fast divisive

clustering algorithm. It frequently outperforms standard K-means as
well as agglomerative clustering techniques. Bi-Section-K-means is
defi ned as an outer loop around standard K-means. In order to generate
K clusters, Bi-section-K-means repeatedly applies K-means. Bi-Section-
K-means is initiated with the universal cluster containing all objects.
Then it loops. It selects the cluster with the largest dissimilarity and it
calls K-means in order to split this cluster into exactly two sub-clusters.
The loop is repeated K-1 times such that K non-overlapping sub-

clusters are generated. Further, as Bi-Section-K-means is a randomized
algorithm, we produce ten runs and average the obtained results.

Traceability. Concerning traceability, bi-section-K-means shares the problem
that similarities in high-dimensional space are diffi cult to understand. In
contrast to agglomerative algorithms, Bi-Section-K-means may incur that
the two most similar terms are still split into different clusters, as a wrong
decision at the upper level of generalization may jeopardize intuitive
clusterings at the lower level.

Effi ciency. The time complexity of Bi-Section-K-means the algorithm is O(mK)
where m is the number of objects and K is the number of clusters.

 • DIANA
 DIANA is a hierarchical clustering technique and it works as follows:

At fi rst, there is one large cluster consisting of all m objects. And then,
at each subsequent step, the largest available cluster is split into two
clusters until fi nally all clusters comprise single objects. Thus, the
hierarchy is built in n–1 steps. In the fi rst step of an agglomerative
method, all possible fusions of two objects are considered leading
to (1)

2
m m − combinations. In the divisive method based on the same

principle, there are possibilities to split the data into two clusters. This
number is considerably larger than that in the case of an agglomerative
method. To avoid considering all possibilities, the algorithm proceeds
as follows:

 (1) Find the object, which has the highest average dissimilarity to all other
objects. This object initiates a new cluster—a sort of a splinter group;

 (2) For each object i outside the splinter group compute;
 (3) Di = [average d(i,j) j Rsplinter group]-[average d(i,j) j Rsplinter group]

 (4) Find an object h for which the difference Dh is the largest. If Dh is
positive, then h is, on the average close to the splinter group.

 (5) Repeat Steps 2 and 3 until all differences Dh are negative. The data set
is then split into two clusters.

 (6) Select the cluster with the largest diameter. The diameter of a cluster
is the largest dissimilarity between any two of its objects. Then divide
this cluster, following steps 1–4.

 (7) Repeat Step 5 until all clusters contain only a single object.

4.3.2.4 Agglomerative Clustering Algorithms

Given a set of m items to be clustered, and an m x m distance (or similarity)
matrix, the basic process of agglomerative hierarchical clustering is as
follows:

 Clustering Analysis 71

72 Applied Data Mining

 (1) Start by assigning each item to its own cluster, so that if you have m
items, you now have m clusters, each containing just one item. Let
the distances (similarities) between the clusters equal the distances
(similarities) between the items they contain.

 (2) Find the closest (most similar) pair of clusters and merge them into a
single cluster, so that now you have one less cluster.

 (3) Compute distances (similarities) between the new cluster and each of
the old clusters.

 (4) Repeat steps 2 and 3 until all items are clustered into a single cluster
of size N. Thus, the agglomerative clustering algorithm will result in
a binary cluster tree with single article clusters as its leaf nodes and a
root node containing all the articles.

 • Single Link
 For the single link or MIN version of hierarchical clustering, the

proximity of two clusters is defi ned as minimum of the distance
between any two objects in the different clusters. Single link is good
at handling non-elliptical shapes, but is sensitive to noise and outliers.
Figure 4.3.2(a) gives a sample similarity matrix for fi ve objects and the
dendrogram shows the series of merges derived by using the single
link clustering method [Fig. 4.3.2(b)].

 x1 x2 x3 x4 x5

x1 1 0.92 0.09 0.65 0.21

x2 0.92 1 0.72 0.61 0.50

x3 0.09 0.72 1 0.45 0.30

x4 0.65 0.61 0.45 1. 0.84

x5 0.21 0.50 0.30 0.84 1
x1 x2 x3 x4 x5

(a) similarity matrix for five objects (b) Dendogram of single link

Figure 4.3.2: An example of Single Link

 • Complete Link Clustering
 For the complete link version of hierarchical clustering, the proximity

of two clusters is defi ned to be maximum of the distance (minimum
of the similarity) between any two points in the different clusters.
(The technique is called complete link because, if you start with all
points as singleton clusters, and add links between points, strongest
links fi rst, then a group of points is not a cluster until all the points
in it are completely linked.) Complete link is less susceptible to noise
and outliers, but can break large clusters, and has trouble with convex
shapes. The following table gives a sample similarity matrix and the

S

dendrogram shows the series of merges that result from using the
complete link technique. Figure 4.3.3(a) gives a sample similarity
matrix for fi ve objects and the dendrogram shows the series of merges
derived by using the single link clustering method [Fig. 4.3.3(b)].

 x1 x2 x3 x4 x5

x1 1 0.92 0.09 0.65 0.21

x2 0.92 1 0.72 0.61 0.50

x3 0.09 0.72 1 0.45 0.30

x4 0.65 0.61 0.45 1. 0.84

x5 0.21 0.50 0.30 0.84 1 x1 x2 x3 x4 x5

(a) Similarity matrix for five objects (b) Dendogram of single link

Figure 4.3.3: An example of Complete Link Clustering

 • Average Link Clustering
 For the group average version of hierarchical clustering, the proximity

of two clusters is defi ned to be the average of the pairwise proximities
between all pairs of points in the different clusters. Notice that
this is an intermediate approach between MIN and MAX. This is
expressed by the following equation: similarity (cluster1, cluster2) =

1 1, 2 2
similarity(1, 2)

|| 1|| || 2 ||
p cluster p cluster

p p

cluster cluster
∈ ∈

∗
∑ .

Figure 4.3.4 gives a sample similarity matrix and the dendrogram shows
the series of merges that result from using the group average approach.
The hierarchical clustering in this simple case is the same as produced by
MIN.

 • Ward’s method
 Ward’s method says that the distance between two clusters, and , is

how much the sum of squares will increase when we merge them:

O(Ck,Ck’) = xi Ck Ck’||xi − centroidCk Ck’
||2 − xi Ck||xi − centroidCk

||2 −

xi Ck’||xi − centroidCk’
||2

= 2num num
|| centroid centroid ||

num +num
k k

k k

k k

C C
C C

C C

′

′

′

−

where centroidk is the center of cluster k, and numk is the number of objects
in it. O is called the merging cost of combining the clusters Ck and C'k . With
hierarchical clustering, the sum of squares starts out at zero (because every
point is in its own cluster) and then grows as we merge clusters. Ward’s
method keeps this growth as small as possible. This is nice if you believe
that the sum of squares should be small. Notice that the number of points

 Clustering Analysis 73

74 Applied Data Mining

shows up in O, as well as their geometric separation. Given two pairs of
clusters whose centers are equally far apart, Ward’s method will prefer to
merge the smaller ones. Ward’s method is both greedy, and constrained by
previous choices as to which clusters to form. This means its sum-of-squares
for a given number k of clusters is usually larger than the minimum for that
k, and even larger than what k-means will achieve. If this is bothersome for
your application, one common trick is use hierarchical clustering to pick
K (see below), and then run k-means starting from the clusters found by
Ward’s method to reduce the sum of squares from a good starting point.

 x1 x2 x3 x4 x5

x1 1 0.92 0.09 0.65 0.21

x2 0.92 1 0.72 0.61 0.50

x3 0.09 0.72 1 0.45 0.30

x4 0.65 0.61 0.45 1. 0.84

x5 0.21 0.50 0.30 0.84 1 x1 x2 x3 x4 x5

(a) Similarity matrix for five objects (b) Dendrogram of average link

Figure 4.3.4: An example of Average Link Clustering

4.3.3 Density-based methods

Density-based approaches apply a local cluster criterion. Clusters are
regarded as regions in the data space in which the objects are dense, and
which are separated by regions of low object density (noise). These regions
may have an arbitrary shape and the points inside a region may be arbitrarily
distributed.

4.3.3.1 DBSCAN

The most popular density based clustering method is DBSCAN [22]. In
contrast to many newer methods, it features a well-defi ned cluster model
called “density-reachability”. Similar to link-based clustering, it is based
on connecting points within certain distance thresholds. DBSCAN has
been applied to a 5-dimensional feature space created from several satellite
images covering the area of California (5 different spectral channels: 1
visible, 2 refl ected infrared, and 2 emitted (thermal) infrared). The images
are taken from the roster data of the SEQUOIA 2000 Storage Benchmark.
This kind of clustering application is one of the basic methods for automatic
landuse detection from remote sensing data. The main idea of DBSCAN
could be described as Fig. 4.3.5. From Fig. 4.3.5, we can fi nd that DBSCAN’s
defi nition of a cluster is based on the notion of density reachability. Basically,

a point q is directly density-reachable from a point p if it is not farther away
than a given distance (i.e., is part of its neighborhood) and if p is surrounded
by suffi ciently many points such that one may consider p and q to be part
of a cluster. q is called density-reachable (note the distinction from “directly
density-reachable”) from p if there is a sequence p1,...,pm of points with p1=p
and pm =q where each pi+1 is directly density-reachable from pi. Note that
the relation of density-reachable is not symmetric. q might lie on the edge
of a cluster, having insuffi ciently many neighbors to count as dense itself.
This would halt the process of fi nding a path that stops with the fi rst non-
dense point. By contrast, starting the process with q would lead to p (though
the process would halt there, p being the fi rst non-dense point). Due to this
asymmetry, the notion of density-connected is introduced: two points p
and q are density-connected if there is a point o such that both p and q are
density-reachable from o. Density-connectedness is symmetric. Algorithm
4.7 gives the main steps of DBSCAN. DBSCAN visits each point of the
database, possibly multiple times (e.g., as candidates to different clusters).
For practical considerations, however, the time complexity is mostly
governed by the number of region Query invocations. DBSCAN executes
exactly one such query for each point, and if an indexing structure is used
that executes such a neighborhood query in O(log n), an overall runtime
complexity of O(v * logn) is obtained. Without the use of an accelerating
index structure, the run time complexity is O(n2). Often the distance matrix
of size (n2 − n)/2 is materialized to avoid distance re-computations. This
however also needs O(n2) memory. However, it only connects points that
satisfy a density criterion in the original variant defi ned as a minimum
number of other objects within this radius. A cluster consists of all density-
connected objects (which can form a cluster of an arbitrary shape, in contrast
to many other methods) plus all objects that are within these objects’ range.

Figure 4.3.5: The basic idea of DBSCAN.

N

B

A

C

 Clustering Analysis 75

76 Applied Data Mining

Another interesting property of DBSCAN is that its complexity is fairly
low—it requires a linear number of range queries on the database—and
that it will discover essentially the same results (it is deterministic for core
and noise points, but not for border points) in each run, therefore there is
no need to run it multiple times.

Algorithm 4.7: DBSCAN

 (1) select a point p
 (2) Retrieve all points density-reachable from p wrt and MinPts.
 (3) If p is a core point, a cluster is formed.
 (4) If p is a border point, no points are density-reachable from p and DBSCAN

visits the next point of the database.
 (5) Continue the process until all of the points have been processed.
 (6) Return clustering results.

OPTICS [11] is a generalization of DBSCAN that removes the need
to choose an appropriate value for the range parameter, and produces
a hierarchical result related to that of linkage clustering. DeLi-Clu [5],
Density-Link-Clustering combines ideas from single-link clustering and
OPTICS, eliminating the parameter entirely and offering performance
improvements over OPTICS by using an R-tree index. The key drawback
of DBSCAN and OPTICS is that they expect some kind of density drop
to detect cluster borders. Moreover they cannot detect intrinsic cluster
structures which are prevalent in the majority of real life data. On data sets
with, for example, overlapping Gaussian distributions—a common use case
in artifi cial data—the cluster borders produced by these algorithms will
often look arbitrary, because the cluster density decreases continuously. On
a data set consisting of mixtures of Gaussians, these algorithms are nearly
always outperformed by methods such as EM clustering that are able to
precisely model this kind of data.

4.3.3.2 DENCLUE

DENCLUE (DENsity CLUstEring) [32] is a density clustering approach
that takes a more formal approach to density based clustering by modeling
the overall density of a set of points as the sum of “infl uence” functions
associated with each point. The resulting overall density function will have
local peaks, i.e., local density maxima, and these local peaks can be used to
defi ne clusters in a straightforward way. Specifi cally, for each data point, a
hill climbing procedure fi nds the nearest peak associated with that point,
and the set of all data points associated with a particular peak (called a local
density attractor) becomes a (center-defi ned) cluster. However, if the density
at a local peak is too low, then the points in the associated cluster are classifi ed

as noise and discarded. Also, if a local peak can be connected to a second
local peak by a path of data points, and the density at each point on the path
is above a minimum density threshold, then the clusters associated with
these local peaks are merged. Thus, clusters of any shape can be discovered.
DENCLUE is based on a well-developed area of statistics and pattern
recognition which is known as “kernel density estimation” [18]. The goal
of kernel density estimation (and many other statistical techniques as well)
is to describe the distribution of the data by a function. For kernel density
estimation, the contribution of each point to the overall density function is
expressed by an “infl uence” (kernel) function. The overall density is then
merely the sum of the infl uence functions associated with each point. The
DENCLUE algorithm has two steps: a preprocessing step and a clustering
step. In the pre-clustering step, a grid for the data is created by dividing
the minimal bounding hyper-rectangle into d-dimensional hyper-rectangles
with edge length 2σ. The rectangles that contain points are then determined.
(Actually, only the occupied hyper-rectangles are constructed.) The hyper-
rectangles are numbered with respect to a particular origin (at one edge of
the bounding hyper-rectangle and these keys are stored in a search tree to
provide effi cient access in later processing. For each stored cell, the number
of points, the sum of the points in the cell, and connections to neighboring
population cubes are also stored. DENCLUE can be parameterized so that
it behaves much like DBSCAN, but is much more effi cient that DBSCAN.
DENCLUE can also behave like K-means by choosing σ appropriately and
by omitting the step that merges center-defi ned clusters into arbitrary
shaped clusters. Finally, by doing repeated clusterings for different values
of σ, a hierarchical clustering can be obtained.

4.3.4 Grid-based Methods

Grid-based clustering methods have been used in some data mining tasks
of very large databases [29]. In the grid-based clustering, the feature space
is divided into a fi nite number of rectangular cells, which form a grid. In
this grid structure, all the clustering operations are performed. The grid can
be formed in multiple resolutions by changing the size of the rectangular
cells. Figure 4.3.6 presents a simple example of a hierarchical grid structure
in three levels that is applied to a two-dimensional feature space. In the case
of d-dimensional space, hyper rectangles (rectangular shaped cube [50])
of d-dimensions correspond to the cells. In the hierarchical grid structure,
the cell size in the grid can be decreased in order to achieve a more precise
cell structure. As in Fig. 4.3.6, the hierarchical structure can be divided into
several levels of resolution. Each cell at the high level k is partitioned to
form a number of cells at the next lower level k+1. The cells at the level k+1

 Clustering Analysis 77

78 Applied Data Mining

are formed by splitting the cell at level k into smaller subcells. In the case
of Fig. 1, each cell produces four subcells at the next lower level.

Figure 4.3.6: An example of a Grid-based structure

Grid-based clustering methods make it possible to form arbitrarily
shaped, distance independent clusters. In these methods, the feature space is
quantized into cells using a grid structure. The cells can be merged together
to form clusters. Grid-based clustering was originally based on the idea of
Warnekar and Krishna [58] to organize the feature space containing patterns.
Erich [50] has used topological neighbor search algorithm to combine the
grid cells to form clusters. Agrawal et al. [1] have presented a density-based
clustering method using grid which named CLIQUE. In this chapter, we will
discuss STING and WaveCluster algorithms, and CLIQUE will be detailed
in the section “High dimensional clustering algorithm”.

4.3.4.1 STING

A new statistical information grid-based method (STING) was proposed
in [57] to effi ciently process many common “region oriented” queries on a
set of points. Region oriented queries are defi ned later more precisely but
informally, they ask for the selection of regions satisfying certain conditions
on density, total area, etc. Algorithm 4.8 shows the framework of STING.

In the above algorithm, Step 1 takes constant time. Steps 2 and 3 require
a constant time for each cell to calculate the confi dence interval or estimate
proportion range and also a constant time to label the cell as relevant or
not relevant. This means that we need constant time to process each cell
in Steps 2 and 3. The total time is less than or equal to the total number of
cells in our hierarchical structure. Notice that the total number of cells is
1.33K, where K is the number of cells at bottom layer. We obtain the factor
1.33 because the number of cells of a layer is always one-fourth of the

1st level

2nd level

3rd level

number of cells of the layer one level lower. So the overall computation
complexity on the grid hierarchy structure is O(K). Usually, the number of
cells needed to be examined is much less, especially when many cells at
high layers are not relevant. In Step 8, the time it takes to form the regions
is linearly proportional to the number of cells. The reason is that for a given
cell, the number of cells need to be examined is constant because both the
specifi ed density and the granularity can be regarded as constants during
the execution of a query and in turn the distance is also a constant since it
is determined by the specifi ed density. Since we assume each cell at bottom
layer usually has several dozens to several thousands objects, K<<N. So,
the total complexity is still O(K). Usually, we do not need to do Step 7 and
the overall computational complexity is O(K). In the extreme case that we
need to go to Step 7, we still do not need to retrieve all data from database.
Therefore, the time required in this step is still less than linear. So, this
algorithm outperforms other approaches greatly.

WaveCluster [52] is a clustering technique that interprets the original
data as a two-dimensional signal and then applies signal processing
techniques (the wavelet transform) to map the original data to a new space
where cluster identifi cation is more straightforward. More specifi cally,
WaveCluster defi nes a uniform two-dimensional grid on the data and
represents the points in each grid cell by the number of points. Thus,
a collection of two-dimensional data points becomes an image, i.e., a
set of “gray-scale” pixels, and the problem of fi nding clusters becomes
one of image segmentation. While there are a number of techniques for
image segmentation, wavelets have a couple of features that make them
an attractive choice. First, the wavelet approach naturally allows for a

Algorithm 4.8: STING
Input: Data set D;
Output: Clustering results

 1. Determine a layer to begin with.
 2. For each cell of this layer, we calculate the confi dence interval (or estimated

range) of probability that this cell is relevant to the query.
 3. From the interval calculated above, we label the cell as relevant or not

relevant.
 4. If this layer is the bottom layer, go to Step 6; otherwise, go to Step 5.
 5. We go down the hierarchy structure by one level. Go to Step 2 for those cells

that form the relevant cells of the higher level layer.
 6. If the specifi cation of the query is met, go to Step 8; otherwise, go to Step 7.
 7. Retrieve those data that fall into the relevant cells and do further processing.

Return the result that meets the requirement of the query. Go to Step 9.
 8. Find the regions of relevant cells. Return those regions that meet the requirement

of the query. Go to Step 9.
 9. Stop and return clustering results.

 Clustering Analysis 79

80 Applied Data Mining

multiscale analysis, i.e., the wavelet transform allows features, and hence,
clusters, to be detected at different scales, e.g., fi ne, medium, and coarse.
Secondly, the wavelet transform naturally lends itself to noise elimination.
Algorithm 4.9 shows the framework of WaveCluster. In summary, the
key features of WaveCluster are order independence, there is no need to
specify a number of clusters (although it is helpful to know this in order
to fi gure out the right scale to look at), speed (linear), the elimination of
noise and outliers, and the ability to fi nd arbitrarily shaped clusters. While
the WaveCluster approach can theoretically be extended to more than two
dimensions, it seems unlikely that WaveCluster will work well (effi ciently
and effectively) for medium or high dimensions.

Algorithm 4.9: WaveCluster
Input: Data set D
Output: Clustering results

 (1) Create a grid and assign each data object to a cell in the grid. The grid is
uniform, but the grid size will vary for different scales of analysis. Each grid
cell keeps track of the statistical properties of the points in that cell, but for
wave clustering only the number of points in the cell is used.

 (2) Transform the data to a new space by applying the wavelet transform. This
results in 4 “subimages” at several different levels of resolutionan “average”
image, an image that emphasizes the horizontal features, an image that
emphasizes vertical features and an image that emphasizes corners.

 (3) Find the connected components in the transformed space. The average
subimage is used to fi nd connected clusters, which are just groups of connected
“pixels,” i.e., pixels which are connected to one another horizontally, vertically,
or diagonally.

 (4) Map the clusters labels of points in the transformed space back to points in the
original space. WaveCluster creates a lookup table that associates each point
in the original with a point in the transformed space. Assignment of cluster
labels to the original points is then straightforward.

4.3.5 Model-based Methods

It was realized early on that cluster analysis can be based on probabilistic
or stochastic models. This realization has provided insight into when a
particular clustering method can be expected to work well (i.e., when
the data conform to the model) and has led to the development of
new clustering methods. It has also been shown that some of the most
popular heuristic clustering methods, such as the k-means algorithm, are
approximate estimation methods for particular probabilistic models [26].
Finite mixture models are a fl exible and powerful probabilistic modeling
tool for univariate and multivariate data. It is assumed that the data are
generated by a mixture of underlying probability distributions for multiple
components where each component represents a different group or cluster.

Given data D with independent multivariate observations x1,x2, . . . ,xm, the
joint likelihood of D is:

P(D|Θ) =
11 1

(|) (|)
m m K

i i i k
ki i

P x P xτ θ
== =

Θ = ∑∏ ∏ θτ

Where Θ = {θ1, θ2, ..., θK, τ1, τ2, ..., τK} represents the set of all model parameters
for the mixture model. τK is the probability that an observation belongs to
the kth component (τK > 0, 1

K

k=∑ τK = 1). Model parameter learning amounts
to fi nding the maximum a posteriori (MAP) parameter estimate, given the
data set D, i.e., �Θ = arg max[P(D|Θ)P(Θ)]. If we take a noninformative prior
on Θ, learning degenerates to maximum likelihood estimation (MLE), i.e.,
�Θ = argmax P(D|Θ).

4.3.5.1 EM Algorithm

The expectation-maximization (EM) algorithm [20] is a general approach
to MLE problems in which the data can be viewed as consisting of m
multivariate observations (xi, zi), where xi is observed object but zi is
unobserved.

 (1) Basic EM If (xi, zi) are independent and identically distributed according
to a probability distribution P with parameter θ, then the complete-data
likelihood is:

LC(D, Z|θ) =
1

(, |)
m

i i
i

P x z θ
=
∏ θ

The observed data likelihood can be obtained by integrating out Z
from the complete-data likelihood, LO(D|θ) = Ú LC(D, Z|θ)dZ. The MLE
for θ based on the observed data maximizes LO(D|θ) with respect to θ.
Without knowing the missing data, the EM algorithm alternates between
two steps. In the E-step, the conditional expectation of the complete-data
log-likelihood, given the observed data and the current parameter estimates
is computed. In the M-step, the parameters that maximize the expected
log-likelihood from E-step are determined.

 (2) EM algorithm for Mixture models. In the EM algorithm for mixture

models, Equation P(D|Θ) =
11 1

(|) (|)
m m K

i i i k
ki i

P x P xτ θ
== =

Θ = ∑∏ ∏ θτ can be rewritten

as a log-likelihood function of parameter for given observed data D:ℓ(Θ;

D) =
1 1

log[(|)]
m K

k i k
i k

P xτ θ
= =
∑ ∑ θτ . The “complete-data” are considered to be

(xi, zi), where zi = (zi1, . . . , ziK) is the unobserved binary K-dimensional
vectors such that zik = 1 if and only if xi arises from the k-th component[60].

 Clustering Analysis 81

82 Applied Data Mining

Assuming that each zi is independent and identically distributed according
to multinomial distribution with probabilities τ1, τ2, ..., τK for the K clusters,

and the density of an observation x_i given z_i is given by
1

(|)
K

i k
k

P x θ
=
∏ θ zik,

the resulting complete-data log-likelihood is ℓC(Θ ; D) =

1 1
log[(|)]

m K

ik k i k
i k

z P xτ θ
= =
∑∑ θτ , which is also known as the classifi cation

log-likelihood in the clustering literature. The EM algorithm can
then be viewed as operating in two steps. In the E-step, we calculate
the class-conditional probability P(zi|xi, Θ) for each sequence under
each of the K clusters using the current parameter. In the M-step, we
update by weighing each sequence according to its class-conditional
probability. Thus the EM algorithm is guaranteed to lead to a sequence
of Θ’s which have non-decreasing likelihood, i.e., under fairly broad
conditions it will fi nd at least a local maximum. Algorithm 4.10 shows
the main steps of EM algorithm and The implement of EM clustering
was embedded in MCLUST R package (http://www.stat.washington.
edu/mclust/).

Algorithm 4.10: EM clustering

Input: Data set D

Output: Clustering result

 (1) First, initialize the parameters θ to some random values.
 (2) Compute the best value for Z given these parameter values.
 (3) Then, use the just-computed values of Z to compute a better estimate for the

parameters θ. Parameters associated with a particular value of Z will use only
those data points whose associated latent variable has that value.

 (4) iterate steps 2 and 3 until convergence.
 (5) Return clustering result.

4.3.5.2 Extensions of EM Algorithm

The EM algorithm for clustering has a number of limitations. First, the rate
of convergence can be very slow. This does not appear to be a problem in
practice for well-separated mixtures when started with reasonable values.
Second, the number of conditional probabilities associated with each
observation is equal to the number of components in the mixture, so that the
EM algorithm for clustering may not be practical for models with very large
number of clusters. Finally, EM breaks down when the covariance matrix
corresponding to one or more components becomes ill-conditioned (singular
or nearly singular). If EM for a model with a certain number of components
is applied to a mixture with fewer groups than the number of mixture
components, then it may fail due to ill-conditioning. A number of variants

of the EM algorithm have been proposed for model-based clustering, some
of which can avoid the limitations of the EM algorithm. CEM and SEM
[19] are two widely used variants. The classifi cation EM (CEM) algorithm
can be regarded as a classifi cation version of the EM algorithm, where the
complete log-likelihood is maximized. It incorporates a classifi cation step
(C-step) between the E-step and the M-step of the standard EM algorithm
by using a MAP principle. In the C-step, each object xi is assigned to the
cluster which provides the maximum posterior probability. It has been
shown that the k-means algorithm is exactly the CEM algorithm for a
Gaussian mixture with equal proportions and a common covariance matrix
of the form. Since most of the classical clustering criteria can be analyzed as
classifi cation maximum likelihood criteria, the CEM algorithm turns out to
be quite a general clustering algorithm. However, from the practical point
of view, the solution provided by the CEM algorithm does depend on its
initial position, especially when the clusters are not well separated. Celeux
et al. considered a stochastic version of EM as well as the CEM algorithm
in the context of computing the MLE for fi nite mixture models. They call
it the stochastic EM (SEM) algorithm. With the SEM algorithm, the current
posterior probabilities are used in a stochastic E-step (Sstep), wherein each
observation object xi is assigned to one of the K clusters according to the
posterior probability distributions for all clusters. Numerical experiments
have shown that SEM performs well and can overcome some of the
limitations of the EM algorithm.

4.4 High-dimensional clustering algorithm
Data collected in the world are so large that it is becoming increasingly
diffi cult for users to access them. Knowledge Discovery in Databases (KDD)
is the non-trivial process of identifying valid, novel, potentially useful
and ultimately understandable patterns in data [23]. The KDD process is
interactive and iterative, involving numerous steps. Data mining is one such
step in the KDD process. In this section, we focus on the high-dimensional
clustering problem, which is one of the most useful tasks in data mining for
discovering groups and identifying interesting distributions and patterns
in the underlying data. Thus, the goal of clustering is to partition a data
set into subgroups such that objects in each particular group are similar
and objects in different groups are dissimilar [15]. According to [31], four
problems need to be overcome for high-dimensional clustering:

 (1) Multiple dimensions are hard to think in, impossible to visualize,
and due to the exponential growth of the number of possible values
with each dimension, complete enumeration of all subspaces becomes

 Clustering Analysis 83

84 Applied Data Mining

intractable with increasing dimensionality. This problem is referred to
as the curse of dimensionality.

 (2) The concept of distance becomes less precise as the number of
dimensions grows, since the distance between any two points in a
given dataset converges. The discrimination of the nearest and farthest
point in particular becomes meaningless: max min

min

lim 0
d

dist dist
dist→∞

−
→ .

 (3) A cluster is intended to group objects that are related, based on
observations of their attribute’s values. However, given a large number
of attributes some of the attributes will usually not be meaningful for a
given cluster. For example, in newborn screening, a cluster of samples
might identify newborns that share similar blood values, which might
lead to insights about the relevance of certain blood values for a disease.
But for different diseases, different blood values might form a cluster,
and other values might be uncorrelated. This is known as the local
feature relevance problem: different clusters might be found in different
subspaces, so a global fi ltering of attributes is not suffi cient.

 (4) Given a large number of attributes, it is likely that some attributes are
correlated. Hence, clusters might exist in arbitrarily oriented affi ne
subspaces. Recent research by Houle et al. [42] indicates that the
discrimination problems only occur when there is a high number of
irrelevant dimensions, and that shared-nearest-neighbor approaches
can improve results.

Lots of clustering algorithms have been proposed to high dimensional
clustering problem. In general, the algorithmic approaches for fi nding
these subspaces (i.e., traversing the search space of all possible axis-parallel
subspaces) can be divided into the following two categories: Bottom-up
approaches and Top-down approaches. In the following sections, we will
discuss these two different ways in detail.

4.4.1 Bottom-up Approaches

The exponential search space that needs to be traversed is equivalent to
the search space of the frequent item set problem in market basket analysis
in transaction databases [10]. Each attribute represents an item and each
subspace cluster is a transaction of the items representing the attributes that
span the corresponding subspace. Finding item sets with frequency l then
relates to fi nding all combinations of attributes that constitute a subspace
containing at least one cluster. This observation is the rationale of most
bottom-up subspace clustering approaches. The subspaces that contain
clusters are determined starting from all one-dimensional subspaces that
accommodate at least one cluster by employing a search strategy similar to
frequent item set mining algorithms. To apply any effi cient frequent item

set mining algorithm, the cluster criterion must implement a downward
closure property (also called monotonicity property): If subspace S contains
a cluster, then any subspace T S must also contain a cluster. The reverse
implication, if a subspace T does not contain a cluster, then any super
space S T also cannot contain a cluster, can be used for pruning, that is,
excluding specifi c subspaces from consideration. Let us note that there are
bottom-up algorithms that do not use an APRIORI-like subspace search,
but instead apply other search heuristics. In another way, the bottom-up
approaches are also called as subspace clustering.

CLIQUE [1], the pioneering approach to subspace clustering, uses a
grid-based clustering notion. The data space is partitioned by an axis-
parallel grid into equal units of width ζ. Only units which contain at least
τ points are considered as dense. A cluster is defi ned as a maximal set
of adjacent dense units. Since dense units satisfy the downward closure
property, subspace clusters can be explored rather effi ciently in a bottom-
up way. Starting with all one-dimensional dense units, (k+1)-dimensional
dense units are computed from the set of k-dimensional dense units in an
APRIORI-like style. If a (k+1)-dimensional unit contains a projection onto
a k-dimensional unit that is not dense, then the (k+1)-dimensional unit
also cannot be dense. Further, a heuristic that is based on the minimum
description length principle is introduced to discard candidate units
within less interesting subspaces (i.e., subspaces that contain only a very
small number of dense units). This way, the effi ciency of the algorithm is
enhanced but at the cost of incomplete results, namely some true clusters
are lost. There are some variants of CLIQUE. The method ENCLUS [11] also
relies on a fi xed grid, but searches for subspaces that potentially contain
one or more clusters rather than for dense units. Three quality criteria
for subspaces are introduced, one implementing the downward closure
property. The method MAFIA [45] uses an adaptive grid. The generation of
subspace clusters is similar to CLIQUE. Another variant of CLIQUE, called
nCluster [41], allows overlapping windows of length δ as one-dimensional
units of the grid. In summary, all grid-based methods use a simple but rather
effi cient cluster model. The shape of each resulting cluster corresponds to a
polygon with axis-parallel lines in the corresponding subspace. Obviously,
the accuracy and effi ciency of CLIQUE and its variants primarily depend
on the granularity and the positioning of the grid. A higher grid granularity
results in higher runtime requirements but will most likely produce more
accurate results. SUBCLU [16] uses the DBSCAN cluster model of density
connected sets. It is shown that density-connected sets satisfy the downward
closure property. This enables SUBCLU to search for density based clusters
in subspaces in an APRIORI-like style. The resulting clusters may exhibit
an arbitrary shape and size in the corresponding subspaces. RIS [39] is
a subspace ranking algorithm that uses a quality criterion to rate the

 Clustering Analysis 85

86 Applied Data Mining

interestingness of subspaces. This criterion is based on the monotonicity
of core points which are the central concept of the density-based clustering
notion of DBSCAN. An Apriori-like subspace generation method (similar
to SUBCLU) is used to compute all relevant subspaces and rank them by
interestingness. The clusters can be computed in the generated subspaces
using any clustering method of choice. SURFING [14] is a subspace ranking
algorithm that does not rely on a global density threshold. It computes the
interestingness of a subspace based on the distribution of the k-nearest
neighbors of all data points in the corresponding projection. An effi cient,
bottom-up subspace expansion heuristics ensures that less interesting
subspaces are not generated for examination. More subspace clustering
algorithms in detailed, please reference to [53, 56, 35].

4.4.2 Top-down Approaches

The rationale behind Top-down approaches is to determine the subspace
of a cluster starting from the full-dimensional space. This is usually done
by determining a subset of attributes for a given set of points (potential
cluster members) such that the points meet the given cluster criterion when
projected onto the corresponding subspace. Obviously, the dilemma is
that for the determination of the subspace of a cluster, at least some cluster
members must be identifi ed. On the other hand, in order to determine cluster
memberships, the subspace of each cluster must be known. To escape from
this circular dependency, most top-down approaches rely on a rather strict
assumption, which we call the locality assumption. It is assumed that the
subspace of a cluster can be derived from the local neighborhood (in the
full-dimensional data space) of the cluster center or the cluster members.
In other words, it is assumed that even in the full-dimensional space, the
subspace of each cluster can be learned from the local neighborhood of
cluster representatives or cluster members. Other top-down approaches
that do not rely on the locality assumption use random sampling in order
to generate a set of potential cluster members. According to the top-down
approaches working way, it is also called as projective clustering. Projective
clustering is an effi cient way of dealing with high dimensional clustering
problems. Explicitly or implicitly, projective clustering algorithms assume
the following defi nition: Give a data set D of n-dimensional data objects,
a projected cluster is defi ned as a pair (Ck, Sk), where Ck is a subset of data
objects and Sk is a subset of attributes such that the data objects in Ck are
projected along each attribute in Sk onto a small range of values, compared
to the range of values of the whole data set in Sk, and the data objects in Ck
are uniformly distributed along every other attributes not in Sk. The task
of projective clustering is to search and report all projective clusters in the
search space.

PROCLUS [9] is one of the classical projective clustering algorithms.
It discovers groups of data objects located closely in each of the related
dimension in its associated subspace. In such case, the data objects would
spread along certain directions which are parallel to the original data axes.
ORCLUS [10] aims to detect arbitrarily oriented subspaces formed by any
set of orthogonal vectors. EPCH [38] is focused on uncovering projective
clusters with varying dimensionality, without requiring users to input
the expected average dimensionality l of the associated subspace and the
number of clusters K that inherently exists in the data set. The d-dimensional
histogram created with equal width, is used to capture the dense units
and their locations in the d-dimensional space. A compression structure is
used to store these dense units and their locations. At last, a search method
is used to merge similar and adjacent dense units and form subspace
clusters. P3C [44] can effectively discover projective clusters in the data
while minimizing the number of required parameters. P3C also does not
need the number of projective clusters as input and can discover the true
number of clusters. There are three steps consisted in P3C. Firstly, regions
corresponding to the clusters on each attribute are discovered. Secondly, a
cluster core structure described by a combination of the detected regions is
designed to capture the dense areas in a high dimensional space. Thirdly,
cluster cores are refi ned into projective clusters, outliers are identifi ed,
and the relevant attributes for each cluster are determined. STATPC [43]
uses a varying width hyper-rectangle structure to fi nd out the dense areas
embedded in the high dimensional space. By using a spatial statistical
method, all dense hyper-rectangles are found. A heuristic search process
is run to merge these dense hyper-rectangles and clustering results are
generated. The clusters of projective clustering are defi ned as the dense
areas in corresponding subsets of attributes. In projective clustering, it is a
common way that a hyper-rectangle structure is used to fi nd out the dense
areas in the d-dimensional space at fi rst; and then, a search method is run
to merge these hyper-rectangles for generating clusters. Because the dense
area is captured by the hyper-rectangle structure, it is important to defi ne
the structure before clustering. There are two kinds of hyper-rectangle
structures used in projective clustering—the equal width hyper-rectangle
structure and the varying width hyper-rectangle structure. For the equal
width hyper-rectangle structure, each dimension is divided into equal
width intervals, and the hyper-rectangles are constructed by these intervals,
for instance, the d-dimensional histogram is used as the fi rst step in the
construction of hyper-rectangle structure in EPCH.

 Clustering Analysis 87

88 Applied Data Mining

4.4.3 Other Methods

Hybrid clustering algorithms do not belong to bottom-up or top-down
approaches. Algorithms that do not aim at uniquely assigning each data
point to a cluster nor at fi nding all clusters in all subspaces are called hybrid
algorithms. Some hybrid algorithms offer the user an optional functionality
of a pure projected clustering algorithm. Others aim at computing only
the subspaces of potential interest rather than the fi nal clusters. Usually,
hybrid methods that report clusters allow overlapping clusters, but do
not aim at computing all clusters in all subspaces. DOC [49] uses a global
density threshold to defi ne a subspace cluster by means of hypercubes of
fi xed side-length w containing at least α points. A random search algorithm
is proposed to compute such subspace clusters from a starting seed of
sampled points. A third parameter β specifi es the balance between the
number of points and the dimensionality of a cluster. This parameter affects
the dimensionality of the resulting clusters, and thus DOC usually also has
problems with subspace clusters of signifi cantly different dimensionality.
Due to the very simple clustering model, the clusters may contain additional
noise points (if w is too large) or not all points that naturally belong to the
cluster (if w is too small). One run of DOC may (with a certain probability)
fi nd one subspace cluster. If k clusters need to be identifi ed, DOC has to
be applied at least k times. If the points assigned to the clusters found so
far are excluded from subsequent runs, DOC can be considered as a pure
projected clustering algorithm because each point is uniquely assigned
to one cluster or to noise (if not assigned to a cluster). On the other hand,
if the cluster points are not excluded from subsequent runs, the resulting
clusters of multiple runs may overlap. Usually, DOC cannot produce all
clusters in all subspaces. MINECLUS [60] is based on a similar idea as
DOC, but proposes a deterministic method to fi nd an optimal projected
cluster, given a sample seed point. The authors transform the problem
into a frequent item set mining problem and employ a modifi ed frequent
pattern tree growth method. Further heuristics are introduced to enhance
effi ciency and accuracy.

DiSH [6] follows a similar idea as PreDeCon but uses a hierarchical
clustering model. This way, hierarchies of subspace clusters can be
discovered, that is, the information that a lower-dimensional cluster is
embedded within a higher-dimensional one. The distance between points
and clusters refl ects the dimensionality of the subspace that is spanned by
combining the corresponding subspace of each cluster. As in COSA, the
weighting of attributes is learned for each object, not for entire clusters.
The learning of weights, however, is based on single attributes, not on the
entire feature space. DiSH uses an algorithm that is inspired by the density-
based hierarchical clustering algorithm OPTICS. However, DiSH extends

the cluster ordering computed by OPTICS in order to fi nd hierarchies of
subspace clusters with multiple inclusions (a lower-dimensional subspace
cluster may be embedded in multiple higher-dimensional subspace
clusters). SCHISM [51] mines interesting subspaces rather than subspace
clusters, hence, it is not exactly a subspace clustering algorithm, but solves
a related problem: fi nding subspaces to look for clusters. It employs a
grid-like discretization of the database and applies a depthfi rst search with
backtracking to fi nd maximally interesting subspaces. FIRES [47] computes
one-dimensional clusters using any clustering technique the user is most
accomplished with in a fi rst step. These one-dimensional clusters are then
merged by applying a ”clustering of clusters.” The similarity of clusters
is defi ned by the number of intersecting points. The resulting clusters
represent hyper-rectangular approximations of the true subspace clusters.
In an optional postprocessing step, these approximations can be refi ned
by again applying any clustering algorithm to the points included in the
approximation projected onto the corresponding subspace. Though using
a bottom-up search strategy, FIRES is rather effi cient because it does not
employ a worst-case exhaustive search procedure but a heuristic that is
linear in the dimensionality of the data space. However, this performance
boost is paid for by an expected loss of clustering accuracy. It cannot be
specifi ed whether the subspace clusters produced by FIRES may overlap or
not. In general, the clusters may overlap, but usually FIRES cannot produce
all clusters in all subspaces.

4.5 Constraint-based Clustering Algorithm
In computer science, constrained clustering is a class of semi-supervised
learning algorithms [36]. Typically, constrained clustering incorporates
either a set of must-link constraints, cannot-link constraints, or both, with a
data clustering algorithm. Both a must-link and a cannot-link constraint
defi ne a relationship between two data instances. A must-link constraint is
used to specify that the two instances in the must-link relation should be
associated with the same cluster. A cannot-link constraint is used to specify
that the two instances in the cannot-link relation should not be associated
with the same cluster. These sets of constraints acts as a guide for which a
constrained clustering algorithm will attempt to fi nd clusters in a data set
which satisfy the specifi ed must-link and cannot-link constraints. Some
constrained clustering algorithms will abort if no such clustering exists
which satisfi es the specifi ed constraints. Others will try to minimize the
amount of constraint violation should it be impossible to fi nd a clustering
which satisfi es the constraints.

 Clustering Analysis 89

90 Applied Data Mining

4.5.1 COP K-means

In the context of partitioning algorithms, instance level constraints are a
useful way to express a prior knowledge about which instances should or
should not be grouped together. Consequently, we consider two types of
pair-wise constraints:

 • Must-link constraints specify that two instances have to be in the same
cluster.

 • Cannot-link constraints specify that two instances must not be placed
in the same cluster.

The must-link constraints defi ne a transitive binary relation over the
instances. Consequently, when making use of a set of constraints (of both
kinds), we take a transitive closure over the constraints. The full set of
derived constraints is then presented to the clustering algorithm. In general,
constraints may be derived from partially labeled data or from background
knowledge about the domain or data set.

Algorithm 4.11 gives the framework of COP K-means algorithm. The
major modifi cation is that, when updating cluster assignments, we ensure
that none of the specifi ed constraints are violated. We attempt to assign
each point di to its closest cluster Cj. This will succeed unless a constraint
would be violated. If there is another point d= that must be assigned to
the same cluster as d, but that is already in some other cluster, or there is
another point dF that cannot be grouped with d but is already in C, then di
cannot be placed in C. We continue down the sorted list of clusters until
we fi nd one that can legally host d. Constraints are never broken; if a legal
cluster cannot be found for d, the empty partition is returned. An interactive
demo of this algorithm can be found at http://www.cs.cornell.edu/home/
wkiri/cop-kmeans/.

4.5.2 MPCK-means

Given a set of data objects D, a set of must-link constraints M, a set of
cannot-link constraints C, corresponding cost sets W and W , and the desired
number of clusters K, MPCK-Mmeans fi nds a disjoint K-partitioning 1{ }K

k kC =
of D (with each cluster having a centroid µk and a local weight matrix Ak)
such that the objective function is (locally) minimized [17]. The algorithm
integrates the use of constraints and metric learning. Constraints are utilized
during cluster initialization and when assigning points to clusters, and the
distance metric is adapted by re-estimating the weight matrices Ak during
each iteration based on the current cluster assignments and constraint
violations. Algorithm 4.12 gives the pseudocode of MPCK-means.

http://www.cs.cornell.edu/home/wkiri/cop-kmeans/

Algorithm 4.11: COP-K-means
Input: data set D, must-link constraints Con= D x D, cannot-link constraints
Con D x D
Output: Clustering result

 (1) Let C1 ,…, Ck be the initial cluster centers.
 (2) For each point di in D, assign it to the closest cluster Cj such that
 violate-constraints (di, Cj, Con=, Con) is false. If no such cluster exists, fail

(return {}).
 (3) For each cluster Ci, update its center by averaging all of the points dj that have

been assigned to it.
 (4) Iterate between (2) and (3) until convergence.
 (5) Return {C1 ,…, Ck }.
 violate-constraints(data point d, cluster C, must-link constraints Con D x D,

cannot-link constraints Con D x D)
 (1) For each (d,d=) Con=: if d= C, return true.
 (2) For each (d,d) Con : if d C, return true.
 (3) Otherwise, return false

4.5.3 AFCC

AFCC is based on an iterative reallocation that partitions a data set into
an optimal number of clusters by locally minimizing the sum of intra-
cluster distances while respecting as many as possible of the constraints
provided. AFCC alternates between membership updating step and
centroid estimation step while generating actively at each iteration new
candidate pairs for constraints [28]. After the initialization step, we continue
by computing α, the factor that will ensure a balanced infl uence from
the constrained data and unlabeled patterns than β, the factor that will
determine which term of the membership updating equation will dominate.
Afterwards, memberships will be updated. In the second step, based on
the cardinalities of different clusters, spurious clusters will be discarded,
thus obtaining the centroids of good clusters. At this time, a data partition
is available, AFCC will then try to identify least well defi ned cluster and
selects in an active manner good candidates for the need of generating
maximally informative constraints. As distance d(xi, µj) between a data
item xi and a cluster centriod µj, one can use either the ordinary Euclidean
distance when the clusters are assumed to be spherical or the Mahalanobis
distance when they are assumed to be elliptical: d2(xi, µk) = |Ck|

1/n(xi − µk)
Tδk

−1 (xi − µk), where n is the dimension of the space considered and Ck is the
covariance matrices of the cluster k:

δk =
2

1
2

1

()()M T
ik i k i ki

M
iki

u x x

u

μ μ
=

=

− −∑
∑

µk µk

 Clustering Analysis 91

92 Applied Data Mining

Algorithm 4.12: MPCK-means
Input: Data set D, must-link set M, cannot-link set CA, cluster number K, constraint
costs W and W
Output: Clustering result 1{ }K

k kC =

(1) Initialize clusters:
 (1.1) create the λ neighborhoods {Np}

λ
p=1 from M and CA

 (1.2) if λ K
 Initialize {µ0

k}
K
k=1 using weighted farthest-fi rst traversal starting from the

largest Np
 Else if λ K
 Initialize {µ0

k}
K
k=1 with centroids of {Np}

λ
p=1

 Initialize remaining clusters at random
(2) Repeat until convergence
 (2.1) assign_cluster: assign each data object xi to cluster k.
 (2.2) estimate means:

(1)
(1)

1 1(1)

1{ } { }
| | t

k

t K K
k k kt x C

k

x
C

μ +
+

= =+ ∈
← ∑µ

 (2.3) update_metrics: Ak=|Ck|(xi Ck
(xi–µk)(xi–µk)

T)

+ (xi, xj) Mk
 1
2

wij(xi–xj)(xi–xj)
T+ (xi, xj) CAk

w
ij(xi–xj)(xi–xj)

T)–1

 (2.4) t t +1
(3) Return Clustering result.

When the Mahalanobis distance is employed, the computation of δk
are performed at the beginning of the main loop, right before the update
of β. The AFCC algorithm runs in O(MK2p) time, where M is the number
of data objects, K is the number of clusters, and p is the dimension of the
data points.

4.6 Consensus Clustering Algorithm
Consensus clustering has emerged as an important elaboration of the
classical clustering problem. Consensus clustering, also called aggregation
of clustering (or partitions), refers to the situation in which a number of
different (input) clusterings have been obtained for a particular dataset
and it is desired to fi nd a single (consensus) clustering which is a better fi t
in some sense than the existing clusterings. Consensus clustering is thus
the problem of reconciling clustering information about the same data set
coming from different sources or from different runs of the same algorithm.
When cast as an optimization problem, consensus clustering is known
as median partition, and has been shown to be NP-complete. Consensus
clustering for unsupervised learning is analogous to ensemble learning in
supervised learning.

Listed as below are some reason following for using consensus
clustering [1].

 • There are potential shortcomings for each of the known clustering
techniques.

 • Interpretations of results are diffi cult in a few cases.
 • When there is no knowledge about the number of clusters, it becomes

diffi cult.
 • They are extremely sensitive to the initial settings.
 • Some algorithms can never undo what was done previously.
 • Iterative descent clustering methods, such as the SOM and K-Means

clustering circumvent some of the shortcomings of hierarchical
clustering by providing for univocally defi ned clusters and cluster
boundaries. However, they lack the intuitive and visual appeal of
hierarchical clustering, and the number of clusters must be chosen a
priori.

 • An extremely important issue in cluster analysis is the validation of the
clustering results, that is, how to gain confi dence about the signifi cance
of the clusters provided by the clustering technique (cluster numbers
and cluster assignments). Lacking an external objective criterion (the
equivalent of a known class label in supervised learning) this validation
becomes somewhat elusive.

The advantages of consensus clustering are listed as below:

 • Provides for a method to represent the consensus across multiple runs
of a clustering algorithm, to determine the number of clusters in the
data, and to assess the stability of the discovered clusters.

 • The method can also be used to represent the consensus over multiple
runs of a clustering algorithm with random restart (such as K-means,
model-based Bayesian clustering, SOM, etc.), so as to account for its
sensitivity to the initial conditions.

 • It also provides for a visualization tool to inspect cluster number,
membership, and boundaries.

 • It is possible to extract lot of features/attributes from multiple runs of
different clustering algorithms on the data. These features can give us
valuable information in doing a fi nal consensus clustering.

4.6.1 Consensus Clustering Framework

We are given a set of M data objects D = {x1, x2, ..., xM} and a set of P clusterings
= {π1, π2, ..., πP} of the data objects in D. Each clustering πP, p = 1, ..., P is a

mapping from D to {1, ..., nπp} where nπp is the number of clusters in πP. The

 Clustering Analysis 93

94 Applied Data Mining

problem of clustering consensus is to fi nd a new clustering π* of the data
set D that best summarizes the clustering ensemble .

Algorithm 4.13 shows the framework of consensus clustering. The
consensus function is the main step in any clustering ensemble algorithm.
Precisely, the great challenge in clustering ensemble is the defi nition of an
appropriate consensus function, capable of improving the results of single
clustering algorithms. In this step, the fi nal data partition or consensus
partition π*, which is the result of any clustering ensemble algorithm,
is obtained. However, the consensus among a set of clusterings is not
obtained in the same way in all cases. There are two main consensus
function approaches: objects co-occurrence and median partition. In the
fi rst approach, the idea is to determine which must be the cluster label

Algorithm 4.13: the framework of consensus clustering
Input: Data set D, clustering set , desired number of clusters K
Output: the consensus clustering results.

 (1) defi ne a consensus function
 (2) optimize the consensus function until convergence
 (3) return the consensus clustering result

associated to each object in the consensus partition. To do that, it is analyzed
how many times an object belongs to one cluster or how many times two
objects belong together to the same cluster. The consensus is obtained
through a voting process among the objects. Somehow, each object should
vote for the cluster to which it will belong in the consensus partition.
This is the case, for example, of Relabeling and Voting and Co-association
Matrix based methods. In the second consensus function approach, the
consensus partition is obtained by the solution of an optimization problem,
the problem of fi nding the median partition with respect to the cluster
ensemble. Formally, the median partition is defi ned as:

π* =
1

arg max P

pπ =∈Π
∑

π
 (π, πp), π πp

where () is a similarity measure between partitions. The median partition
is defi ned as the partition that maximizes the similarity with all partitions
in the cluster ensemble. For example, Non-Negative Matrix Factorization
and Kernel based methods follow this approach.

4.6.2 Some Consensus Clustering Methods

4.6.2.1 Relabeling and Voting-based Methods

The Relabeling and Voting methods are based on solving as fi rst step the
labeling correspondence problem and after that, in a voting process, the
consensus partition is obtained. The labeling correspondence problem
consists of the following: the label associated to each object in a partition
is symbolic; there is no relation between the set of labels given by a
clustering algorithm and the set of labels given by another one. The
label correspondence is one of the main issues that make unsupervised
combination diffi cult. The different clustering ensemble methods based
on relabeling try to solve this problem using different heuristics such
as bipartite matching and cumulative voting. Lots of method have been
proposed: A general formulation for the voting problem as a multi-response
regression problem was presented by Ayad and Kamel [13]. Plurality Voting
(PV) [25], Voting-Merging (V-M) [59], Voting for fuzzy clusterings [21],
Voting Active Clusters (VAC) [55], Cumulative Voting (CV) [12] and the
methods proposed by Zhou and Tang [43] and Gordon and Vichi [27]. If a
relation exists among the labels associated for each clustering algorithm,
the voting defi nition of the clustering ensemble problem would be the most
appropriate. However, the labeling correspondence problem is what makes
the combination of clusterings diffi cult. This correspondence problem can
only be solved, with certain accuracy, if all partitions have the same number
of clusters. We consider this to be a strong restriction to the cluster ensemble
problem. Then, in general, they are not recommended when the number
of clusters in all partitions in the ensemble is not the same. Besides, very
frequently, they could have high computational cost since the Hungarian
algorithm to solve the label correspondence problem is O(k3), where k is
the number of clusters in the consensus partition. On the other hand, these
kinds of algorithms are usually easy to understand and implement.

4.6.2.2 Graph and Hyper Graph based Methods

This kind of clustering ensemble methods transform the combination
problem into a graph or hyper graph partitioning problem. The difference
among these methods lies on the way the (hyper)graph is built from the set
of clusterings and how the cuts on the graph are defi ned in order to obtain
the consensus partition. Strehl and Ghosh defi ned the consensus partition
as the partition that most information shares with all partitions in the cluster

 Clustering Analysis 95

96 Applied Data Mining

ensemble [54]. Cluster-based Similarity Partitioning Algorithm (CSPA)
[2], Hyper Graphs Partitioning Algorithm (HGPA) [3], Meta-CLustering
Algorithm (MCLA) [4], Hybrid Bipartite Graph Formulation (HBGF) [24]
are also the effi cient graph and hyper graph-based consensus clustering
method in the references. We consider that the main weakness of these
kind of clustering ensemble methods is that they are not rigourously well-
founded as a solution for the consensus clustering problem, in the sense
that most of them are proposed as a solution for the median partition
problem defi ned with the NMI similarity measure, but in practice, they
are not solving this problem. These methods are more related with the
object co-occurrence approach since in the (hyper)graph construction and
in the partitioning algorithm, the relationship between individual objects
are implicitly taken into account. In addition to that, these methods need
a (hyper)graph partitioning algorithm in the fi nal step, therefore, if we
change this algorithm, the fi nal result could change. Regardless of the fact
that METIS and HMETIS are the most used algorithm for the (hyper)graph
partitioning, they are not the only graph partitioning algorithm and they
do not have to achieve the best results in all situations.

4.7 Chapter Summary
Clustering is an important data mining tools and it has been used in lots
of application areas, such as, Biology, Information Retrieve, Climate,
Psychology, Medicine and Business. In this chapter, we classify the proposed
clustering algorithms into fi ve categories: traditional clustering algorithm,
high dimensional clustering algorithm and constraint-based clustering
algorithm and consensus clustering algorithm. The traditional data
clustering approaches include partitioning methods, hierarchical methods,
density-based methods, grid-based methods, and model-based methods.
Two different kinds of high-dimensional clustering algorithms have been
described. In the constraint-based clustering algorithm subsection, we fi rst
discussed the concept of constraint-based clustering algorithm and then
three traditional constraint-based clustering algorithms were introduced.
The consensus clustering algorithm is based on the clustering results and it is
a new way to fi nd robust clustering result. In this chapter, we introduced the
main frame work of consensus clustering at fi rst, and then, we discussed the
consensus function in detail. Eventually, two kinds of consensus clustering
algorithms were introduced.

References
 [1] http://en.wikipedia.org/wiki/Consensus clustering.
 [2] http://www.lans.ece.utexas.edu/ strehl/diss/node80.html.
 [3] http://www.lans.ece.utexas.edu/ strehl/diss/node81.html.
 [4] http://www.lans.ece.utexas.edu/ strehl/diss/node82.html.
 [5] E. Achtert, C. Bohm and P. Kroger. DeLi-Clu: Boosting Robustness, Completeness, Usability,

and Effi ciency of Hierarchical Clustering by a Closest Pair Ranking. 2006.
 [6] E. Achtert, C. Bohm, H. peter Kriegel, P. Kroger and A. Zimek. On Exploring Complex

Relationships of Correlation Clusters. In: Statistical and Scientifi c Database Management,
pp. 7–7, 2007.

 [7] C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf, P. S. Yu and J. S. Park. Fast Algorithms for
Projected Clustering. Sigmod Record, 28: 61–72, 1999.

 [8] C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in high dimensional
spaces. Sigmod Record, pp. 70–81, 2000.

 [9] R. Agrawal, J. E. Gehrke, D. Gunopulos and P. Raghavan. Automatic subspace clustering
of high dimensional data for data mining applications. Sigmod Record, 27: 94–105,
1998.

 [10] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In: Proc. of 20th
Intl. Conf. on VLDB, pp. 487–499, 1994.

 [11] M. Ankerst, M. M. Breunig, H. peter Kriegel and J. Sander. Optics: Ordering points to
identify the clustering structure. pp. 49–60. ACM Press, 1999.

 [12] H. G. Ayad and M. S. Kamel. Cumulative Voting Consensus Method for Partitions
with Variable Number of Clusters. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30: 160–173, 2008.

 [13] H. G. Ayad and M. S. Kamel. On voting-based consensus of cluster ensembles. Pattern
Recognition, 43: 1943–1953, 2010.

 [14] C. Baumgartner, C. Plant, K. Kailing, H. -P. Kriegel and P. Kroger. Subspace selection for
clustering high-dimensional data. In: Proc. 4th IEEE Int. Conf. on Data Mining (ICDM04),
pp. 11–18, 2004.

 [15] P. Berkhin. Survey of clustering data mining techniques. Technical report, 2002.
 [16] C. Bohm, K. Kailing, H. Peter Kriegel and P. Kroger. Density Connected Clustering with

Local Subspace Preferences. In: IEEE International Conference on Data Mining, pp. 27–34,
2004.

 [17] M. Bilenko, S. Basu and R. J. Mooney. Integrating constraints and metric learning in
semi-supervised clustering. In: ICML, pp. 81–88, 2004.

 [18] Z. I. Botev, J. F. Grotowski and D. P. Kroese. Kernel density estimation via diffusion.
Annals of Statistics, 38: 2916–2957, 2010.

 [19] G. Celeux and G. Govaert. A classifi cation EM algorithm for clustering and two stochastic
versions. Computational Statistics & Data Analysis, 14: 315–332, 1992.

 [20] A. P. Dempster, N. M. Laird and D. B. Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society, Series B, 39(1): 1–38, 1977.

 [21] E. Dimitriadou, A. Weingessel and K. Hornik. A Combination Scheme for Fuzzy
Clustering. International Journal of Pattern Recognition and Artifi cial Intelligence, 16: 332–338,
2002.

 [22] M. Ester, H. Peter Kriegel, J. Sander and X. Xu. A Density-based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In: Knowledge Discovery
and Data Mining, pp. 226–231, 1996.

 [23] U. Fayyad, G. Piatetsky-shapiro and P. Smyth. From data mining to knowledge discovery
in databases. AI Magazine, 17: 37–54, 1996.

 [24] X. Z. Fern and C. E. Brodley. Solving cluster ensemble problems by bipartite graph
partitioning. In: Proceedings of the International Conference on Machine Learning, 2004.

 Clustering Analysis 97

http://en.wikipedia.org/wiki/Consensus clustering
http://www.lans.ece.utexas.edu/strehl/diss/node81.html
http://www.lans.ece.utexas.edu/strehl/diss/node80.html
http://www.lans.ece.utexas.edu/strehl/diss/node82.html

98 Applied Data Mining

 [25] B. Fischer and J. M. Buhmann. Bagging for Path-Based Clustering. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 25: 1411–1415, 2003.

 [26] C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis, and density
estimation. Journal of the American Statistical Association, 97: 611– 631, 2000.

 [27] A. D. Gordon and M. Vichi. Fuzzy partition models for fi tting a set of partitions.
Psy-chometrika, 66: 229–247, 2001.

 [28] N. Grira, M. Crucianu and N. Boujemaa. Active semi-supervised fuzzy clustering for
image database categorization. In: ACM Multimedia Conference, pp. 9–16, 2005.

 [29] P. J. Han J., Kamber M. Data Mining: Concepts and Techniques (3rd edition), 2012.
 [30] y. . . m. . . Han J. and Kamber M., title = Data Mining: Concepts and Techniques.
 [31] P. K. Hans-peter Kriegel and A. Zimek. Clustering high-dimensional data: A survey on

subspace clustering, pattern-based clustering, and correlation clustering. ACM Transac-
tions on Knowledge Discovery From Data, 3: 1–58, 2009.

 [32] A. Hinneburg and D. A. Keim. An Effi cient Approach to Clustering in Large Multimedia
Databases with Noise. In: Knowledge Discovery and Data Mining, pp. 58–65, 1998.

 [33] Z. hua Zhou and W. Tang. Clusterer ensemble. Knowledge Based Systems, 19: 77–83,
2006.

 [34] C. hung Cheng, A. Fu, Y. Zhang, A. Wai-chee and F. Y. Zhang. Entropy-based subspace
clustering for mining numerical data. pp. 84–93, 1999.

 [35] T. P. P. K. H.-P. K. I. Ntoutsi and A. Zimek. Density-based projected clustering over high
dimensional data streams. In Proceedings of the 12th SIAM International Conference on Data
Mining (SDM), pp. 21–28, 2012.

 [36] M. M. B. Ismail and H. Frigui. Image annotation based on constrained clustering and
seminaive bayesian model. In: International Symposium on Computers and Communications,
pp. 431–436, 2009.

 [37] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data, 1988.
 [38] E. Ka, K. Ng, A. W. chee Fu and R. C. wing Wong. Projective clustering by histograms.

IEEE Transactions on Knowledge and Data Engineering, 17: 369–383, 2005.
 [39] K. Kailing, H. -P. Kriegel, P. Kroeger and S. Wanka. Ranking interesting subspaces for

clustering high-dimensional data. In: PKDD, pp. 241–252, 2003.
 [40] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster

Analysis, 1990.
 [41] J. Liu and W. Wang. OP-Cluster: Clustering by Tendency in High-Dimensional Space.

In: IEEE International Conference on Data Mining, pp. 187–194, 2003.
 [42] H. -P. K. Michael, E. Houle, P. Kroger, E. Schubert and A. Zimek. Can Shared-Neighbor

Distances Defeat the Curse of Dimensionality? 2010.
 [43] G. Moise and J. Sander. 2008. Finding non-redundant, statistically signifi cant regions

in high-dimensional data: a novel approach to projected and subspace clustering. In:
Knowledge Discovery and Data Mining, pp. 533–41, 2008.

 [44] G. Moise, J. Sander and M. Ester. P3C: A Robust Projected Clustering Algorithm. In:
IEEE International Conference on Data Mining, pp. 414–25, 2006.

 [45] H. Nagesh, S. Goil and A. Choudhary. Adaptive grids for clustering massive data sets.
In: Proceedings of the 1st SIAM International Conference on Data Mining, 2001.

 [46] R. T. Ng and J. Han. CLARANS: A Method for Clustering Objects for Spatial Data Mining.
IEEE Transactions on Knowledge and Data Engineering, 14: 1003–16, 2002.

 [47] H. Peter Kriegel, P. Kroger, M. Renz and S. Wurst. A generic framework for effi cient
subspace clustering of high-dimensional data. In: PROC. ICDM, pp. 250–57. IEEE
Computer Society, 2005.

 [48] A. M. F. Petros Drineas, R. Kannan, S. Vempala and V. Vinay. Clustering Large Graphs
via the Singular Value Decomposition. Machine Learning, 56: 9–33, 2004.

 [49] C. M. Procopiuc, M. Jonesy, P. K. Agarwal and T. M. Muraliy. A Monte Carlo algorithm
for fast projective clustering. pp. 418–427. ACM Press, 2002.

 [50] E. Schikuta. Grid-clustering: an effi cient hierarchical clustering method for very large
data sets. In: International Conference on Pattern Recognition, Vol. 2, 1996.

 [51] K. Sequeira and M. Zaki. SCHISM: a new approach to interesting subspace mining. In:
International Journal of Business Intelligence and Data Mining, 1: 137–160, 2005.

 [52] G. Sheikholeslami, S. Chatterjee and A. Zhang. WaveCluster: A Wavelet Based Clustering
Approach for Spatial Data in Very Large Databases. The Vldb Journal, 8: 289–304, 2000.

 [53] K. Sim, V. Gopalkrishnan, A. Zimek and G. Cong. A survey on enhanced subspace
clustering. Data Mining and Knowledge Discovery, pp. 1–66, 2012.

 [54] A. Strehl and J. Ghosh. Cluster Ensembles—A Knowledge Reuse Framework for
Combining Multiple Partitions. Journal of Machine Learning Research, 3: 583–617, 2002.

 [55] K. Tumer and A. K. Agogino. Ensemble clustering with voting active clusters. Pattern
Recognition Letters, 29: 1947–1953, 2008.

 [56] R. Vidal. Subspace Clustering. IEEE Signal Processing Magazine, 28: 52–68, 2011.
 [57] W. Wang, J. Yang and R. Muntz. Sting: A statistical information grid approach to spatial

data mining, pp. 186–95. Morgan Kaufmann, 1997.
 [58] C. S. Warnekar and G. Krishna. A heuristic clustering algorithm using union of

overlapping pattern-cells. Pattern Recognition, 11: 85–93, 1979.
 [59] A. Weingessel, E. Dimitriadou and K. Hornik. Voting-merging: An ensemble method for

clustering. icann. In: Proc. Int. Conf. on Artifi cial Neural Networks, pp. 217–224. Springer
Verlag, 2001.

 [60] M. L. Yiu and N. Mamoulis. Iterative projected clustering by subspace mining. IEEE
Transactions on Knowledge and Data Engineering, 17: 176–189, 2005.

 Clustering Analysis 99

CHAPTER 5

Classification

Two common data mining techniques for fi nding hidden patterns in
data are clustering and classifi cation analysis. Although classifi cation
and clustering are often mentioned in the same breath, they are different
analytical approaches. Imaging a database of customer records, where each
record represents a customer’s attributes. These can include identifi ers such
as name and address, demographic information such as gender and age,
and fi nancial attributes such as income and revenue spent. Clustering is an
automated process to group related records together. Related records are
grouped together on the basis of having similar values for attributes. This
approach of segmenting the database via clustering analysis is often used
as an exploratory technique because it is not necessary for the analyst to
specify ahead of time how records should be related together. In fact, the
objective of the analysis is often to discover clusters, and then examine
the attributes and values that defi ne the clusters or segments. As such,
interesting and surprising ways of grouping customers together can become
apparent, and this in turn can be used to drive marketing and promotion
strategies to target specifi c types of customers. Classifi cation is a different
technique from clustering. It is similar to clustering in that it also segments
customer records into distinct segments called classes. But unlike clustering,
a classifi cation analysis requires that the analyst know ahead of time how
classes are defi ned. For example, classes can be defi ned to represent the
likelihood that a customer defaults on a loan (Yes/No). It is necessary that
each record in the dataset used to build the classifi er already have a value for
the attribute used to defi ne classes. Because each record has a value for the
attribute used to defi ne the classes, and because the end-user decides on the
attribute to use, classifi cation is much less exploratory than clustering.

The objective of a classifi er is not to explore the data to discover
interesting segments, but rather to decide how new records should
be classifi ed—i.e., is this new customer likely to default on the loan?
Classifi cation routines in data mining also use a variety of algorithms

—and the particular algorithm used can affect the way records are classifi ed.
A common approach for classifi ers is to use decision trees to partition and
segment records. New records can be classifi ed by traversing the tree from
the root through branches and nodes, to a leaf representing a class. The path
a record takes through a decision tree can then be represented as a rule.
For example, Income<$30,000 and age<25, and debt=High, then Default
Class=Yes. But due to the sequential nature of the way a decision tree
splits records (i.e., the most discriminative attribute-values [e.g., Income]
appear early in the tree) can result in a decision tree being overly sensitive
to initial splits. Therefore, in evaluating the goodness of fi t of a tree, it is
important to examine the error rate for each leaf node (proportion of records
incorrectly classifi ed). A nice property of decision tree classifi ers is that
because paths can be expressed as rules, then it becomes possible to use
measures for evaluating the usefulness of rules such as Support, Confi dence
and Lift to also evaluate the usefulness of the tree. Although clustering and
classifi cation are often used for purposes of segmenting data records, they
have different objectives and achieve their segmentations through different
ways. Knowing which approach to use is important for decision-making.

5.1 Classifi cation Defi nition and Related Issues
The data analysis task classifi cation is where a model or classifi er is
constructed to predict categorical labels (the class label attribute). For
example, Categorical labels include ”safe” or ”risky” for the loan application
data. In general, data classifi cation includes the following two-step process.
Step 1: A classifi er is built describing a predetermined set of data classes or
concepts. This is the learning step (or training phase), where a classifi cation
algorithm builds the classifi er by analyzing or ”learning from” a training
set made up of database tuples and their associated class labels. Each tuple,
is assumed to belong to a predefi ned class called the class label attribute.
Because the class label of each training tuple is provided, this step is also
known as supervised learning. The fi rst step can also be viewed as the
learning of a mapping or function, y = f (X), that can predict the associated
class label y of a given tuple X. Typically, this mapping is represented in
the form of classifi cation rules, decision trees, or mathematical formulae.
In step 2, the model is used for classifi cation.

The predictive accuracy of the classifi er is very important and should
be estimated at fi rst. If we were to use the training set to measure the
accuracy of the classifi er, this estimate would likely be optimistic, because
the classifi er tends to overfi t the data. Therefore, a test set is used, made
up of test tuples and their associated class labels. The associated class label
of each test tuple is compared with the learned classifi er’s class prediction

 Classifi cation 101

102 Applied Data Mining

for that tuple. If the accuracy of the classifi er is considered acceptable, the
classifi er can be used to classify future data tuples for which the class label
is not known. For example, the classifi cation rules learned in Fig. from the
analysis of data from previous loan applications can be used to approve
or reject new or future loan applicants. The preparing of the data and the
quality of a classifi er are two important regarding issues of classifi cation. The
following preprocessing steps may be applied to the data to help improve
the accuracy, effi ciency, and scalability of the classifi cation process.

Data cleaning: This refers to the preprocessing of data in order to remove or
reduce noise and the treatment of missing values. This step can help reduce
confusion during learning.

Relevance analysis: Many of the attributes in the data may be redundant. A
database may also contain irrelevant attributes. Hence, relevance analysis
in the form of correlation analysis and attribute subset selection, can be
used to detect attributes that do not contribute to the classifi cation or
prediction task.

Data transformation and reduction: Normalization involves scaling all values
for a given attribute so that they fall within a small specifi ed range, such
as 0:0 to 1:0.

The data can also be transformed by generalizing it to higher-level
concepts. Concept hierarchies may be used for this purpose. Data can
also be reduced by applying many other methods, ranging from wavelet
transformation and principle components analysis to discretization
techniques, such as binning, histogram analysis, and clustering. Ideally,
the time spent on relevance analysis, when added to the time spent on
learning from the resulting ”reduced” attribute subset, should be less than
the time that would have been spent on learning from the original set of
attributes. Hence, such analysis can help improve classifi cation effi ciency
and scalability.

Classifi cation methods can be compared and evaluated according to the
following criteria:

 • Accuracy: The accuracy of a classifi er refers to the ability of a given
classifi er to correctly predict the class label of new or previously unseen
data. Estimation techniques are cross-validation and bootstrapping.
Because the accuracy computed is only an estimate of how well the
classifi er or predictor will do on new data tuples, confi dence limits
can be computed to help gauge this estimate.

 • Speed: This refers to the computational costs involved in generating
and using the given classifi er.

 • Robustness: This is the ability of the classifi er to make correct predictions
given noisy data or data with missing values.

 • Scalability: This refers to the ability to construct the classifi er effi ciently
given large amounts of data.

 • Interpretability: This refers to the level of understanding and insight
that is provided by the classifi er.

 • End nodes: represented by triangles.

5.2 Decision Tree and Classifi cation
This section introduces decision tree fi rst, and then discusses a decision
tree classifi er.

5.2.1 Decision Tree

A decision tree is a decision support tool that uses a tree-like graph or
model of decisions and their possible consequences, including chance event
outcomes, resource costs, and utility. It is one way to display an algorithm.
Decision trees are commonly used in operations research, specifi cally in
decision analysis, to help identify a strategy most likely to reach a goal. If in
practice decisions have to be taken online with no recall under incomplete
knowledge, a decision tree should be paralleled by a probability model
as a best choice model or online selection model algorithm. Another use
of decision trees is as a descriptive means for calculating conditional
probabilities. In general, a “decision tree” is used as a visual and analytical
decision support tool, where the expected values (or expected utility) of
competing alternatives are calculated. A decision tree consists of three
types of nodes:

 • Decision nodes—commonly represented by squares.
 • Chance nodes—represented by circles.
 • End nodes—represented by triangles.

Commonly, a decision tree is drawn using fl ow chart symbols as it is easier
for many to read and understand. Figure 5.2.1 shows a decision tree which
is drawn using fl ow chart symbols. A decision tree has only burst nodes
(splitting paths) but no sink nodes (converging paths). Therefore, used
manually, they can grow very big and are then often hard to draw fully by
hand. Traditionally, decision trees have been created manually—as the aside
example shows—although increasingly, specialized software is employed.
Decision trees have several advantages:

 Classifi cation 103

104 Applied Data Mining

 • Are simple to understand and interpret. People are able to understand
decision tree models after a brief explanation.

 • Have value even with little hard data. Important insights can be
generated based on experts describing a situation (its alternatives,
probabilities, and costs) and their preferences for outcomes.

 • Possible scenarios can be added.
 • Worst, best and expected values can be determined for different

scenarios. Use a white box model. If a given result is provided by a
model.

 • Can be combined with other decision techniques.

Like other methods, decision tree also has some disadvantages. These
include:

 • For data including categorical variables with different number of
levels, information gain in decision trees are biased in favor of those
attributes with more levels [10].

 • Calculations can get very complex particularly if many values are
uncertain and/or if many outcomes are linked.

Figure 5.2.1: An example of a decision tree.

Case

Proceed

Costs

Settle*
Proceed

Costs

Zero
Zero

Zero

$100K
–$100K

$50K

$500K

Damages

WinLoss

40% 60%

80%
80%

5% 40%

55%

Offer of $30K
–50K + 40% (80% –100K) + 60% (80% 100K + (5%
$500K + 55% 50K)) = –$2.5K

20%20%

$50K

5.2.2 Decision Tree Classifi cation

Decision tree classifi cation uses a decision tree as a predictive model which
maps observations about an item to conclusions about the item’s target
value. More descriptive names for such tree models are classifi cation trees
or regression trees. In these tree structures, leaves represent class labels and
branches represent conjunctions of features that lead to those class labels.
In decision analysis, a decision tree can be used to visually and explicitly
represent decisions and decision making. In data mining, a decision tree
describes data but not decisions; rather the resulting classifi cation tree can
be an input for decision making. This page deals with decision trees in data
mining. Decision tree learning is a method commonly used in data mining.
The goal is to create a model that predicts the value of a target variable
based on several input variables. An example is shown on the right. Each
interior node corresponds to one of the input variables; there are edges
to children for each of the possible values of that input variable. Each
leaf represents a value of the target variable given the values of the input
variables represented by the path from the root to the leaf. A tree can be
“learned” by splitting the source set into subsets based on an attribute value
test. This process is repeated on each derived subset in a recursive manner
called recursive partitioning. The recursion is completed when the subset
at a node has all the same value of the target variable, or when splitting no
longer adds value to the predictions. This process of top-down induction of
decision trees (TDIDT) [14] is an example of a greedy algorithm, and it is by
far the most common strategy for learning decision trees from data, but it is
not the only strategy. In fact, some approaches have been developed recently
allowing tree induction to be performed in a bottom-up fashion [4].

In classifi cation, there have three different nodes in decision tree which are
described as following:

 • A root node that has no incoming edges and zero or more outgoing
edges.

 • Internal nodes, each of which has exactly one incoming edge and two
or more outgoing edges.

 • Leaf or terminal nodes, each of which has exactly one incoming edge
and no outgoing edges.

Figure 5.2.2 shows the decision tree for the survival passengers on
the Titanic classifi cation problem. In the fi gure, “sibsp” is the number of
spouses or siblings aboard. Each interior node corresponds to one of the
input variables; there are edges to children for each of the possible values
of that input variable. Each leaf represents a value of the target variable
given the values of the input variables represented by the path from the
root to the leaf.

 Classifi cation 105

106 Applied Data Mining

5.2.3 Hunt’s Algorithm

To build an optimal decision tree is the key problem in a decision tree
classifi er. In general, decision trees can be constructed from a given set of
attributes. While some of the trees are more accurate than others, fi nding
the optimal tree is computationally infeasible because of the exponential
size of the search space. However, various effi cient algorithms have been
developed to construct a reasonably accurate, albeit suboptimal, decision
tree in a reasonable amount of time. These algorithms usually employ a
greedy strategy that grows a decision tree by making a series of locally
optimum decisions about which attribute to use for partitioning the data.
Hunt’s algorithm is one of the effi cient method for constructing a decision
tree. It grows a decision tree in a recursive fashion by partitioning the
training records into successively purer subsets. Let Dt be the set of training
records that reach a node t. The general recursive procedure is defi ned as
algorithm 5.1 [17]. It recursively applies the procedure to each subset until
all the records in the subset belong to the same class. Hunt’s algorithm
assumes that each combination of attribute sets has a unique class label
during the procedure. If all the records associated with Dt have identical
attribute values except for the class label, then it is not possible to split these
records any further. In that case, the node is declared a leaf node with the
same class label as the majority class of training records associated with
this node.

Is sex male?

Is age>9.5? Survived

Died Is sibsp>2.5?

Died Survived

Y N

Y
N

Y N

0.73 36%

0.89 2% 0.05 2%

0.17 61%

Root node
Internal node

Leaf node

Leaf node

Figure 5.2.2: An example of decision tree classifi cation for Titanic

Algorithm 5.1: Hunt’s algorithm

 (1) If Dt contains records that belong the same class yt, then t is a leaf node labeled
as yt

 (2) If Dt is an empty set, then t is a leaf node labeled by the default class, yd
 (3) If Dt contains records that belong to more than one class, use an attribute test

to split the data into smaller subsets.

5.3 Bayesian Network and Classifi cation

5.3.1 Bayesian Network

Bayesian network theory can be thought of as a fusion of incidence
diagrams and Bayes’ theorem. A Bayesian network, or belief network, shows
conditional probability and causality relationships between variables. For
example, a Bayesian network could represent the probabilistic relationships
between diseases and symptoms. Given the symptoms, the network can
be used to compute the probabilities of the presence of various diseases.
The probability of an event occurring given that another event has already
occurred is called conditional probability. The probabilistic model is described
qualitatively by a directed acyclic graph, or DAG. The vertices of the graph,
which represent variables, are called nodes. The nodes are represented as
circles containing the variable name. The connections between the nodes
are called arcs, or edges. The edges are drawn as arrows between the
nodes, and represent dependence between the variables. Therefore, any
pair of nodes indicates that one node is the parent of the other so there are
no independent assumptions. Independent assumptions are implied in
Bayesian networks by the absence of a link. Figure 5.3.1 shows an example of
DAG. The node where the arc originates is called the parent, while the node
where the arc ends is called the child. In this case, V0 is a parent of V1 and
V2, V2 has parents V0 and V1. Nodes that can be reached from other nodes
are called descendants. Nodes that lead a path to a specifi c node are called
ancestors. For example, V1 and V2 are descendants of V0, and V1 is ancestors
of V2 and V3. Since no child can be its own ancestor or descendent, there
are no loops in Bayesian networks. Bayesian networks will generally also
include a set of probability tables, stating the probabilities for the true/false
values of the variables. The main point of Bayesian Networks is to allow
for probabilistic inference to be performed. This means that the probability
of each value of a node in the Bayesian network can be computed when
the values of the other variables are known. Also, because independence
among the variables is easy to recognize since conditional relationships are
clearly defi ned by a graph edge, not all joint probabilities in the Bayesian
system need to be calculated in order to make a decision. Classifi cation
with Bayesian network.

 Classifi cation 107

108 Applied Data Mining

V3

V0 V1

V2

Figure 5.3.1: An example of DAG

Figure 5.3.2 depicts the possible structure of a Bayesian network used
for classifi cation. The dotted lines denote potential links, and the blue box
indicates that additional nodes and links can be added to the model, usually
between the input and output nodes.

In order to perform classifi cation with a Bayesian network such as the
one depicted in Fig. 5.3.2, fi rst evidence must be set on the input nodes,
and then the output nodes can be queried using standard Bayesian network
inference. The result will be a distribution for each output node, so that you
can not only determine the most probable state for each output, but also
see the probability assigned to each output state. Figure 5.3.3 shows the
structure of a Naive Bayes classifi er, which is the simplest form of useful
Bayesian network classifi er. The links in a Naive Bayes model are directed
from output to input, which gives the model its simplicity, as there are
no interactions between the inputs, except indirectly via the output. Note
however that directing links from output to input, is not a requirement for
all Bayesian network classifi ers.

Input2

Input3

Input4

Input1

Output2

Output1

Figure 5.3.2: Generic structure of a Bayesian network classifi er

One of the most effective classifi ers, in the sense that its predictive
performance is competitive with state-of-the-art classifi ers, is the so-called
naive Bayesian classifi er described, for example, by Duda and Hart [9] and
by Langley et al. [12]. This classifi er learns from training data the conditional
probability of each attribute Ai given the class label C. Classifi cation is then
done by applying Bayes rule to compute the probability of C given the
particular instance of A1,...,An, and then predicting the class with the highest
posterior probability. This computation is rendered feasible by making a
strong independence assumption: all the attributes Ai are conditionally
independent given the value of the class C.

5.3.2 Backpropagation and Classifi cation

5.3.2.1 Backpropagation Method

Backpropagation [1] is a common method of training artifi cial neural
networks so as to minimize the objective function. Arthur E. Bryson and Yu-
Chi Ho described it as a multi-stage dynamic system optimization method
in 1969 [15, 6]. It wasn’t until 1974 and later, when applied in the context
of neural networks and through the work of Paul Werbos [19], Rumelhart
and Kubat [16, 11], that it gained recognition, and it led to a “renaissance”
in the fi eld of artifi cial neural network research. It is a supervised learning
method, and is a generalization of the delta rule. It requires a dataset of the
desired output for many inputs, making up the training set. It is most useful
for feed-forward networks (networks that have no feedback, or simply, that
have no connections that loop). The term is an abbreviation for “backward
propagation of errors”. Backpropagation requires that the activation

Input2

Input3

Input4

Input1

Output1

Figure 5.3.3: Naive Bayes model

 Classifi cation 109

110 Applied Data Mining

function used by the artifi cial neurons (or “nodes”) be differentiable. The
main framework of Backpropagation could be described as Algorithm 5.2.
In step 2.2, the ratio infl uences the speed and quality of learning; it is called
the learning rate. The sign of the gradient of a weight indicates where the
error is increasing; this is why the weight must be updated in the opposite
direction.

Algorithm 5.2: Backpropagation

(1) Propagation
(1.1) Forward propagation of a training pattern’s input through the neural

network in order to generate the propagation’s output activations.
 (1.2) Backward propagation of the propagation’s output activations through

the neural network using the training pattern’s target in order to generate the
deltas of all output and hidden neurons.

(2) Weight update
(2.1) Multiply its output delta and input activation to get the gradient of the

weight.
(2.2) Bring the weight in the opposite direction of the gradient by subtracting

a ratio of it from the weight.
(3) Repeat phases 1 and 2 until the performance of the network is satisfactory.

5.3.2.2 Classifi er with Backpropagation

The model structure of BP (backpropagation) classifi cation algorithm
uses full connection each layers and nodes from input layer to output
layer. Obviously, it needs a lot of calculation. However, we are not still
satisfi ed with standard neural network or back-propagation model based
decision support system because we want to get better quality of decision
performance and less computing iteration when we want to develop in a
specifi c domain area.

5.3.3 Association-based Classifi cation

Association rule mining is an important and highly active area of data
mining research. Recently, data mining techniques have been developed
that apply concepts used in association rule mining to the problem of
classifi cation. In this section, we study three methods in historical order.
The fi rst two, ARCS_ORCS [2] and associative classifi cation [18], use
association rules for classifi cation. The third method, CAEP [8], mines
“emerging patterns” that consider the concept of support used in mining
associations. The fi rst method mines association rules based on clustering
and then employs the rules for classifi cation. The ARCS or Association Rule
Clustering System, mines association rules of the form Aquan1... Aquan2 =¿

Acat where Aquan1 and Aquan2 are tests on quantitative attributive ranges
(where the ranges are dynamically determined), and Acat assigns a class
label for a categorical attribute from the given training data. Association
rules are plotted on a 2-D grid. The algorithm scans the grid, searching for
rectangular clusters of rules. In this way, adjacent ranges of the quantitative
attributes occurring within a rule cluster may be combined. The clustered
association rules generated by ARCS were empirically found to be slightly
more accurate than C4.5 when there are outliers in the data. The accuracy of
ARCS is related to the degree of discretization used. In terms of scalability,
ARCS requires “a constant amount of memory”, regardless of the database
size. C4.5 has exponentially higher execution times than ARCS, requiring the
entire database, multiplied by some factor, to fi t entirely in main memory.
The second method is referred to as associative classifi cation. It mines
rules of the form condset= >y, where condset is a set of items (or attribute-
value pairs) and y is a class label. Rules that satisfy pre-specifi ed minimum
supports are frequent, where a rule has support s. if s% of the samples in
the given data set contain consent and belong to class y. A rule satisfying
minimum confi dence is called accurate, where a rule has confi dence c, if c%
of the samples in the given data set that contain consent belong to class y. If
a set of rules has the same consent, then the rule with the highest confi dence
is selected as the possible rule (PR) to represent the set.

The association classifi cation method consists of two steps. The fi rst
step fi nds the set of all PRs that are both frequent and accurate. It uses an
iterative approach, where prior knowledge is used to prune the rule search.
The second step uses a heuristic method to construct the classifi er, where the
discovered rules are organized according to decreasing precedence based
on their confi dence and support. The algorithm may require several passes
over the data set, depending on the length of the longest rule found.
When classifying a new sample, the fi rst rule satisfying the sample is
used to classify it. The classifi er also contains a default rule, having lowest
precedence, which specifi es a default class for any new sample that is
not satisfi ed by any other rule in the classifi er. In general, the associative
classifi cation method was empirically found to be more accurate than C4.5
on several data sets. Each of the above two steps was shown to have linear
scale-up.

The third method, CAEP (classifi cation by aggregating emerging
patterns), uses the notion of itemset supports to mine emerging patterns
(EPs), which are used to construct a classifi er. Roughly speaking, an EP is
an itemset (or set of items) whose support increases signifi cantly from one
class of data to another. The ratio of the two supports is called the growth
rate of the EP. For example, suppose that we have a data set of customers
with the classes buysc�omputer = “yes”, or C1, and buys computer = “no”,
or C2, the itemset age = “≤30”, student = “no” is a typical EP, whose support

 Classifi cation 111

112 Applied Data Mining

increases from 0.2% in C1 to 57.6% in C2 at a growth rate of EP = 288. Note
that an item is either a simple equality test; on a categorical attribute is
in an interval. Each EP is a multi-attribute test and can be very strong at
differentiating instances of one class from another. For instance, if a new
sample X contains the above EP, then with odds of 99.6% we can claim that
X belongs to C2. In general, the differentiating power of an EP is roughly
proportional to its growth rate and its support in the target class.

For each class C, CAEP fi nd EPs satisfying given support and growth
rate thresholds, where growth rate I computed with respect to the set of
all non-C samples versus the target set of all C samples, “Borderbased”
algorithms can be used for this purpose. Where classifying a new sample,
X, for each class C, the differentiating power of the EPs of class C that
occur in X are aggregated to derive a score for C that is then normalized.
The class with the largest normalized score determines the class label of X.
CAEP has been found to be more accurate than C4.5 and association0-based
classifi cation on several data sets. It also performs well on data sets where
the mail class of interest is in the minority. It scales up on data volume
and dimensionality. An alternative classifi er, called the JEP-classifi er, was
proposed based on jumping emerging patterns (JEPs). A JEP is a special
type of EP, defi ned as an itemset whose support increases abruptly from
zero in one data set to nonzero in another data set. The two classifi ers are
considered complementary.

5.3.4 Support Vector Machines and Classifi cation

5.3.4.1 Support Vector Machines

In machine learning, support vector machines [7] are supervised learning
models with associated learning algorithms that analyze data and recognize
patterns, used for classifi cation and regression analysis. The basic SVM
takes a set of input data and predicts, for each given input, which of two
possible classes forms the output, making it a non-probabilistic binary
linear classifi er. Given a set of training examples, each marked as belonging
to one of two categories, an SVM training algorithm builds a model that
assigns new examples into one category or the other. An SVM model is
a representation of the examples as points in space, mapped so that the
examples of the separate categories are divided by a clear gap that is as
wide as possible. New examples are then mapped into that same space and
predicted to belong to a category based on which side of the gap they fall on.
In addition to performing linear classifi cation, SVMs can effi ciently perform
non-linear classifi cation using what is called the kernel trick, implicitly
mapping their inputs into high-dimensional feature spaces. More formally,
a support vector machine constructs a hyperplane or set of hyperplanes in

a high or infi nite-dimensional space, which can be used for classifi cation,
regression, or other tasks. Intuitively, a good separation is achieved by
the hyperplane that has the largest distance to the nearest training data
point of any class (so-called functional margin), since in general the larger
the margin the lower the generalization error of the classifi er. Whereas
the original problem may be stated in a fi nite dimensional space, it often
happens that the sets to discriminate are not linearly separable in that space.
For this reason, it was proposed that the original fi nite-dimensional space
be mapped into a much higher-dimensional space, presumably making the
separation easier in that space. To keep the computational load reasonable,
the mappings used by SVM schemes are designed to ensure that dot
products may be computed easily in terms of the variables in the original
space, by defi ning them in terms of a kernel function K(x, y) selected to
suit the problem [20]. The hyperplanes in the higher-dimensional space are
defi ned as the set of points whose inner product with a vector in that space
is constant. The vectors defi ning the hyperplanes can be chosen to be linear
combinations with parameters of images of feature vectors that occur in the
data base. With this choice of a hyperplane, the points in the feature space
that are mapped into the hyperplane are defi ned by the relation: i αiK(xi, x)
= constant. Note that if K(x, y) becomes small as y grows further away from
x, each element in the sum measures the degree of closeness of the test point
x to the corresponding data base point xi. In this way, the sum of kernels
above can be used to measure the relative nearness of each test point to the
data points originating in one or the other of the sets to be discriminated.
Note the fact that the set of points x mapped into any hyperplane can be
quite convoluted as a result, allowing much more complex discrimination
between sets which are not convex at all in the original space.

5.3.4.2 Classifi er with Support Vector Machines

The original optimal hyperplane algorithm proposed by Vapnik in 1963 was
a linear classifi er. However, in 1992, Bernhard E. Boser, Isabelle M. Guyon
and Vladimir N. Vapniks suggested a way to create nonlinear classifi ers
by applying the kernel trick (originally proposed by Aizerman et al. [3])
to maximum-margin hyperplanes [5]. The resulting algorithm is formally
similar, except that every dot product is replaced by a nonlinear kernel
function. This allows the algorithm to fi t the maximum-margin hyperplane
in a transformed feature space. The transformation may be nonlinear and
the transformed space high dimensional; thus though the classifi er is a
hyperplane in the high-dimensional feature space, it may be nonlinear in the
original input space. If the kernel used is a Gaussian radial basis function,
the corresponding feature space is a Hilbert space of infi nite dimensions.

 Classifi cation 113

114 Applied Data Mining

Maximum margin classifi ers are well regularized, so the infi nite dimensions
do not spoil the results. Some common kernels include:

 • Polynomial (homogeneous): K(xi, xj) = (xi · xj)
d.

 • Polynomial (inhomogeneous): K(xi, xj) = (xi · xj + 1)d.
 • Gaussian radial basis function: K(xi, xj) = exp(−γ ·||xi–xj||2), for γ > 0.
 • Hyperbolic tangent: k(xi, xj) = tanh(Kxi · xj+ c), for k > 0 c < 0.

The classifi er with SVM has the following properties. SVMs belong
to a family of generalized linear classifi ers and can be interpreted as an
extension of the perception. They can also be considered a special case of
Tikhonov regularization. A special property is that they simultaneously
minimize the empirical classifi cation error and maximize the geometric
margin; hence they are also known as maximum margin classifi ers. A
comparison of the SVM to other classifi ers has been made by Meyer, Leisch
and Hornik [13].

 Simple feature selection algorithms are ad hoc, but there are also more
methodical approaches. From a theoretical perspective, it can be shown
that optimal feature selection for supervised learning problems requires an
exhaustive search of all possible subsets of features of the chosen cardinality.
If large numbers of features are available, this is impractical. For practical
supervised learning algorithms, the search is for a satisfactory set of features
instead of an optimal set. Feature selection algorithms typically fall into
two categories: feature ranking and subset selection. Feature ranking ranks
the features by a metric and eliminates all features that do not achieve an
adequate score. Subset selection searches the set of possible features for the
optimal subset. In statistics, the most popular form of feature selection is
stepwise regression. It is a greedy algorithm that adds the best feature (or
deletes the worst feature) at each round. The main control issue is deciding
when to stop the algorithm. In machine learning, this is typically done by
cross-validation. In statistics, some criteria are optimized. This leads to the
inherent problem of nesting. More robust methods have been explored,
such as branch and bound and piecewise linear network. Subset selection
evaluates a subset of features as a group for suitability. Subset selection
algorithms can be broken into Wrappers, Filters and Embedded. Wrappers
use a search algorithm to search through the space of possible features
and evaluate each subset by running a model on the subset. Wrappers
can be computationally expensive and have a risk of over fi tting to the
model. Filters are similar to Wrappers in the search approach, but instead
of evaluating against a model, a simpler fi lter is evaluated. Embedded
techniques are embedded in and specifi c to a model. Many popular search
approaches use greedy hill climbing, which iteratively evaluates a candidate
subset of features, then modifi es the subset and evaluates if the new subset

is an improvement over the old. Evaluation of the subsets requires a scoring
metric that grades a subset of features. Exhaustive search is generally
impractical, so at some implementor (or operator) defi ned stopping point,
the subset of features with the highest score discovered up to that point is
selected as the satisfactory feature subset. The stopping criterion varies by
algorithm; possible criteria include: a subset score exceeds a threshold, a
program’s maximum allowed run time has been surpassed, etc. Alternative
search-based techniques are based on targeted projection pursuit which
fi nds low-dimensional projections of the data that score highly: the features
that have the largest projections in the lower dimensional space are then
selected. The classifi cation problem can be restricted to consideration of
the two-class problem without loss of generality. In this problem the goal
is to separate the two classes by a function which is induced from available
examples. The goal is to produce a classifi er that will work well on unseen
examples.

5.4 Chapter Summary
In this chapter, we’ve talk about some methods which are proposed in
classifi cation. Decision trees and Bayesian Network (BN) generally have
different operational profi les, when one is very accurate the other is not
and vice versa. On the contrary, decision trees and rule classifi ers have
a similar operational profi le. The goal of classifi cation result integration
algorithms is to generate more certain, precise and accurate system results.
Numerous methods have been suggested for the creation of an ensemble
of classifi ers. Although or perhaps because many methods of ensemble
creation have been proposed, there is as yet no clear picture of which method
is best. Classifi cation methods are typically strong in modeling interactions.
Several of the classifi cation methods produce a set of interacting loci that
best predict the phenotype. However, a straightforward application of
classifi cation methods to large numbers of markers has a potential risk
picking up randomly associated markers.

References
 [1] http://en.wikipedia.org/wiki/Backpropagation.
 [2] http://www.gov.bc.ca/citz/iao/records-mgmt/arcs-orcs/
 [3] M. Aizerman, E. Braverman and L. Rozonoer. Theoretical foundations of the potential

function method in pattern recognition learning, 1964.
 [4] R. Barros. Fa bottom-up oblique decision tree induction algorithm. In: 11th International

Conference on Intelligent Systems Design and Applications (ISDA), 2011, pp. 450–456,
2011.

 [5] B. E. Boser, I. M. Guyon and V. N. Vapnik. A training algorithm for optimal margin
classifi ers. In: Computational Learning Theory, pp. 144–152, 1992.

 Classifi cation 115

116 Applied Data Mining

 [6] A. E. Bryson and Y. Ho. Applied optimal control: optimization, estimation, and control,
1975.

 [7] C. C. and V. V. Support-vector networks. Machine Learning, 20: 273–297, 2007.
 [8] G. Dong, X. Zhang and L. Wong. Caep: Classifi cation by aggregating emerging patterns,

pp 30–42, 1999.
 [9] R. O. Duda and P. E. Hart. Pattern Classifi cation and Scene Analysis. John Wiley & Sons,

New York, 1973.
 [10] S. hyuk Cha. A genetic algorithm for constructing compact binary decision trees. Journal

of Pattern Recognition Research, 4(1): 1–13, 2009.
 [11] M. Kubat. Introduction to Machine Learning, 1992.
 [12] P. Langley, W. Iba and K. Thompson. An analysis of bayesian classifi ers. In: Proceedings

of the Tenth National Conference on Artifi cial Intel-Ligence, pp. 223–28. MIT Press, 1992.
 [13] A. H. K. Meyer D. and F. Leisch. The support vector machine under test. Neurocomputing,

55: 169–186, 2003.
 [14] J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1): 81–106, March 1986.
 [15] S. R. and P. N. Artifi cial Intelligence: A Modern Approach. Prentice Hall, 2011.
 [16] D. E. Rumelhart, G. E. Hinton and R. J. Williams. Learning Representations by Back-

Propagating Error. Nature, 1988.
 [17] P.-N. Tan, M. Steinbach and V. Kumar. Introduction to Data Mining, (First Edition). Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.
 [18] F. A. Thabtah. A review of associative classifi cation mining. Knowledge Engineering Review,

22: 37–65, 2007.
 [19] P. Werbos. Beyond regression: new tools for prediction and analysis in the behavioral

sciences, 1974.
 [20] W. T. William H.P., Saul A.T. and B. P.F. Numerical Recipes 3rd Edition: The Art of Scientifi c

Computing. Hardcover, 2007.

CHAPTER 6

Frequent Pattern Mining

Frequent pattern mining is one of the most fundamental research issues in
data mining, which aims to mine useful information from huge volume of
data. The purpose of searching such frequent patterns (i.e., association rules)
is to explore the historical supermarket transaction data, which is indeed to
discover the customer behavior based on the purchased items. Association
rules present the fact that how frequently items are bought together. For
example, an association rule “beer->diaper (75%)” indicates that 75% of
the customers that bought beer also bought diaper. Such rules can be used
to make prediction and recommendation for customers and store layout.
Stemmed from the basic itemset data, rule discovery on more general and
complex data (i.e., sequence, tree, graph) has been thoroughly explored
in the past decade. In this chapter, we introduce the basic techniques of
frequent pattern mining on different type of data, i.e., itemset, sequence,
tree, and graph.

In the following sections, most classic algorithms and techniques for
data mining will be introduced. Association rule mining will be presented
in Section 6.1. Sequential pattern mining will be introduced in Section 6.2.
Frequent tree and graph mining will be presented in Section 6.3 and Section
6.4, respectively. Chapter summary will be presented in Section 6.5.

6.1 Association Rule Mining
Data mining is to fi nd valid, novel, potentially useful, and ultimately
understandable patterns in data [18]. The most fundamental and important
issue in data mining is association rule mining [1], which was first
introduced in the early 1990s.

The purpose of searching association rules is to analyze the co-existence
relation between items, which is then utilized to make appropriate
recommendation. The issue has attracted a great deal of interest during

118 Applied Data Mining

the recent surge in data mining research because it is the basis of many
applications, such as customer behavior analysis, stock trend prediction,
and DNA sequence analysis. For example, an association rule “bread
milk (90%)” indicates that nine out of ten customers who bought bread also
bought milk. These rules can be useful for store layout, stock prediction,
DNA structure analysis, and so forth.

Table 6.1: A database

Tid Transaction

10 bread, milk

20 bread, chocolate, cookie

30 chocolate, cookie

40 milk

50 bread, cookie

6.1.1 Association Rule Mining Problem

The problem of association rule discovery can be stated as follows [1]: Let I
= {i1, i2, . . . , ik} be a set of items. A subset of I is called an itemset. The itemset,
tj, is denoted as {x1,x2 . . . xm}, where xk is an item, i.e., xk I for 1 ≤ k ≤ m.
The number of items in an itemset is called the length of the itemset. An
itemset with length l is called an l-itemset. An itemset, ta = {a1, a2, . . . , an},
is contained in another itemset, tb = {b1, b2, . . . , bm}, if there exists integers 1
≤ i1 < i2 < . . . < in ≤ m, such that a1 bi1

 , a2 bi2
 ,. . . , an bin

. We denote ta a
subset of tb, and tb a superset of ta.

The support of an itemset X, denoted as support(X), is the number of
transactions in which it occurs as a subset. A k length subset of an itemset is
called a k-subset. An itemset is frequent if its support is greater than a user-
specifi ed minimum support (minsup) value. The set of frequent k-itemsets
is denoted by Fk.

An association rule is an expression A B, where A and B are itemsets.
The support of the rule is given as support(A B)=support(A B) and the
confi dence of the rule is given as conf(A B)=support(A B)/support(A)
(i.e., the conditional probability that a transaction contains B, given that it
contains A). A rule is confi dent if its confi dence is greater than a user-specifi ed
minimum confi dence (minconf).

The associate rule mining task is to generate all the rules, whose
supports are greater than minsup, and the confi dences of the rules are greater
than minconf . The issue can be tackled by a two-stage strategy [2]:

 • Find all frequent itemsets. This stage is the most time consuming
part. Given k items, there can be potentially 2k frequent itemsets.
Therefore, almost all the works so far have focused on devising
effi cient algorithms to discover the frequent itemsets, while avoiding
to traverse unnecessary search space somehow. In this chapter, we
mainly introduce the basic algorithms on fi nding frequent itemsets.

 • Generate confi dent rules. This stage is relatively straightforward and
can be easily completed.

Almost all the association rule mining algorithms apply the two-stage
rule discovery approach. We will discuss it in more detail in the next few
sections.

Example 1. Let our example database be the database D shown in Table 6.1
with minsup=1 and minconf=30%. Table 6.2 shows all frequent itemsets in D.

Table 6.3 illustrates all the association rules. For the sake of simplicity and
without loss of generality, we assume that items in transactions and itemsets
are kept sorted in the lexicographic order unless stated otherwise.

Table 6.2: Frequent itemsets

Frequent Itemset Transactions Support
bread 10, 20, 50 3
milk 10, 40 2

chocolate 20, 30 2
cookie 20, 30, 50 3

bread, milk 10 1
bread, chocolate 20 1
bread, cookie 20, 50 2

chocolate, cookie 20, 30 2
bread, chocolate, cookie 20 1

Table 6.3: Association rules

Association Rule Support Confidence
bread ⇒ cookie 2 67%
milk ⇒ bread 1 50%

chocolate ⇒ bread 1 50%
chocolate ⇒ cookie 2 100%
cookie ⇒ bread 2 67%

cookie ⇒ chocolate 2 67%
bread, chocolate ⇒ cookie 1 100%
bread, cookie ⇒ chocolate 1 50%
chocolate, cookie ⇒ bread 1 50%
chocolate ⇒ bread, cookie 1 50%

 Frequent Pattern Mining 119

120 Applied Data Mining

6.1.2 Basic Algorithms for Association Rule Mining

6.1.2.1 Apriori

The fi rst algorithm was introduced by Agrawal et al. [1] to address the
association rule mining issue. The same authors introduced another
algorithm named Apriori in their later paper [4] by introducing the
monotonicity property of the association rules to improve the performance.
Mannila et al. [39] presented an independent work with a similar idea.

Apriori applies a two-stage approach to discover frequent itemsets and
confi dent association rules.

 • Frequent Itemset Discovery. To fi nd all frequent itemsets, Apriori
introduces a candidate generation and test strategy. The basic idea is
that it fi rst generates the candidate k-itemsets (i.e., k is 1 at the beginning
and is incrementd by 1 in the next cycle), then these candidates will
be evaluated whether frequent or not.

Specifi cally, the algorithm fi rst scans the dataset and the frequent
1-itemsets are found. To discover those frequent 2-itemsets, Apriori
generates candidate 2-itemsets by joining 1-itemsets. These candidates
are evaluated by scanning the original dataset again. In a similar way, all
frequent (k+1)-itemsets can be found based on already known frequent
k-itemsets.

To improve the performance by avoiding to generate too many yet
unnecessary candidates, Apriori introduced a monotonicity property that
a (k+1)-itemset becomes a candidate only if all its k-subset are frequent.
As demonstrated by the authors [4] and many later works, this simple yet
effi cient strategy largely reduces the candidates to be evaluated.

The frequent itemset mining of the Apriori algorithm is presented in
Algorithm 1. The algorithm is executed in a breadth-fi rst search manner.
To generate the candidate itemsets with length k+1, two k-itemsets with the
same (k-1)-prefi x are joined together (lines 12–13). The joined itemset can
be inserted into Ck+1 only if all its k-subsets are frequent (line 14).

To test the candidate k-itemsets (i.e., count their supports), the database
is scanned sequentially and all the candidate itemsets are tested whether
they are included in the transaction scanned. By this way, the corresponding
support is accumulated (lines 5–9). Finally, frequent itemsets are collected
(line 10).

 • Association Rule Mining. After discovering the frequent itemsets, we
can fi nd the frequent and confi dent association rules straightforward.
The approach is similar to the frequent itemset mining algorithm.
Because the cost of fi nding frequent itemsets is high and accounts for

most of the whole performance on discovering associate rules, almost
all the researches so far have been focused on the frequent itemset
generation step.

6.1.2.2 Eclat

Many algorithms had been proposed based on Apriroi idea, in which Eclat
[64, 61] is distinct in that it is the fi rst to proposed to generate all frequent
itemsets in a depth-fi rst manner, while employing the vertical database
layout and uses the intersection based approach to compute the support
of an itemset.

Figure 6.1.1 illustrates the key idea of Eclat on candidate support
counting. While fi rst scanning of the dataset, it converts the original format
(i.e., Table 6.1) into vertical TID list format, as shown in Fig. 6.1.1. For
example, the TID list of itemset {bread} is {10, 20, 50}, which indicate the
transactions that the itemset exist in the original dataset.

To count the support of k-candidate itemset, the algorithm intersects
its two (k-1)-subset to get the result. For example, as shown in Fig. 6.1.1, to
count the support of the itemset {bread, chocolate}, it intersects the TID lists
of {bread} and {chocolate}, resulting in {20}. The support is therefore 1.

 Algorithm 1: Apriori—Frequent Itemset Mining [4]

Input: A transaction database D, a user specified threshold minsup

Output: Frequent itemsets F
1 C1= {1-itemsets};
2 k=1;
3 while Ck �= NULL do
4 // Test candidate itemsets
5 for transaction T ∈ D do
6 for candidate itemsets X ∈ Ck do
7 if X ⊆ T then X.support++;
8 end

9 end
10 Fk=Fk ∪X , where X.support ≥ minsup;
11 // Generate candidate itemsets
12 for all {i1, . . . ik−1, ik},{i1, . . . ik−1, i

′
k} ∈ Fk such that ik < i′k do

13 c={i1, . . . il−1, ik, i
′
k};

14 if all k-subsets of c are frequent then Ck+1 = Ck+1 ∪ c;

15 end
16 k++;

17 end

 Frequent Pattern Mining 121

122 Applied Data Mining

To reduce the memory used to count the support, Eclat proposed to
traverse the lattice (as shown in Fig. 6.1.1) in a depth-fi rst manner. The
pseudo code of the Eclat algorithm is presented in Algorithm 2.

The algorithm generates the frequent itemsets by intersecting the
tid-lists of all distinct pairs of atoms and evaluating the support of the
candidates based on the resulting tid-list (lines 5–6). It calls recursively the
procedure with those found frequent itemsets at the current level (line 7–10).
This process terminates when all frequent itemsets have been traversed. To
save the memory usage, after all frequent itemsets for the next level have
been generated, the itemsets at the current level can be deleted.

6.1.2.3 FP-growth

Han et al. [24] proposed a new strategy that mines the complete set of
frequent itemsets based on a tree-like structure (i.e., FP-tree). The algorithm
applies the divide and conquer approach.

FP-tree construction: FP-tree is constructed as follows [24]: Create the
root node of the FP-tree, labeled with “null”. Then scan the database and
obtain a list of frequent items in which items are ordered with regard to
their supports in a descending order. Based on this order, the items in each
transaction of the database are reordered. Note that each node n in the FP-
tree represents a unique itemset X, i.e., scanning itemset X in transactions
can be seen as traversing in the FP-tree from the root to n. All the nodes
except the root store a counter which keeps the number of transactions
that share the node.

{bread} {milk} {chocolate} {cookie}

{bread,milk} {bread,chocolate} {bread,cookie} {milk,chocolate} {milk,cookie} {chocolate,cookie}

{bread,milk,chocolate} {bread,milk,cookie} {milk,chocolate,cookie}

{bread,milk,chocolate,cookie}

{ }

{bread}{milk} {chocolate}{cookie}

{bread,chocolate}{bread,cookie}
{bread,chocolate,cookie}

{bread,chocolate,cookie}

Original dataset in vertical format

Intersect {bread} & {chocolate}

Intersect {bread,chocolate} & {bread,cookie}

Figure 6.1.1: Eclat mining process (vertical dataset, support count via
intersection) [64]

To construct the FP-tree, the algorithm scans the items in each transaction,
one at a time, while searching the already existing nodes in FP-tree. If a
representative node exists, then the counter of the node is incremented by
1. Otherwise, a new node is created. Additionally, an item header table is
built so that each item points to its occurrences in the tree via a chain of
node-links. Each item in this header table also stores its support.

Frequent Itemset Mining (FP-growth): To obtain all frequent itemset,
Han et al. [24] proposed a pattern growth approach by traversing in the
FP-tree, which retains all the itemset association information. The FP-tree
is mined by starting from each frequent length-1 pattern (as an initial
suffi x pattern), constructing its conditional pattern base (a sub-database,
which consists of the set of prefi x paths in the FP-tree co-occurring with
the suffi x pattern), then constructing its conditional FP-tree and performing
mining recursively on such a tree. The pattern growth is achieved by the
concatenation of the suffi x pattern with the frequent patterns generated
from a conditional FP-tree.

Example 2. Let our example database be the database shown in Table
6.4 with minsup=2. First, the supports of all items are accumulated and
all infrequent items are removed from the database. The items in the
transactions are reordered according to the support in descending order,
resulting in the transformed database shown in Table 6.4. The FP-tree for
this database is shown in Fig. 6.1.2. The pseudo code of the FP-growth
algorithm is presented in Algorithm 3 [24].

Although the authors of the FP-growth algorithm [24] claim that their
algorithm does not generate any candidate itemsets, some works (e.g., [20])
have shown that the algorithm actually generates many candidate itemsets
since it essentially uses the same candidate generation technique as is used
in Apriori but without its prune step. Another issue of FP-tree is that the
construction of the frequent pattern tree is a time consuming activity.

 Algorithm 2: Eclat—Frequent Itemset Mining [64]

Input: A transaction database D, a user specified threshold minsup, a set of atoms of a
sublattice S

Output: Frequent itemsets F
1 Procedure Elat(S):
2 for all atoms Ai ∈ S do
3 Ti=∅ ;
4 for all atoms Aj ∈ S, with j > i do
5 R=Ai ∪Aj ;
6 L(R)=L(A〉) ∩ L(A|);
7 if support(R) ≥ minsup then
8 Ti=Ti ∪ {R};
9 F|R|=F|R| ∪ {R};

10 end

11 end

12 end
13 for all Ti �= ∅ do Eclat(Ti);

 Frequent Pattern Mining 123

124 Applied Data Mining

Table 6.4: An example database for FP-growth

Tid Transaction Ordered Transaction
10 {a, b, d, e, f} {b, d, f, a, e}
20 {b, f, g} {b, f, g}
30 {d, g, h, i} {d, g}
40 {a, c, e, g, j} {g, a, e}
50 {b, d, f} {b, d, f}

6.2 Sequential Pattern Mining
The sequential mining problem was fi rst introduced in [5]; two sequential
patterns examples are: “80% of the people who buy a television also buy a
video camera within a day”, and “Every time Microsoft stock drops by 5%,
then IBM stock will also drop by at least 4% within three days”. The above
patterns can be used to determine the effi cient use of shelf space for customer
convenience, or to properly plan the next step during an economic crisis.
Sequential pattern mining is also very important for analyzing biological
data [8] [17], in which a very small alphabet (i.e., 4 for DNA sequences and
20 for protein sequences) and long patterns with a typical length of few
hundreds or even thousands, frequently appear.

Sequence discovery can be thought of as essentially an association
discovery over a temporal database. While association rules [3, 30] discern
only intra-event patterns (itemsets), sequential pattern mining discerns
inter-event patterns (sequences). There are many other important tasks
related to association rule mining, such as correlations [10], causality
[46], episodes [38], multi-dimensional patterns [33, 29], max-patterns [9],
partial periodicity [23], and emerging patterns [16]. Incisive exploration
of sequential pattern mining issue will defi nitely help to get the effi cient
solutions to the other research problems shown above.

(a) header table

item support node-link

b 3

d 3

f 3
g 3

a 2
e 2

b:3

d:2

f:2

a:1

e:1

f:1

g:1

d:1

g:1

g:1

a:1

e:1

root

(b) FP-tree

Figure 6.1.2: FP-tree of the example database [24]

Effi cient sequential pattern mining methodologies have been studied
extensively in many related problems, including the general sequential
pattern mining [5, 47, 62, 44, 7], constraint based sequential pattern mining
[19], incremental sequential pattern mining [42], frequent episode mining
[37], approximate sequential pattern mining [31], partial periodic pattern
mining [23], temporal pattern mining in data stream [48], maximal and
closed sequential pattern mining [34, 56, 49]. In this section, due to space
limitation, we focus on introducing the general sequential pattern mining
algorithm, which is the most basic one because all the others can benefi t
from the strategies it employs, i.e., Apriori heuristic and projection-based
pattern growth. More detail and survey on sequential pattern mining can
be found in [51, 35].

6.2.1 Sequential Pattern Mining Problem

Let I = {i1, i2, . . . , ik} be a set of items. A subset of I is called an itemset or
an element. A sequence, s, is denoted as t1, t2, . . . , tl , where tj is an itemset,
i.e., (tj I) for 1 ≤ j ≤ l. The itemset, tj , is denoted as (x1x2 . . . xm), where xk is
an item, i.e., xk I for 1 ≤ k ≤ m. For brevity, the brackets are omitted if an
itemset has only one item. That is, itemset (x) is written as x. The number of
items in a sequence is called the length of the sequence. A sequence with
length l is called an l-sequence. A sequence, sa = a1, a2, . . . , an , is contained
in another sequence, sb = b1, b2, . . . , bm , if there exists integers 1 ≤ i1 < i2 < .
. . < in ≤ m, such that a1 bi1

 , a2 bi2
 ,. . . , an bin. We denote sa a subsequence

of sb, and sb a supersequence of sa. Given a sequence s = s1, s2, . . . , sl , and
an item α, s ◊ α denotes that s concatenates with α, which has two possible
forms, such as Itemset Extension (IE), s ◊ α= s1, s2, . . . , sl {α} , or Sequence
Extension (SE), s ◊ α= s1, s2, . . . , sl,{α} . If s' = p ◊ s, then p is a prefi x of s' and
s is a suffi x of s'.

A sequence database, S, is a set of tuples sid, s , where sid is a sequence_id
and s is a sequence. A tuple sid, s is said to contain a sequence β, if β is a
subsequence of s. The support of a sequence, β, in a sequence database, S, is
the number of tuples in the database containing β, denoted as support(β).
Given a user specifi ed positive integer, ε, a sequence, β, is called a frequent
sequential pattern if support(β) ≥ ε.

 Frequent Pattern Mining 125

126 Applied Data Mining

Algorithm 3: FP-growth [24]

Input: A transaction database D, a frequent pattern tree FP -tree, a user specified
threshold minsup

Output: Frequent itemsets F
1 Method: call FP-growth(FP -tree, null)
2 Procedure FP-growth(Tree, α):
3 if Tree contains a single prefix-path then
4 Let P be the single prefix-path part of Tree;
5 Let Q be the multipath part with the top branching node replaced by a null root;
6 for each combination β of the nodes in P do
7 Generate pattern β ∪ α with support=minimum support of nodes in β;
8 Let freq pattern set(P) be the set of patterns generated;

9 end

10 else
11 Let Q be Tree;
12 end
13 for each item ai ∈ Q do
14 generate pattern β = ai ∪ α with support=ai.support;
15 construct β’s conditional pattern-base and then β’ conditional FT-tree Treeβ;
16 if Treeβ �= ∅ then call Fp-growth(Treeβ, β);
17 Let freq pattern set(Q) be the set of patterns generated;

18 end
19 return(freq pattern set(P) ∪ freq pattern set(Q) ∪ (freq pattern set(P)×

freq pattern set(Q)));

A []

6.2.2 Existing Sequential Pattern Mining Algorithms

There are many sequential pattern mining algorithms introduced, which
can be classifi ed into three groups [36]. One group is Apriori-like algorithm,
such as Apriori-all [5], GSP [47], SPADE [62], and SPAM [7], the second
group is projection-based pattern growth, such as Prefi xSpan [44], the third
group is early prune based strategy, such as LAPIN [58, 60].

6.2.2.1 AprioriALL

Sequential pattern mining was fi rst introduced in [5] by Agrawal, an Apriori
based algorithm, i.e., AprioriALL, was proposed. Given the transaction
database as illustrated in Fig. 6.2.1, the mining process can be implemented
in fi ve steps:

 • Sort Step: The database is sorted according to the customer ID and
the transaction time, as illustrated in Fig. 6.2.1.

 • L-itemsets Step: The sorted data is fi rst scanned to obtain those
frequent (or large) 1-itemsets based on the user specifi ed support

threshold. Suppose the minimal support is 70%, in this case the minimal
support count is 2, the result of large 1-itemsets is listed in Fig. 6.2.2.

 • Transformation Step: We map the large itemsets into a series of integers
and the original database is converted by replacing the itemsets.
For example, with the help of the mapping table in Fig. 6.2.2, the
transformed database is obtained, as shown in Fig. 6.2.3.

 • Sequence Step: The transformed database is scanned and mined to
fi nd all the frequent patterns.

 • Maximal Step: We remove those patterns which are contained in other
sequential patterns. In other words, only maximal sequential patterns
remain.

Customer ID Customer Sequence

10 < ac(bc)d(abc)ad >

20 < b(cd)ac(bd) >

30 < d(bc)(ac)(cd) >

<ac(bc)d(abc)ad>

<d(bc)(ac)(cd)>
<b(cd)ac(bd)>

Figure 6.2.3: Transformed Database

Figure 6.2.2: Large Itemsets

Large Itemsets Mapped To

apple a

banana b

strawberry c

pear d

Figure 6.2.1: Database Sorted by Customer ID and Transaction Time

CID Transaction T im e Items

10 Sep. 5, 2011 bread

10 Sep. 9, 2011 cookie

10 Sep. 10, 2011 banana, cookie

10 Sep. 12, 2011 chocolate

10 Sep. 20, 2011 bread, milk, cookie

10 Sep. 23, 2011 bread

10 Sep. 26 2011 chocolate

20 Sep. 7, 2011 milk

20 Sep. 11, 2011 cookie, chocolate

20 Sep. 13, 2011 bread

20 Sep. 16, 2011 cookie

20 Sep. 22, 2011 milk, chocolate

30 Sep. 6, 2011 chocolate

30 Sep. 9, 2011 milk, cookie

30 Sep. 11, 2011 bread, cookie

30 Sep. 15, 2011 cookie, chocolate

 Frequent Pattern Mining 127

128 Applied Data Mining

Table 6.1: AprioriAll Candidate Generation L3 to C4 [5]

Large 4-sequences Candidate 5-sequences
〈b(ac)d〉 〈(bc)(ac)d〉
〈bcad〉 〈d(bc)ad〉
〈bdad〉 〈d(bc)da〉
〈bdcd〉 〈d(bc)(ad)〉
〈(bc)ad〉
〈(bc)(ac)〉
〈(bc)cd〉
〈c(ac)d〉
〈d(ac)d〉
〈dbad〉
〈d(bc)a〉
〈d(bc)d〉
〈dcad〉

b(ac)d (bc)(ac)d
d(bc)ad
d(bc)da

d(bc)(ad)

bcad
bdad
bdcd

(bc)ad
(bc)(ac)
(bc)cd
c(ac)d
d(ac)d
dbad

d(bc)a

dcad
d(bc)d

Among all these steps, the sequence step is the most time consuming
one and therefore, researchers focused on this step. AprioriAll [5] was fi rst
proposed based on the Apriori algorithm in association rule mining [3]. Two
phases are utilized to mine sequential patterns, i.e., candidate generation
and test.

The phase for generating candidates is similar to the AprioriGen in
[3]. The Apriori property is applied to prune those candidate sequences
whose subsequence is not frequent. The difference is that when the authors
generate the candidate by joining the frequent patterns in the previous pass,
different order of combination make different candidates. For example: from
the items, a and b, three candidates ab , ba and (ab) can be generated.
But in association rule mining only (ab) is generated. The reason is that in
association rule mining, the time order is not taken into account. Obviously
the number of candidate sequences in sequential pattern mining are much
larger than the size of the candidate itemsets in association rule mining
during the generation of candidate sequences. Table 6.1 shows how to
generate candidate 5-sequences by joining large 4-sequences. By scanning
the large 4-itemsets, it fi nds that the fi rst itemsets (bc)ad and second
itemsets (bc)(ac) share their fi rst three items, according to the join condition
of Apriori they are joined to produce the candidate sequence (bc)(ac)d .
Similarly other candidate 5-sequences are generated.

For the second phase, i.e., test phase, is simple and straightforward. The
database is scanned to count the supports of those candidate sequences. As
a result, the frequent sequential patterns can be found.

Due to the effi ciency and simplicity of the AprioriAll algorithm, which is
the fi rst algorithm on mining sequential patterns, the core idea of AprioriAll

is applied by many other algorithms. The problems of AprioriAll are that
there are many candidates generated and multiple passes over the databases
are very time consuming.

6.2.2.1.1 GSP

Srikant and Agrawal generalized the defi nition of sequential pattern mining
problem in [47] by incorporating some new properties, i.e., time constraints,
transaction relaxation, and taxonomy. For the time constraints, the maximum
gap and the minimal gap are defi ned to specifi ed the gap between any two
adjacent transactions in the sequence. When testing a candidate, if any gap
of the candidate falls out of the range between the maximum gap and the
minimal gap, then the candidate is not a pattern. Furthermore, the authors
relaxed the defi nition of transaction by using a sliding window, that when
the time range between two items is smaller than the sliding window, these
two items are considered to be in the same transaction. The taxonomy is
used to generate multiple level sequential patterns.

In [47], the authors proposed a new algorithm which is named GSP to
effi ciently fi nd the generalized sequential patterns. Similar to the AprioriAll
algorithm, there are two phases in GSP, i.e., candidate generation and
test.

In the candidate generation process, the candidate k-sequences are
generated based on the frequent (k-1)-sequences. Given a sequence s = s1,
s2, . . . , sn and subsequence c, c is a contiguous subsequence of s if any of
the following conditions holds: (1) c is derived from s by dropping an item
from either s1 or sn; (2) c is derived from s by dropping an item from an
element sj that has at least 2 items; and (3) c is a contiguous subsequence
of ĉ, and ĉ is a contiguous subsequence of s. Specifi cally, the candidates are
generated in two phases:

 • Joint Phase: Candidate k-sequences are generated by joining two (k-1)-
sequences that have the same contiguous subsequences. When we join
the two sequences, the item can be inserted as a part of the element or
as a separated element. For example, because d(bc)a and d(bc)d have
the same contiguous subsequence d(bc) , then we know that candidate
5-sequence d(bc)(ad) , d(bc)ad and d(bc)da can be generated.

 • Prune Phase: The algorithm removes the candidate sequences which
have a contiguous subsequence whose support count is less than the
minimal support. Moreover, it uses a hash-tree structure [41] to reduce
the number of candidates.

The process for generating candidates in the example database is shown
in Fig. 6.2. For GSP, the diffi culty is that the support of candidate sequences is
not easy to count due to the introduced generalization rules, while this is not

 Frequent Pattern Mining 129

130 Applied Data Mining

a problem for AprioriAll. GSP devises an effi cient strategy which includes
two phases, i.e., forward and backward phases (which are repeated until all
the elements are found): (1) Forward Phase: It looks for successive elements
of s in d, as long as the difference between the end-time of the element and
the start-time of the previous element is less than the maximum gap. If the
difference is greater than the maximum gap, it switches to the backward
phase. If an element is not found, then s is not contained in d; (2) Backward
Phase: It tries to pull up the previous element. Suppose si is the current
element and end-time(si)=t. It checks whether there are some transactions
containing si−1 and the corresponding transaction-times are larger than the
maximum gap. Since after pulling up si−1, the difference between si−1 and
si−2 may not satisfy the gap constraints, the backward pulls back until the
difference of si−1 and si−2 satisfi es the maximum gap or the fi rst element has
been pulled up. Then the algorithm switches to the forward phase. If all
the elements can not be pulled up, then d does not contain s.

Table 6.2: GSP Candidate Generation L4 to C5 [47]

Large 4-sequences Candidate 5-sequences after joining Candidate 5-sequences after pruning
〈b(ac)d〉 〈(bc)(ac)d〉 〈(bc)(ac)d〉
〈bcad〉 〈d(bc)ad〉 〈d(bc)ad〉
〈bdad〉 〈d(bc)da〉
〈bdcd〉 〈d(bc)(ad)〉
〈(bc)ad〉
〈(bc)(ac)〉
〈(bc)cd〉
〈c(ac)d〉
〈d(ac)d〉
〈dbad〉
〈d(bc)a〉
〈d(bc)d〉
〈dcad〉

b(ac)d (bc)(ac)d
d(bc)ad
d(bc)da

d(bc)(ad)

(bc)(ac)d
d(bc)adbcad

bdad
bdcd

(bc)ad
(bc)(ac)
(bc)cd
c(ac)d
d(ac)d

d(bc)a
d(bc)d
dcad

dbad

For generalized rule, the authors [47] introduced taxonomy knowledge
into the mining process. The taxonomies are incorporated by extending
sequences with corresponding taxonomies. The original sequences are
therefore, replaced by their extended versions. As a result, the number
of rules becomes larger because the sequences become more dense and
redundant rules are produced. To avoid uninteresting rules, the ancestors
are fi rstly precomputed for each item and those are not in the candidates are
removed. Moreover, the algorithm does not count the sequential patterns
that contain both the item and its ancestors. In a summary, the generalized
sequential patterns take more attributes into account and thus, can be
applied to real applications easily.

6.2.2.1.2 SPADE
Zaki introduced another effi cient algorithm, i.e., SPADE [62], to fi nd
frequent sequences using effi cient lattice search techniques and simple
joins. To discover all the patterns, SPADE needs to scan the database three
times. It divides the mining problem into smaller ones to conquer and at
the same time makes it possible that all the necessary data is located in
memory. The core idea of SPADE, is devised based on that of Eclat [64], one
of the effi cient algorithms for association rule mining. From the extensive
experimental evaluation [62], we can see that SPADE is very effi cient in
fi nding sequential patterns.

The mining process of SPADE can be illustrated through a concrete
example. Firstly, the sequential database is transformed into a vertical
format, i.e., id-list database, in which each id is associated with its
corresponding customer sequence and transaction. The vertical version of
the original database (as shown in Fig. 6.2.1) is illustrated in Fig. 6.2.4. For
example, we know that the id-list of item a is (100, 1), (100, 5), (100, 6), (200,
3), and (300, 3), where each pair (SID:TID) indicates the specifi c sequence
and transaction that a locates. By scanning the vertical database, frequent
1-sequences can be easily obtained. To fi nd the frequent 2- sequences,
the original database is scanned again and the new vertical to horizontal
database is constructed by grouping those items with SID and in increase
order of TID, which is shown in Fig. 6.2.5. By scanning the database 2-length
patterns can be discovered. A lattice is constructed based on these 2-length
patterns, and the lattice can be further decomposed into different classes,
where those patterns that have the same prefi x belong to the same class.
Such kind of decomposition make it possible that the partitions are small
enough to be loaded into the memory. SPADE then applies temporal joins
to fi nd all other longer patterns by enumerating the lattice [62].

430

330

430230

1304202330

520220520320

220510120610

710310510510

410210310110

TIDSIDTIDSIDTIDSIDTIDSID

dcba

30

Figure 6.2.4: Vertical id-List

 Frequent Pattern Mining 131

132 Applied Data Mining

SID (Item , T ID) pairs

10 (a, 1) (c, 2) (b, 2) (c, 2) (d, 4) (a, 5) (b, 5) (c, 5) (a, 6) (d, 7)

20 (b, 1) (c, 2) (d, 2) (a, 3) (c, 4) (b, 5) (d, 5)

30 (d, 1) (b, 2) (c, 2) (a, 3) (c, 3) (c, 4) (d, 4)

Figure 6.2.5: Vertical to Horizontal Database

In SPADE, two strategies are introduced to traverse all the candidate
sequences, i.e., breadth fi rst search (BFS) and depth fi rst search (DFS). For the
fi rst strategy, i.e., BFS, the candidate sequences are generated in a recursive
bottom up manner. For instance, to generate the 3-length patterns, all the
2-length patterns have to be obtained. On the contrary, for the second
strategy, i.e., DFS, it only requires that one 2-length pattern and one k-length
pattern to generate a (k+1)-length sequence (assume that the last item
of the k-pattern is the same as the fi rst item of the 2-pattern). Therefore,
there is always a trade-off between BFS and DFS: while BFS needs more
memory to store all the consecutive 2-length patterns, it has the advantage
that more information is obtained to prune the candidate k-sequences. All
the k-length patterns are discovered by temporal or equality joining the
frequent (k-1)-length patterns which have the same (k-2)-length prefi x. To
furthermore improve the effi ciency, SPADE applies the commonly used
Apriori strategy.

To explain in detail the temporal join process of SPADE, we use a
concrete example as shown in Fig. 6.2.6. After the 1-length patterns, i.e., a
and b, are obtained, to join these two patterns, we can test the three candidate
sequences, ab, ba and (ab). The joining operation is indeed to compare the
SID, TID pairs of the two (k-1)-length patterns. For example, the pattern b
has two pairs {100, 3}, {100, 5} which are larger than (behind) the pattern
a’s one pair ({100, 1}), in the same customer sequence. Hence, ab should
exist in the same sequence. The other candidate sequences’ support can be
accumulated in a similar way. Figure 6.2.6 shows the process.

SID TID

1

5

10 6

20 3

30 3

SID

10 1

10 5

6

3

3

SID TID

10 3

10 5

20 1

20 5

30 2

SID

3

5

1

5

2

520

510

310

TIDSID

510

TIDSID

330

610

510

TIDSID

 a b

<ab>

<(ab)>

<ba>+

Supp{ab}=2

Supp{(ab)}=1

Supp{ba}=2

Figure 6.2.6: Temporal join in SPADE algorithm [62]

6.2.2.1.3 SPAM
The SAPM algorithm [7] was introduced based on the key idea of SPADE.
The difference is that SPAM applies a bitmap representation of the database
instead of {SID, TID} pairs used in the SPADE algorithm. Therefore by using
bitwise operations SPAM can obtain a better performance than SPADE and
others on longer large databases.

The mining process of SPAM can be explained as follows. When we scan
the database for the fi rst time, a vertical bitmap is constructed for each item
in the database, and each bitmap has a bit corresponding to each itemset
(element) of the sequences in the database. If an item appears in an itemset,
the bit corresponding to the itemset of the bitmap for the item is set to one;
otherwise, the bit is set to zero. The size of a sequence is the number of
itemsets contained in the sequence. Figure 6.2.7 shows the bitmap vertical
table of that in Fig. 6.2.3. A sequence in the database of size between 2k+1
and 2k+1 is considered as a 2k+1-bit sequence. The bitmap of a sequence will
be constructed according to the bitmaps of items contained in it.

To generate and test the candidate sequences, SPAM uses two steps,
S-step and I-step, based on the lattice concept. As a depth-fi rst approach,
the overall process starts from S-step and then I-step. To extend a sequence,
the S-step appends an item to it as the new last element, and the I-step
appends the item to its last element if possible. Each bitmap partition
of a sequence to be extended is transformed fi rst in the S-step, such that
all bits after the fi rst bit with value one are set to one. Then the resultant

Figure 6.2.7: Bitmap Vertical Table

SID TID {a} {b} {c} {d}

10 1 1 0 0 0

10 2 0 0 1 0

10 3 0 1 1 0

10 4 0 0 0 1

10 5 1 1 1 0

10 6 1 0 0 0

10 7 0 0 0 1

20 1 0 1 0 0

20 2 0 0 1 1

20 3 1 0 0 0

20 4 0 0 1 0

20 5 0 1 0 1

30 1 0 0 0 1

30 2 0 1 1 0

3 1 0 1 0

30 4 0 0 1 1

30

 Frequent Pattern Mining 133

134 Applied Data Mining

bitmap of the S-step can be obtained by doing ANDing operation for the
transformed bitmap and the bitmap of the appended item. Figure 6.2.8
illustrates how to join two 1-length patterns, a and b, based on the example
database in Fig. 6.2.3. On the other hand, the I-step just uses the bitmaps
of the sequence and the appended item to do ANDing operation to get the
resultant bitmap, which extend the pattern ab to the candidate a(bc) . The
support counting becomes a simple check how many bitmap partitions not
containing all zeros.

The main drawback of SPAM is the huge memory consumption. For
example, although an item, α, does not exist in a sequence, s, SPAM still
uses one bit to represent the existence of α in s. This disadvantage restricts
SPAM as a best algorithm on mining large datasets in limit resource
environments.6.2.2.1.4 PreϐixSpan
Pei et al. introduced the Prefi xSpan algorithm in [43]. The key idea of the
Prefi xSpan algorithm is to apply database projection to make the database
smaller for next iteration and thus, improve the performance. The authors
claimed that in Prefi xSpan there is no need for candidates generation [43].1
It recursively projects the database by already found short length patterns.
Different projection methods were introduced, i.e., level-by-level projection,
bi-level projection, and pseudo projection.

The workfl ow of Prefi xSpan is presented as follows. Assume that items
within transactions are sorted in alphabetical order (it does not affect the
result of discovered patterns). Similar to other algorithms, the fi rst step of
Prefi xSpan is to scan the database to get the 1-length patterns. Then the
original database is projected into different partitions with regard to the
frequent 1-length pattern by taking the corresponding pattern as the prefi x.
For example, Fig. 6.2.9 (b) shows the projected databases with the frequent
(or large) 1-length patterns as their prefi xes. The next step is to scan the
projected database of γ, where γ could be any one of the 1-length patterns.
After the scanning, we can obtain the frequent 1-length patterns in the
projected database. These patterns, combined with their common prefi x γ,
are deemed as 2-length patterns. The process will be executed recursively,
that the projected database is partitioned by the k-length patterns, to fi nd
those (k+1)-length patterns, until the projected database is empty or no
more frequent patterns can be found.

1However, some works (e.g., [58, 60]) have found that Prefi xSpan also needs to test the
candidates, which are existing in the projected database.

The introduced strategy is named level-by-level projection. The main
computation cost is the time and space usage when constructing and
scanning the projected databases, as shown in Fig. 6.2.9 (b). To improve
the effi ciency, another strategy named bi-level projection was proposed to
reduce the cost of building and scanning the projected databases [44]. The
difference between the two projection strategies is that, in the second step
of bi-level projection, a n × n triangle matrix (called S-matrix) is constructed
by scanning the database again, as shown in Fig. 6.2.9 (c). This matrix
represents all the supports of 2-length candidates. For example, M[d ,
a]=(3, 3, 0) indicates that the supports of da , ad , and (ad) are 3, 3, and

0, respectively. The original database is then projected with regard to the
frequent 2-length patterns in the S-matrix and the projected databases are
scanned, respectively. The process recursively follows such a projection and
scanning manner to fi nd all the patterns. This strategy, however, seems to
be not always optimal, as stated in [44].

A further optimization named pseudo projection was proposed in [43]
to make the projection more effi cient when the projected database can
be loaded into the memory. The strategy is fulfi lled by employing a pair
of pointer and offset to indicate the position of each projection database
instead of copying the data each time. The drawback is that the size of the
(projected) database can not be too large.

In a brief summary, Prefi xSpan improves the performance of mining
sequential patterns by using database projection, that it scans smaller
projected databases in each iteration. The main problem of Prefi xSpan,
however, is that it is time consuming on scanning the projected database,
which may be very large if the original dataset is huge.

Figure 6.2.8: SPAM S-Step join [7]

0

0
1
0

0

0
1
0
0

1
0
0
0
1
1
0

0
0
1
0
1
0
0

1
0
0
0

1

0
1
0
0

0
1
0
1
0
0

1
0
0
0

1

0
1
0
0

{a} {b}

S -step

1

1
1

1
1

1

1

1

1

0
0
1
0
1
0
0

1
0
0
0

1

0
1
0
0

0
1
0
1
0
0

1
0
0
0

1

0
1
0
0

{a}s {b}

&

0
0
0
0

0
0
0
0

1

0

0
1

0
1
0
0

<ab>

S up{ab}=2

0

0

0

0
0
0

0

 Frequent Pattern Mining 135

136 Applied Data Mining

Customer ID Customer Sequence

10 <ac(bc)d(abc)ad>

20 <b(cd)ac(bd)>

30 <d(bc)(ac)(cd)>

(a) Example Database (b) Projected Database

0<a>

0 (3 2 1)

0<c> (3 3 2) (2 3 2)

0<d> (3 3 0) (3 3 1) (3 3 2)

<a> <c> <d>

(c) The S-matrix

a

b

c

d

Large Itemsets Projected Database

<c(bc)d(abc)ad>

<(_c)d(abc)ad>

<c(bc)d(abc)ad>

<(abc)ad>

<c(bd)>

<(cd)ac(bd)>

<(_d)ac(bd)>

<ac(bd)>

<(_c)(cd)>

<(_c)(ac)(cd)>

<(ac)(cd)>

<(bc)(ac)(cd)>

Figure 6.2.9: Prefi xSpan Mining Process [43]

6.2.2.1.5 LAPIN
LAPIN was proposed in [58, 60]. The basic idea of LAPIN is that the last
position of each item is important and can be utilized to improve the
performance to count the frequency of the candidates. The main difference
between LAPIN and previous signifi cant algorithms is the scope of the
search space. Prefi xSpan scans the whole projected database to fi nd the
frequent patterns. SPADE temporally joins the whole id-list of the candidates
to get the frequent patterns of next layer. LAPIN can get the same results
by scanning only part of the search space of Prefi xSpan and SPADE, which
are indeed the last positions of the items.

For the same example shown in Fig. 6.2.9, LAPIN constructs the item
a’s projected last position lists when testing the candidates whose prefi x is
a, as illustrated in Table 6.3. We can see that to obtain the 2-length patterns
whose prefi x is a, LAPIN only needs to scan 8 elements while Prefi xSpan
needs to test 16 times. The reason is that redundant testing the same item
in the projected database is useless for contribution of counting of the

candidates. From the example, we can know that LAPIN is a prefi x growth
algorithm with effi cient pruning strategy. It employs a depth fi rst search of
the lexicographic tree to grow the sequences with the help of the projected
item last position databases.

In addition, the same authors introduced some variant versions of
LAPIN, i.e., LAPINSPAM [57] and LAPIN-Web [59]. The fi rst one is devised
based on the SPAM algorithm [7] which utilizes bit information to further
improve the effi ciency. The latter one, i.e., LAPIN-Web [59], is introduced
to specifi cally extract the users’ frequent access patterns with regard to the
log data.

Table 6.3: Item A’s Projected Last Position Lists
j

Customer ID Projected Last Position Lists

10 clast = 5, alast = 6, dlast = 7

20 clast = 5, blast = 6, dlast = 6

30 clast = 4, dlast = 4

As clarifi ed in [36], the LAPIN strategy can be deemed as one of the
promising techniques in the sequential pattern mining literature.

6.3 Frequent Subtree Mining
Frequent subtree mining could be seen as an extension issue of frequent
itemset and sequence mining because the data structure of the former is
more complex than that of the latter. There are many applications based on
the frequent tree mining, such as Web mining, bioinformatics, computer
networks, and so forth. In this section, we will introduce the basic concepts
and algorithms for mining frequent subtrees. In essential, most of these
algorithms follow the same spirit of the techniques developed in frequent
itemset mining. More detail and survey on frequent subtree mining can
be found in [11].

6.3.1 Frequent Subtree Mining Problem

The frequent subtree mining problem is defi ned as follows [11]. Given
a class of trees T, a threshold minsup, a transitive subtree relation P ≺ Q
between trees P, Q T, a fi nite data set of trees D T, the frequent tree
mining problem is the problem of fi nding all trees P T such that no two
trees in P are isomorphic and for all P P: freq(P,D) = Q D d(P, Q) ≥ minsup,
where d is an anti-monotone function such that Q T : d(P’, Q) ≥ d(P, Q) if
P’ ≺ P. The simplest choice for function d is given by the indicator function:
d(P, Q) = 1, if P ≺ Q, otherwisw d(P, Q)=0.

 Frequent Pattern Mining 137

138 Applied Data Mining

For ease of exposition, in this chapter, we only consider the simple case,
that the frequency of a pattern tree is defi ned by the number of trees in the
data set that contains the pattern tree. The frequency defi nition is denoted
as transaction based frequency, which is similar to that of itemset or sequence
frequency. Because of the transitivity property of the subtree relation, the
indicator function is anti-monotone and can be utilized to improve the
mining effi ciency. Based on the defi nition of the pattern frequency, the
support can be defi ned as follows: sup(P, D)=freq(P, D)/|D|, which is also
similar to that of itemset or sequence based support.

Following the same strategy as other structure pattern mining
algorithms applied, we can utilize the classic method, i.e., the generate
and test [1], to discover all the frequent subtrees. The common work fl ow
can be executed the following two steps recursively, where P is set an
empty tree fi rstly: (1) calculate freq(P) by fi nding all Q D with P ≺ Q; and
(2) let P=suc(Q). Note that suc(P) is a possible approach that determines
the successor of P tree. It should guarantee that all the possible trees are
enumerated exactly once and only once. There are many possible methods to
decide the concrete implementation. They are different at the data structure
used and the performance cost.

 Algorithm 4: The TreeMiner algorithm [63]

Input: D, σ, {T k
1 , . . . , T

k
m}, F(σ,D,�e)

Output: F(σ,D,�e)
1 for i ← 1 to i=m do

2 F k+1
i ← ∅;

3 for j ← 1 to j=m do

4 Ck+1
i ← ∅;

5 Ck+1
i ← ⊗(T k

i , T
k
j ,);

6 for all T k+1
i,j ∈ Ck+1

i,j as supp(T k+1
i,j ≥ σ do

7 F k+1
i ← F k+1

i ∪ {T k+1
i,j };

8 end

9 end

10 F(σ,D,�e) ← F(σ,D,�e) ∪ {F k+1
i };

11 TreeMiner(D, σ, F k+1
i , F(σ,D,�e));

12 end

6.3.2 Data Structures for Storing Trees

There are many possible data structures can be used for storing trees. For
example, the adjacency matrix and the fi rst-child-next-sibling are commonly

utilized. In addition to these data structures, some other tree representations
have been also introduced for different purposes. For example, to save space,
some canonical representations are proposed because they are more compact
than the commonly used data structures. Another reason is that because
there are always many possibilities to represent the same tree information
for labeled trees, using a unique way is important and essential for mining
process. An effective representation, therefore, facilitates the comparison
process. We will introduce different approaches that were proposed for
frequent subtree mining.

6.3.2.1 TreeMiner

Zaki introduced the TreeMiner algorithm [63] to mine frequently ordered
subtrees. The basic idea is that it applies both breadth fi rst search (BFS)
and depth fi rst search (DFS) to traverse the whole search space fi nding
the frequent subtrees. Similar to other structure mining algorithms in
the literature, TreeMiner also applies the Apriori rule, i.e., all subtrees of
a frequent tree are frequent. Moreover, the author introduces an effective
strategy that by fi nding an observation if we remove either one of the last
two vertices at the end of the string encoding of a rooted ordered tree, we
can obtain the string encoding of a valid embedded subtree. Based on this
observation, Zaki proposed to use BFS and DFS integratedly that generates
the candidate (k+1)-subtrees by joining two frequent k-subtrees which have
the same prefi x string encodings with (k-1)-length. This idea is similar to
that of SPADE [62] for sequential pattern mining.

 Algorithm 5: The FREQT algorithm [6]

Input: D, σ, {T k
1 , . . . , T

k
m}, F(σ,D,�i)

Output: F(σ,D,�i)
1 for i ← 1 to i=m do

2 F k+1
i ← ∅;

3 Ck+1
i ← ∅;

4 Ck+1
i ← extension(T k

i , OCL(T k
i));

5 for all T k+1
i ∈ Ck+1

i suchthatsupp(T k+1
i ≥ σ do

6 F k+1
i ← F k+1

i ∪ {T k+1
i };

7 end

8 F(σ,D,�i) ← F(σ,D,�i) ∪ {F k+1
i };

9 FREQT(D, σ, F k+1
i , F(σ,D,�i));

10 end

To count the frequency of the candidate subtrees, similar to SPADE [62],
TreeMiner introduces the vertical format to represent the data. Specifi cally,
the scope of a node is defi ned as between the preorder number of it and the

 Frequent Pattern Mining 139

140 Applied Data Mining

preorder number of the rightmost node of it. From the defi nition, we can
know that the size of the data tree could be very large and this is an issue
for large dataset. The pseudo code of the TreeMiner algorithm is illustrated
in Fig. 4. Refer [63] for detail.

6.3.2.2 FREQT

Asai et al. proposed the FREQT algorithm [6] to fi nd the frequent induced
subtrees. The basic idea follows the well known property, i.e., Apriori. To
generate the candidates, FREQT applies the rightmost extension strategy
that, a k-tree is extended to a candidate (k+1)-tree by adding a new node to
the node at the rightmost branch of the k-tree. By this way, we know that
the parent tree can be uniquely determined. This strategy also guarantees
that each candidate subtrees are traversed exactly only once. Similar to other
structure pattern mining (i.e., itemset or sequence mining), the algorithm
starts to fi nd 1-patterns and then grows the pattern by increasing 1 and so
forth to fi nd all the frequent subtrees. The mining process is terminated
when there is no possible extension can be made. Figure 5 shows the pseudo
code of the FREQT algorithm.

To extend the frequent k-tree to the candidate (k+1)-trees, the FREQT
algorithm utilizes the rightmost extension strategy. Firstly all the siblings
of the nodes on the rightmost path of the K-tree are determined, and then
the children of the rightmost leaf can be found. Based on these children
nodes, the candidate (k+1)-tree can be determined. An intuitive idea to
implement this strategy, is that we only scan a small part of the tree, instead
of scanning the whole data, to improve effi ciency. Some techniques have
been introduced in [6] to tackle this issue. It utilizes a list of pointers for
each tree, to point to the nodes of the pattern map.
Moreover, only the occurrences of the rightmost leaf of the tree is saved to
reduce the space cost.

6.3.2.3 HybridTreeMiner

To further improve the effi ciency of frequent subtree mining, Chi et al. [14]
has proposed the HybridTreeMiner algorithm which, similar to TreeMiner,
applies both the breadth fi rst search and the depth fi rst search strategies.
The basic idea of HybridTreeMiner also follows the traditional generate-
and-test technique. To effi ciently generate the candidates to be tested, the
authors introduced the tree representation, i.e., breadth fi rst canonical form,
to facilitate traversal of all possible subtree candidates. A disadvantage of
the algorithm is that it cannot generate all the candidates in constant time
because of the complexity cost.

Similar to TreeMiner, the HybridTreeMiner algorithm joins two k-trees
which have the common prefi x (k-1)-trees, to generate the candidate subtree.
For those trees which cannot be generated by joining, HybridTreeMiner
borrows the idea of FREQT, that extends the frequent subtrees to obtain the
larger candidates. There are several effective strategies proposed in [13, 14]
to address the issue of tree authomorphisms during the joining and extending
processes. Moreover, for different types of trees, the authors introduced
different approaches to improve the effi ciency of the algorithms. For
example, to deal with the free trees, the algorithm is extended by utilizing the
breadth fi rst tree encoding. By this way, it can take account for a small part of
all the rooted trees. Another strategy introduced by HybridTreeMiner is that
the occurrence lists of the subtrees are proposed and the authors explained
how they are joined for generating the candidates in Chi et al. [14].

6.3.2.4 Gaston

Nijssen et al. proposed another algorithm named Gaston [40]. Based on the
similar idea of TreeMiner and HybridTreeMiner, the Gaston algorithm applies
both the breadth fi rst search and depth fi rst search strategies. There are
several phases introduced for the whole mining process. Firstly, it extracts
the frequent undirected paths by traversing all the possible ways. To
facilitate the process, the authors introduced an effective representation for
trees which can be built in reasonable time for large data; then it deals with
these paths as the start point of a rooted tree, and joins or extends them with
rightmost path extension technique to generate the candidates and test.

6.3.3 Maximal and closed frequent subtrees

A main issue for all the previous work is that the resultant frequent subtrees
may be very large and it can grow exponentially when the size of the original
data increases. As a result, how to effi ciently obtain them is important.
Moreover, it is very diffi cult to clarify the whole result because of the huge
size of them. To tackle these problems, the maximal and closed frequent
subtrees have been introduced [50, 54, 12], which borrows the idea from the
literature of itemset and sequence mining. The defi nition of the maximal
frequent subtree is that none of a maximal frequent subtree’s super trees
are frequent. By this way, the discovered frequent patterns can be reduced
dramatically, which facilitates the mining process and the explanation of
the results. The basic idea of [50, 54] is that they fi rst fi nd all the frequent
subtrees, and then fi lter out those non-maximal patterns. This technique,
although simple to be implemented, is time consuming. To tackle the issue,
Chi et al. [12] proposed the CMTreeMiner algorithm, which extracts the
maximal patterns without fi rst fi nding all the frequent ones. Furthermore,

 Frequent Pattern Mining 141

142 Applied Data Mining

the authors also introduced to discover closed frequent patterns. A tree is
closed if none of its super trees has the same support. By this way, the result
can be analyzed with more meaningful information.

6.4 Frequent Subgraph Mining
Frequent subgraph mining (FSM) is an important issue because it is the
basis for many applications, such as web mining, bioinformatics, computer
networks, and so forth. Most of the existing frequent subgraph methods
follow the similar strategies with that proposed in the traditional frequent
itemst mining, i.e., Apriori rule. However, the higher complexity of the
former issue introduces some unique properties and thus, special solutions
for graphs have been presented in the literature.

The key idea of frequent subgraph mining, similar to other structure
pattern mining (i.e., itemset, sequence, tree), is that the generate-and-test
strategy is implemented during the mining process. Firstly it generates
some candidate subgraphs by applying breadth fi rst search or depth fi rst
search; and then it tests these candidates to decide whether these subgraphs
occur above some predefi ned threshold. There are several issues need to
be tackled. For example, how the candidate subgraphs are to be generated
without duplication and none of them are missing? How to effi ciently count
the frequency of these candidate subgraphs? To tackle the fi rst issue, the
Apriori rule has been commonly utilized. In this section, we will briefl y
introduce the basic concepts and algorithms for frequent subgraph mining.
More detail on this issue can be seen in [28, 15].

6.4.1 Problem Defi nition

The defi nition presented in this section follows that of [28, 15]. A subgraph
g is deemed as frequent if its occurrence is greater than some predefi ned
threshold. The occurrence of a subgraph can be deemed as its support, which
is defi ned by the number of graph transactions that g exists. No matter how
many times g occurs in a graph transaction, it accounts for no greater than
one count. Given a database G = {G1, G2, . . . , GT} and a threshold minsup, the
set of graph transactions where a subgraph g exists is defi ned by ξG(g) =
{Gi|g Gi}. As a result, the support of g is defi ned as supG(g) = |ξG(g)|/T, where
|ξG(g)| denotes the size of ξG(g) and T is the number of graph transactions.
We say that g is frequent if the following holds: supG(g) ≥ minsup.

A labeled graph is denoted as G(V, E, LV, LE, θ), where V is a set of
vertices, E V × V is a set of edges, LV is a set of vertex labels, LE is a set
of edge labels, and θ is a function that maps V to LV and E to LE. A path is
defi ned as a set of vertices in G which could be ordered that two vertices

construct an edge if they are consecutive. If for all the e E, e is an (un)
ordered pair of vertices, then we say that G is (un)directed. If there exists a
path for every pair of vertices in G, we say that G is connected. Otherwise,
G is disconnected. If G contains no cycle, then way denote G as acyclic. If
every pair of vertices is connected by an edge, we say that G is complete.
Given two graphs G1(V1, E1, LV1

 ,LE1
, θ1) and G2(V2, E2, LV2

, LE2
, θ2), G1 is a

subgraph of G2, if G1 satisfi es: (1) V1 V2, and v V1, θ1(v)=θ2(v), (2) E1
E2, and (u, v) E1, θ1(u, v)=θ2(u, v). G1 is an induced subgraph of G2, if
G1 further satisfi es u, v V1, (u, v) E1 (u, v) E2. G2 can be denoted
as a supergraph of G1. A graph G1(V1, E1, LV1, LE1, θ1) is isomorphic to another
graph G2(V2, E2, LV2

, LE2
, θ2), if and only if a bijection f : V1 V2 exists such

that: (1) u V1, θ1(u)=θ2(f(u)), (2) (u, v) E1 (f(u), f(v)) E2, (3) (u, v)
 E1, θ1(u, v)=θ2(u, v). The bijection f is an isomorphism between G1 and G2.

If there exists a subgraph G3 G2 that a graph G1 is isomorphic to G3, we
say that G1 is subgraph isomorphic to G2.

 There are many ways to store graph information. The existing
works aim to introduce more effi cient strategies on designing effective
representations on this issue. In the next several subsections we will briefl y
introduce these approaches.

6.4.2 Graph Representation

The common data structures used to store the graph information are
adjacency matrix and adjacency list. For the adjacency matrix, the rows
and columns denotes the vertices, and the intersection of row i and
column j represents the edge between the vertices vi and vj. The value at
the intersection i, j represents the number of edges between the vertices vi
and vj. One main issue for adjacency matrix, is that it is diffi cult to detect the
graph isomorphism by utilizing the matrix data structure. The reason is that
there could be many possible adjacency matrices for the same graph by using
different traversing strategies [52]. To address this problem, it is essential
to guarantee that the same graphs (that may have different format) should
be represented by the identical representation. Many studies explored this
issue by introducing effective labeling strategies. To facilitate detecting the
graph isomorphism, many researchers proposed to represent the graphs by
using a unifi ed coding strategy, i.e., canonical labeling [45]. The technique
guarantees that if some graphs are isomorphic, their canonical labeling
representation will be the same [32]. To fulfi ll this purpose, a reasonable
approach is that we can utilize the common data structure, i.e., adjacency
matrix, with some modifi cation by taking into account the lexicographical

 Frequent Pattern Mining 143

144 Applied Data Mining

ordering. Further optimization on compressing the canonical representation
has been introduced [45]. For the remaining part of this section, we will
introduce several canonical labeling strategies.

Depth First Search (DFS) Code: Yan et al. introduced the DFS code as a
canonical labeling strategy [55]. Each edge in the graph encoded by DFS
code is represented as (vi, vj, lvi

 , lvj
, le), where vi and vj are the vertices, lvi

and lvj

 are the labels for lvi and lvj, le is the label for the edge linking lvi
 and

lvj
. The basic method of DFS coding is that while traversing the graph

according to the depth fi rst search order, the vertex is labeled by a unique
identifi er sequentially. There could be several kinds of DFS codes and the
existing works always aim at introducing an identical effective labeling
strategy [55].

Canonical Adjacency Matrix: Inokuchi et al. proposed the canonical adjacency
matrix (CAM) as the unique representation of the graph [26]. CAM can
be obtained by encoding an adjacency matrix AM of a graph, through
concatenating the lower triangular entries of AM which also takes into
account of the diagonal. Because there can be many possible representations
of the adjacency matrices, CAM is the one with the maximal or minimal
encoding, which uniquely represents the graph information.

6.4.3 Candidate Generation

Because almost all the algorithms follow the candidate generate-and-test
strategy, in the subsection we introduce how to deal with the candidate
generation, which is an important step during the mining process. The
challenge is that how to generate the candidates without redundancy and
none of them is missing.

6.4.3.1 Join Operation

Borrowing from the idea of SPADE [62], Kuramochi et al. [32] introduced
the join operation to generate the candidate subgraphs. The key idea in
[32] is that two frequent k2-subgraphs which have the same (k-1)-subgraph
are joined, to generate a (k+1)-subgraph candidate. The main challenge,
however, is that there could be many candidates produced. The reason is
that a k-subgraph may have k different (k-1)-subgraphs. Kuramochi et al.
tackled this issue by making a constraint that the (k-1)-subgraphs should be
the two (k-1)-subgraphs which have the smallest and the second smallest
canonical labels. This constraint largely reduces the candidates necessary
to be generated and therefore, improves the whole performance.

2Here k could be the number of vertices or edges.

6.4.4 Frequent Subgraph Mining Algorithms

Because of the importance of frequent subgraph mining, there has been
many algorithms proposed to tackle the issue. Similar to that of itemeset,
sequence, and tree mining, the candidate generation and test are the main
issues during the mining process. It is well known that the problem of
detecting graph isomorhpism is NP-complete and therefore, the existing
works aim to introduce efficient heuristic techniques to reduce the
complexity of the problem. Detail surveys of the frequent graph mining in
the literature can be found in [52, 22].

6.4.4.1 Apriori-based Graph Mining (AGM) Algorithm

AGM [26] is recognized as the fi rst algorithm proposed to tackle the issue
of frequent graph mining. The basic idea of AGM is that it applies the
classic Apriori property to facilitate the mining process. To represent the
graph, AGM uses the adjacency matrix. The join operation, therefore, can
be executed straightforward by using basic matrix computation. According
to the paper [26], the performance of AGM on real data (i.e., chemical
data) has confi rmed to be more effi cient than the state-of-the-art approach.
Moreover, the resultant patterns include those useful and undiscovered
ones by previous work. In a later paper [27], the same authors explored
the issue of frequent graph mining on more categories of graph data (i.e.,
directed v.s. undirected, labeled v.s. unlabeled, loop graph).

6.4.4.2 Frequent Subgraph Mining Algorithm (FSG)

The basic idea of FSG [32] also follows the Apriori rule. The main distinct
features of FSG are that [32]: (1) a sparse graph representation which
minimizes both storage and computation has been introduced; (2) when
we generate the candidate, FSG adds one edge at a time to the discovered
frequent subgraph; (3) the proposed algorithms are simple and the
graph isomorphism detection are effi cient for small graphs; and (4) some
optimization are introduced to scale the algorithm on large graph data. A
main issue, however, is that FSG does not perform well on very large data,
as illustrated in the experimental evaluation.

6.4.4.3 Path Mining (PM) Algorithm

Gudes et al. introduced the path mining algorithm [21], which uses edge-
disjoint paths as the expansion units to generate the candidate subgraphs.
The key idea of PM is to decrease the number of the candidate patterns
as early as possible. Furthermore, it minimizes the number of expensive

 Frequent Pattern Mining 145

146 Applied Data Mining

support computations. There are several steps executed in the PM algorithm.
It fi rst extracts all the frequent paths, and then it discovers all the subgraphs
which have two paths. Finally it joins the frequent subgraphs with (k-1)-
paths which have the same (k-2)-paths, to obtain the candidate k-paths
subgraph. Similar to other pattern mining algorithm papers, Gudes et al.
stated that the support computation is the most time consuming step.

6.4.4.4 Graph-based Substructure Pattern Mining Algorithm (gSpan)

Yan et al. introduced the gSpan algorithm [55], which utilizes the DFS
code to uniquely represent the graph. gSpan applies the depth fi rst search
strategy to traverse all the candidate subgraphs in the whole lattice which
constructs a DFS code tree, whose nodes are the corresponding DFS code.
The algorithm traverses the DFS code tree and all the subgraphs that have
not minimal DFS codes are removed. By this way, it can avoid to generate
the redundant candidates. Moreover, gSpan only saves the transaction
lists for the discovered patterns and scans these lists to detect subgraph
isomorphism. As shown in the paper [55], gSpan is effi cient on both time
and space cost compared with the state-of-the-art techniques.

6.4.4.5 Fast Frequent Subgraph Mining Algorithm (FFSM)

Huan et al. introduced another effi cient algorithm, FFSM [25], to tackle the
issue of frequent graph mining. The basic idea of FFSM is that it utilizes
a vertical search scheme within an algebraic graph framework to reduce
the number of redundant candidates tested. There are several distinct
features in FFSM: (1) a novel graph canonical form and two effi cient
candidate generation operations, i.e., join and extension; (2) an algebraic
graph framework (suboptimal CAM tree) to guarantee that all frequent
subgraphs are enumerated unambiguously; and (3) avoid to test subgraph
isomorphism by maintaining an embedding set for each frequent subgraph.
The experimental evaluation demonstrates that FFSM outperformed gSpan
on several chemical data sets [25].

It is very diffi cult to explore the advantages and disadvantages of the
various frequent graph mining algorithms, because they are incomparable
from many aspects. However, there are still some works towards this
purpose, i.e., [53].

6.5 Chapter Summary
In this chapter, we have discussed the issues related to frequent pattern
mining (i.e., itemset, sequence, tree, graph). These problems are fundamental

issues in the data mining literature and are the basis of many practical
applications. Some strategies have been commonly utilized by different
algorithms (i.e., Apriori rule). Although so many works have studied
the problem of frequent pattern mining, there are still many challenges
existing. To name a few: (1) How to deal with huge data?; (2) How to mine
exact patterns from stream data?; and (3) How to judge the usefulness and
effectiveness of those discovered patterns. It seems that there is a still long
way to reach the original goal of the data mining research.

References
 [1] R. Agrawal, T. Imielinski and A. N. Swami. Mining association rules between sets of

items in large databases. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 207–216, 1993.

 [2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A. I. Verkamo. Fast discovery of
association rules. Advances in Knowledge Discovery and Data Mining, pp. 307–328, American
Association for Artifi cial Intelligence, 1996.

 [3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In: Proceedings
of International Conference on Very Large Data Bases, pp. 487–499, 1994.

 [4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases.
In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499,
1994.

 [5] R. Agrawal and R. Srikant. Mining sequential patterns. In: Proceedings of International
Conference on Data Engineering, pp. 3–14, 1995.

 [6] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto and S. Arikawa. Effi cient
substructure discovery from large semi-structured data. In: Proceedings of the Second
SIAM International Conference on Data Mining, 2002.

 [7] J. Ayres, J. Gehrke, T. Yiu and J. Flannick. Sequential pattern mining using a bitmap
representation. In: Proceedings of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 429–435, 2002.

 [8] T. L. Bailey and C. Elkan. Fitting a mixture model by expectation maximization to
discover motifs in biopolymers. In: Proceedings of International Conference on Intelligent
Systems for Molecular Biology, pp. 28–36, 1994.

 [9] R. J. Bayardo. Effi ciently mining long patterns from databases. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp. 85–93, 1998.

 [10] S. Brin, R. Motwani and C. Silverstein. Beyond market baskets: generalizing association
rules to correlations. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 265–276, 1997.

 [11] Y. Chi, R. R. Muntz, S. Nijssen and J. N. Kok. Frequent subtree mining—An overview.
Fundamenta Informaticae, 66: 161–198, November 2004.

 [12] Y. Chi, Y. Xia, Y. Yang and R. R. Muntz. Mining closed and maximal frequent subtrees
from databases of labeled rooted trees. IEEE Trans. on Knowledge and Data Engineering,
17: 190– 202, 2005.

 [13] Y. Chi, Y. Yang and R. R. Muntz. Indexing and mining free trees. In: Proceedings of the
Third IEEE International Conference on Data Mining, 2003.

 [14] Y. Chi, Y. Yang and R. R. Muntz. Hybridtreeminer: An effi cient algorithm for mining
frequent rooted trees and free trees using canonical forms. In: Proceedings of the 16th
International Conference on Scientifi c and Statistical Database Management, 2004.

 [15] D. J. Cook and L. B. Holder. Mining Graph Data. John Wiley & Sons, 2006.

 Frequent Pattern Mining 147

148 Applied Data Mining

 [16] G. Dong and J. Li. Effi cient mining of emerging patterns: discovering trends and
differences. In: Proceedings of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 43–52, 1999.

 [17] E. Eskin and P. Pevzner. Finding composite regulatory patterns in dna sequences. In:
Proceedings of the International Conference on Intelligent Systems for Molecular Biology, pp.
354–363, 2002.

 [18] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy. Advances in Knowl-
edge Discovery and Data Mining. AAAI/MIT Press, 1996.

 [19] M. N. Garofalakis, R. Rastogi and K. Shim. Spirit: Sequential pattern mining with regular
expression constraints. In: Proceedings of International Conference on Very Large Data Bases,
pp. 223–234, 1999.

 [20] B. Goethals. Survey on frequent pattern mining. Technical report, 2002.
 [21] E. Gudes, S. E. Shimony and N. Vanetik. Discovering frequent graph patterns using

disjoint paths. IEEE Trans. on Knowl. and Data Eng., 18: 1441–1456, November 2006.
 [22] J. Han, H. Cheng, D. Xin and X. Yan. Frequent pattern mining: current status and future

directions. Data Min. Knowl. Discov., 15: 55–86, August 2007.
 [23] J. Han, G. Dong and Y. Yin. Effi cient mining of partial periodic patterns in time series

database. In: Proceedings of International Conference on Data Engineering, pp. 106–115,
1999.

 [24] J. Han, J. Pei and Y. Yin. Mining frequent patterns without candidate generation. In:
Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data,
pp. 1–12, 2000.

 [25] J. Huan, W. Wang and J. Prins. Effi cient mining of frequent subgraphs in the presence
of isomorphism. In: Proceedings of the Third IEEE International Conference on Data Mining,
2003.

 [26] A. Inokuchi, T. Washio and H. Motoda. An apriori-based algorithm for mining frequent
substructures from graph data. In: Proceedings of the 4th European Conference on Principles
of Data Mining and Knowledge Discovery, PKDD’00, pp. 13–23, 2000.

 [27] A. Inokuchi, T. Washio and H. Motoda. Complete mining of frequent patterns from
graphs: Mining graph data. Machine Learning, 50: 321–354, March 2003.

 [28] C. Jiang, F. Coenen, R. Sanderson and M. Zito. A survey of frequent subgraph mining
algorithms. The Knowledge Engineering Review, 00: 1–31, 2004.

 [29] M. Kamber, J. Han and J. Chiang. Metarule-guided mining of multi-dimensional
association rules using data cubes. In: Proceedings of ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 207–210, 1997.

 [30] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen and A. I. Verkamo. Finding
interesting rules from large sets of discovered association rules. In: Proceedings of ACM
Conference on Information and Knowledge Management, pp. 401–407, 1994.

 [31] H. C. Kum, J. Pei, W. Wang and D. Duncan. Approxmap: Approximate mining of
consensus sequential patterns. In: Proceedings of SIAM International Conference on Data
Mining, pp. 311–315, 2003.

 [32] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In: Proceedings of the 2001
IEEE International Conference on Data Mining, pp. 313–320, 2001.

 [33] B. Lent, A. Swami and J. Widom. Clustering association rules. In: Proceedings of Inter-
national Conference on Data Engineering, pp. 220–231, 1997.

 [34] C. Luo and S. Chung. Effi cient mining of maximal sequential patterns using multiple
samples. In: Proceedings of SIAM International Conference on Data Mining, pp. 64–72,
2005.

 [35] N. Mabroukeh and C. Ezeife. A taxonomy of sequential pattern mining algorithms. ACM
Computing Surveys, 2010.

 [36] N. R. Mabroukeh and C. I. Ezeife. A taxonomy of sequential pattern mining algorithms.
ACM Computing Survey, 43(1): 3:1–3:41, Dec 2010.

 [37] H. Mannila, H. Toivonen and A. I. Verkamo. Discovering frequent episodes in sequences.
In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 210–215, 1995.

 [38] H. Mannila, H. Toivonen and A. I. Verkamo. Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery, 1(3): 259–289, 1997.

 [39] H. Mannila, H. Toivonen and I. Verkamo. 1994. Effi cient algorithms for discovering
association rules. In: Proceedings of the AAAI Workshop on Knowledge Discovery in Databases,
pp. 181–192, 1994.

 [40] S. Nijssen and J. N. Kok. A quickstart in frequent structure mining can make a difference.
In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 647–652, 2004.

 [41] J. S. Park, M.-S. Chen and P. S. Yu. An effective hash-based algorithm for mining
association rules. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 175–186, 1995.

 [42] S. Parthasarathy, M. J. Zaki, M. Ogihara and S. Dwarkadas. Incremental and interactive
sequence mining. In: Proceedings of ACM Conference on Information and Knowledge
Management, pp. 251–258, 1999.

 [43] J. Pei, J. Han, B. Mortazavi-Asl and H. Pinto. Prefi xspan:mining sequential patterns
effi ciently by prefi x-projected pattern growth. In: Proceedings of International Conference
on Data Engineering, pp. 215–224, 2001.

 [44] J. Pei, J. Han, B. Mortazavi-Asl, J.Wang, H. Pinto, Q. Chen, U. Dayal and M. Hsu. Mining
sequential patterns by pattern-growth: The prefi xspan approach. IEEE Transactions on
Knowledge and Data Engineering, 16(11): 1424–1440, November 2004.

 [45] R. Read and D. Corneil. The graph isomorphism disease. Journal of Graph Theory, 1:
339–363, July 1977.

 [46] C. Silverstein, S. Brin, R. Motwani and J. Ullman. Scalable techniques for mining causal
structures. Data Mining and Knowledge Discovery, 4(2-3): 163–192, 2000.

 [47] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance
improvements. In: Proceedings of International Conference on Extending Database Technology,
pp. 3–17, 1996.

 [48] W. G. Teng, M. Chen and P. Yu. A regression-based temporal pattern mining scheme
for data streams. In: Proceedings of International Conference on Very Large Data Bases, pp.
93–104, 2003.

 [49] P. Tzvetkov, X. Yan and J. Han. Tsp: Mining top-k closed sequential patterns. In:
Proceedings of IEEE International Conference on Data Mining, pp. 347–358, 2003.

 [50] K. Wang and H. Liu. Discovering typical structures of documents: a road map approach.
In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 146–154, 1998.

 [51] W. Wang and J. Yang. Mining Sequential Patterns from Large Data Sets, Vol. 28. Series: The
Kluwer International Series on Advances in Database Systems, 2005.

 [52] T. Washio and H. Motoda. State of the art of graph-based data mining. SIGKDD Explor.
Newsl., 5: 59–68, July 2003.

 [53] M. Wörlein, T. Meinl, I. Fischer and M. Philippsen. A quantitative comparison of the
subgraph miners mofa, gspan, ffsm, and gaston. In: Proceedings of the 9th European
Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 392– 403,
2005.

 [54] Y. Xiao, J.-F. Yao, Z. Li and M. H. Dunham. Effi cient data mining for maximal frequent
subtrees. In: Proceedings of the Third IEEE International Conference on Data Mining, 2003.

 [55] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In: Proceedings of
IEEE International Conference on Data Mining, pp. 721–724, 2001.

 [56] X. Yan, J. Han and R. Afshar. Clospan: mining closed sequential patterns in large datasets.
In: Proceedings of SIAM International Conference on Data Mining, pp. 166– 177, 2003.

 Frequent Pattern Mining 149

150 Applied Data Mining

 [57] Z. Yang and M. Kitsuregawa. Lapin-spam: An improved algorithm for mining sequential
pattern. In: Int’l Special Workshop on Databases For Next Generation Researchers (SWOD),
pp. 8–11, 2005.

 [58] Z. Yang, Y. Wang and M. Kitsuregawa. Effective sequential pattern mining algorithms
for dense database. In: National Data Engineering WorkShop (DEWS), 2006.

 [59] Z. Yang, Y. Wang and M. Kitsuregawa. An effective system for mining web log. In: The
8th Asia-Pacifi c Web Conference (APWeb), pp. 40–52, 2006.

 [60] Z. Yang, Y. Wang and M. Kitsuregawa. Lapin: Effective sequential pattern mining
algorithms by last position induction for dense databases. In: Int’l Conference on Database
Systems for Advanced Applications (DASFAA), pp. 1020–1023, 2007.

 [61] M. J. Zaki. Scalable algorithms for association mining. IEEE Transaction on Knowledge
and Data Engineering, 12(3): 372–390, 2000.

 [62] M. J. Zaki. Spade: An effi cient algorithm for mining frequent sequences. Machine Learning
Journal, 42: 31–60, 2001.

 [63] M. J. Zaki. 2002. Effi ciently mining frequent trees in a forest. In: Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
71–80.

 [64] M. J. Zaki, S. Parthasarathy, M. Ogihara and W. Li. 1997. New algorithms for fast discovery
of association rules. In Proceedings of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 283–286.

Part II

Advanced Data Mining

This page intentionally left blankThis page intentionally left blank

CHAPTER 7

Advanced Clustering Analysis

7.1 Introduction
Clustering is a useful approach in data mining processes for identifying
patterns and revealing underlying knowledge from large data collections.
The application areas of clustering include image segmentation, information
retrieval, and document classifi cation, associate rule mining, web usage
tracking and transaction analysis. Generally, clustering is defi ned as the
process of partitioning unlabeled data set into meaningful groups (clusters)
so that intra-group similarities are maximized and inter-group similarities
are minimized at the same time. In essence, clustering involves the following
unsupervised learning process, which can be written as: Defi ne an encoder
function c(x) to map each data object xi into a particular group Gk(c(x) = k)

 x Gk, k = 1, 2, 3, ..., k, so that a cluster criterion Q(c) = k = 1K
c(xi) = k,

c(xj = k)dist(xi, xj) is minimized.
As we know, this is a classical combinatorial optimization problem and

solving it is exactly NP-hard, even with just two clusters [13]. According
to computation complexity theory [36], no complete algorithm can get the
overall optimal solutions in a polynomial time, unless P = NP. Iterative
refi nement method, a popular approximate algorithm, is widely adopted
by various unsupervised learning algorithms. A general iterative refi nement
clustering process can be summarized as Algorithm 7.1 [6].

Algorithm 7.1: General iterative refi nement clustering
Initialization: Initialize the parameters of the current cluster model.
Refi nement: Repeat until the cluster model converges.
 (1) Generate the cluster membership assignments for all data objects, based on

the current model;
 (2) Refine the model parameters based on the current cluster membership

assignments.

154 Applied Data Mining

Figure 7.1.1: An example of iterative refi nement clustering algorithm

The intuitionists denotation of iterative refi nement clustering algorithm
is shown in Fig. 7.1.1. The horizontal axis denotes feasible solutions of
clustering problem and the vertical axis is the corresponding objective
function values of feasible solutions.

In this chapter, the feasible solution is the results of encode function
(or the clustering results) and the objective function value is the values
of cluster criterion Q(c) = k = 1K

c(xi) = k, c(xj = k)dist(xi, xj). Without loss
of generality, we assume that point 3 is selected as the initialization of an
iterative refi nement clustering algorithm, and by repeating step (1) and (2),
the algorithm will converge to point 4, one of the feasible solutions with
suboptimal objective function value. An iterative refi nement clustering
algorithm is a popularly used clustering approach based on heuristic
search, which is to minimize the cluster criterion in a designated region
(i.e., guarding the heuristic search with the specifi ed initial values). In this
scenario, the obtained clustering result is dependent on the initialization
and the minimized cluster criterion only refl ects the sub-optimal solution
with this running of heuristic search. In other words, the nature of heuristic
search process makes the iterative refi nement clustering algorithms heavily
sensitive to the initialization settings, thus not guaranteeing the higher
quality clustering results with randomly chosen initializations [5]. Therefore,
how to deal with the sensitivity problem of initialization in iterative
refi nement clustering algorithm is becoming an active and well concerned.
That the initialization model must be correct is an important underlying
assumption for iterative refi nement clustering algorithm. It can determine
the clustering solution [6], that is, different initialization models will produce
different clustering results (or different local minimum points as shown in
Fig. 7.1.1). Since the problem of obtaining a globally optimal initial state
has been shown to be NP-hard [15], the study on the initialization methods

towards a sub-optimal clustering result hence is more practical, and is of
great value for the clustering research. Recently, initialization methods have
been categorized into three major families: random sampling methods,
distance optimization methods and density estimations [17]. Forgy adopted
uniformly random input objects as the seed clusters [14], and MacQueen
gave an equivalent way with selecting the fi rst K input objects as the seed
clusters [29]. In the FASTCLUS, a K-means variance implemented in SAS
[37], the simple cluster seeking (SCS) initialization method is adopted [21].
Katsavounidis et al. proposed a method that utilizes the sorted pairwise
distances for initialization [22]. Kaufman and Rousseeuw introduced a
method that estimates the density through pairwise distance comparison,
and initializes the seed clusters using the input objects from areas with
high local density [23]. In Ref. [18], a method which combines local density
approximation and random initialization is proposed. Belal et al. fi nd a
set of medians extracted from a dimension with maximum and then use
the medians as the initialization of K-means [4]. Niu et al. give a novel
algorithm called PR (Pointer Ring), which initializes cluster centers based
on pointer ring by partition traditional hyper-rectangular units further
to hyper-triangle subspaces [33]. The initialization steps of K-means++
algorithm can be described as: choosing an initial center m1 uniformly at
random from data set; and then selecting the next center mi = x0 from data
set with a probability, where dist(x, m) denote the shortest distance from a
data object x to the closest center m; iterative until fi nd K centers [2]. The
main steps of initialization centers of K-means by kd-tree are: fi rst, the
density of a data at various locations are estimated by using kd-tree; and
then use a modifi cation of Katsavounidis algorithm, which incorporates
this density information, to choose K seeds for K-means algorithm [39]. And
recently, Lu et al. treated the clustering problem as a weighted clustering
problem so as to fi nd a better initial cluster center based on the hierarchical
approach [28].

7.2 Space Smoothing Search Methods in Heuristic
Clustering

The goal of modifi ed initialization methods, is to reduce the infl uence
of sub-optimal solutions (the local minimum points) bestrewed in the
whole search space, as shown in Fig. 7.1.1. Although iterative refi nement
clustering algorithms with these modifi ed initialization methods have
some merits in improving the quality of cluster results, they also have high
probability to be attracted by local minimum points. Local search method
is the essence of iterative refi nement clustering algorithms. Lots of the
local minimum points make a local search problem hard and sensitive to

 Advanced Clustering Analysis 155

156 Applied Data Mining

the initialization. Those proposed modifi ed initialization methods are only
focused on how to select an initialization which can improve the quality of
iterative refi nement clustering algorithm, but the search space embedded
lots of local minimum points is ignored. Smoothing search space method
reconstructs the search space by fi lling local minimum points, to reduce
the infl uence of local minimum points. In this paper, we fi rst design two
smoothing operators to reconstruct the search space by fi lling the minimum
traps (points) based on the relationship between distance metric and cluster
criterion. Each smoothing operator has a parameter, smoothing factor, to
control the number of minimum traps. And then, we give a topCdown
clustering algorithm with smoothing search space (TDCS3) to reduce the
infl uence of initialization. The main steps of TDCS3 are to: (1) dynamically
reconstruct a series of smoothed search space as a hierarchical structure:
the most smoothed search space at the top, and the original search space
at the bottom, other smoothed search spaces are distributed between them,
by fi lling the local minimum points; (2) at the top level of the hierarchical
structure, an existing iterative refi nement clustering algorithm is run with
random initialization to generate the cluster result; (3) from the second
level to the bottom level of the hierarchical structure, the same clustering
algorithm is run with the initialization derived from the cluster result on
the previous level.

Figure 7.2.1: Illustration of smoothing search space

7.2.1 Smoothing Search Space and Smoothing Operator

7.2.1.1 Local Search and Smoothing Search Space

Local search method is the essence of iterative refi nement clustering
algorithms. During the mid-sixties, local search method was first
proposed to cope with the overwhelming computational intractability of
NP-hard combinatorial optimization problems. Give a minimization (or
maximization) problem with objective function f and feasible region F, a

Start solution

Local minimum

Global optimum

typical local search algorithm requires that, with each solution xi Rd, there
is associated a predefi ned neighborhood N(xi) Rd. Given a current solution
point xi Rd, the set N(xi) is searched for a point xi+1 with f(xi + 1) < f(−xi) or
(f(xi + 1) > f(xi)). If such a point exists, it becomes the new current solution
point (xi xi+1), and then the process is iterated. Otherwise, xi is retained as
a local optimum with respect to N(xi). Then a set of feasible solution points
is generated, and each of them is locally improved within its neighborhood.
Local search methods only check the neighborhood of current feasible
solution xi, so the search range has been dramatically reduced and the
convergence speed has been accelerated. A major shortcoming of local
search is that the algorithm has a tendency to get stuck at a locally optimum
confi guration, i.e., a local minima point, as the point 2 or 4 shown in Fig.
7.1. Different neighborhood structures result in difference terrain surface
structures of the search space and produce different numbers of local
minimum points. The effectiveness of a local search algorithm relies on
the number of local minimum points in the search space [16], that is, local
minimum points make a search problem hard. The smaller the number of
local minimum points, the more effective a local search algorithm is. In
order to reduce the infl uence of local minimum to local search algorithm,
some local minimum traps must be fi lled. Gu and Huang [16] has called
the method of fi lling minimum trap as the smoothing search space, and it
is able to dynamically reconstruct the problem structure and smooth the
rugged terrain surface of the search space. The smoothed search space could
hide some local minimum points, therefore, improving the performance
of the traditional local search algorithm. Figure 7.2.1 is the illustration of
smoothing search space.

From Fig. 7.2.1, we can see that Many local minimum traps are fi lled
after running a smoothing operator. The real line curve shows the original
search space which has lots of minimum traps, and dashes shows the
smoothed search space with fewer minimum traps. At the former discussing,
we can fi nd that lots of the local minimum points which are embedded
in the search space make a local search problem hard and sensitive to the
initialization. The essence of iterative refi nement clustering algorithms is the
local search method, thus they have the same real reason for initialization
sensitivity problem. The main idea of smoothing search space is always
common, but different application areas have different ways to smoothing
the search space. In clustering area, clustering is defi ned as the process
of partitioning unlabeled data objects into meaningful groups (clusters)
so that the value of cluster criterion Q(c) is minimized. Minimizing Q(c)
value means that the intra-similarities of all clusters are maximized or
the distances of each data object to its cluster center is minimized. So the
cluster criterion Q(c) has a close relationship with the similarity or distance
between data objects.

 Advanced Clustering Analysis 157

158 Applied Data Mining

7.2.1.2 Smoothing Operator

In this section, we designed two smoothing operators based on the
relationship between Q(c) and distance measure, to fi ll the minimum traps
embedded in the rugged surface of search space. Let D = x1, x2, ... xN, xi Rd
be a set of data objects that needs to be clustered. And note dist:Rd × Rd
R+ be a given distance function between any two data objects in Rd. Dist is
a distance matrix which contains the distances between all data objects of
D, and Dist(i,j) denotes the distance between data object xi and xj, Dist(xi,xj).
In this chapter, two smoothing operators will be described as follows:
 (1) Displacement smoothing operator
 Based on average distance of distance matrix Dist, we design the

displacement smoothing operator as below.

Defi nition 7.1. Given a data set D = x1, x2, ... xN, and its distance matrix

Dist, the average distance of Dist is defi ned as: Dist=
1

(1)N N −
 i = 1N j

= 1N Dist(i, j).

Definition 7.2. Given a smoothing factor α ≥ αarg, the displacement
smoothing operator reconstructs the smoothed search space according to:

Distα(i, j) =
((,)) (,)

((.)) (,)

Dist Dist i j Dist if Dist i j Dist

Dist Dist Dist i j if Dist i j Dist

α

α

⎧ + − ≥⎪
⎨

− − <⎪⎩

α

α

According to Defi nitions 7.1 and 7.2, a series of smoothed search spaces
with different numbers of minimum traps will be reconstructed during
α αarg. A smoothed search space generated from a large exhibits a
smoother terrain surface, and a search space generated from a smaller
exhibits a more rugged terrain surface. The search space will return to the
original search space when α = αarg. Lets note the smoothed search space
according to the largest serves as the top search space and the original search
space as the bottom search space, as shown in Fig. 7.2.2.

Algorithm 7.2 describes the details of the reconstruction process for
smoothing the search spaces. In the fi rst step, we calculate the average
distance of and during the second step, a distance transformation is run
to change each distance Dist(i, j) Dist with average distance Dist and the
difference between dist(xi, xj) and Dist . The main time cost of displacement
smoothing operator is the process of the distance transformation. For a
distance Dist(i, j) Dist, the time cost of distance transformation is . For all
the distances belong to , the total time consume is O(N2).

In this section, we set αorg = 1, then there are two extreme cases of the
series of the clustering instances, which are based on the distance. These
are:

,

org

.

.

.

.

.

.

org

.

.

.

.

Smoothed search space

Top search space

Original search space

Global optimum

Figure 7.2.2: Illustration of a series smoothed search space with different terrain
surfaces, which are generated by displacement methods with different smoothing
factors

Algorithm 7.2: Displacement Smoothing Operator
Input: distance matrix Dist, smoothing factor α
Output: smoothed search space Sα

 (1) Calculate the average distance Dist of Dist;
 (2) For any Dist(i, j) Dist

 If Dist(i, j) < Dist then
 Distα (i, j) = Dist –(Dist –Dist(i, j))α;
 Else
 Distα (i, j) = Dist + (Dist(i, j)– Dist)α;
 End if;
End for;

 (3) Sα Distα and return.

 • if α αorg, then Distα Dist this is the trivial case;
 • if α = αorg, then Distα = Dist , which is the original problem.

 (2) Kernel Smoothing Operator
 The main idea of the displacement smoothing operator is the linear

transformation of distance based on Dist and the exponential of the
difference between dist(xi, xj) and Dist . This smoothing operator fi ts well
to linear problem, but is weak with the non-linear problem. So another
smoothing operator which could be extended to non-linear situation is
designed. This smoothing operator, named kernel smoothing operator,
is based on the smoothing kernel.

 Advanced Clustering Analysis 159

160 Applied Data Mining

DEFINITION 7.3 [3]. Given a real value function f : Rn R and a smoothing
kernel g : R R, which is a continuous, bounded, nonnegative, and
symmetric function whose integral is one, the g-transform of is defi ned as
f g(x) = ∫(Rn)f(y)g(||y − x||)dy. The Gaussian kernel function g(z) = exp(−z2/

(2σ2)) is the most widely used kernel. Figure 4 gives an example of applying
a smoothing transformation to the piecewise constant function and we
estimate the transformed function. L g(x) = ∫(Rn)f(y)g(||y − x||)dy.

From Fig. 7.2.3, we can see the traps of minimum point has been
smoothed by the Gaussian kernel function with different σ, the smoothing
factor.

In Fig. 7.2.3, the real line curve illustrates the original search space,
and all the dashed are the smoothed search space, by running a kernel
smoothing operator with different smoothing factor σ on the original search
space. In this chapter, we use the kernel smoothing method to smooth the
distance function dist(xi, xj) and reduce the infl uence of lots of minimum
value embedded in the search space. We assume that there is no missing
value in data set D, that is, distance function dist is a continuous function.
Let L(x) = dist(xi, xj) = l = 1d || xil − xjl ||2, the smoothing method for
clustering is defi ned as: dist(xi, xj)g = dist(xi, xj) * exp(−dist(xi, xj)

2/(2σ2)). The
main steps of kernel smoothing operator are shown in Algorithm 3. For any
pairwise data objects belong to data set D, a Gaussian kernel infl uence adds
to distance function dist(xi, xj) to smooth the surface of search space. Once
transformation on a pairwise data object xi, xj needs O(1) time, so for the
transformation of N2 pairwise data objects O(N2) times is need at least.

Figure 7.2.3: Illustration of a smoothing space after running a kernel smoothing
operator on piece-wise function

0 2 4 6 8 10

0
1

2

3

4

5

6

7

8

9 L(x)
0.25
0.5
0.75
1

Algorithm 7.3: Kernel Smoothing Operator
Input: data set D, smoothing factor σ
Output: smoothed search space Sα

(1) Sα = zeros(N, N);
(2) for any pairwise data objects, xi, xj D
 Sα (i, j)= dist(xi, xj) * exp(–dist(xi, xj)

2/2σ2)
(3) return Sα

7.2.2 Clustering Algorithm based on Smoothed Search Space

Based on the smoothing operator and the smoothing factor, a series of
smoothed search space with different number of minimum traps, are
reconstructed as a hierarchical structure. Iterative refi nement clustering
algorithm can be run on each smoothed search space from the top search
space down to the bottom search space. An algorithm framework is
proposed to realize this process in this section. For simple description, we
use symbol α to denote the smoothing factor in the rest of this paper.

7.2.2.1 Top-Down Clustering Algorithm based on Smoothing Search Space

We give a Top-Down Clustering algorithm based on the Smoothed Search
Space (TDCS3) in this section. The main ideas of TDCS3 are:

 (1) dynamically reconstruct the smoothed search space by running a
smoothing operator;

 (2) run an existing iterative refi nement clustering algorithm on the current
smoothed search space and generate the cluster results;

 (3) based on the cluster results, a new initialization is generated and
services to the next smoothed search space;

 (4) repeat run (1)–(3) until back to the original search space.

Algorithm 7.4 is the main description of the framework of TDCS3.
From the top search space to the original search space, any existing iterative
refi nement clustering algorithm, such as k-means [13], MeanShift [41] and
so on, could be run on these smoothed search space. At the top search space,
algorithm is run with random initialization, and the correlate cluster
results are generated. The initialization from the former cluster results will
be regards as the initialization of in the current search space and lead the
search of algorithm to converge to a better sub-optimal result. Iteratively
run these steps until reach the original search space.

 Advanced Clustering Analysis 161

162 Applied Data Mining

7.2.2.2 Benefi ts

TDCS3 focuses on reducing the infl uence of lots of minimum trap embedded
in the search space of iterative refi nement clustering algorithm. Comparing
to traditional iterative refi nement clustering algorithm, TDCS3 has the
following benefi ts:

 (1) Intelligent characteristic under TDCS3 framework, a series of different
smoothed search space are reconstructed. All the smoothed search
spaces are the different level topological structures of the original
search space. The quality of cluster results on more smoothed search
space is high for the number of minimum trap more less than the
original search space. So the initialization from the cluster result on
more smoothed search space can capture good structure of clusters. The
initialization from the cluster results on the former search space can
lead the search on current search space to a better minimum point.

 (2) Flexible characteristic TDCS3 is only an algorithm framework. The
smoothing operator and the iterative clustering algorithm, which will
be run under TDCS3, are not fi xed. According to different applications
and demands, the smoothing operator could be redesigned and the
iterative refi nement algorithm will be selected.

 (3) Adaptive characteristic TDCS3 inherits the merits of iterative
refi nement clustering algorithm and reconstructs their search space
to reduce the probability of getting stuck into a worse sub-optimal
minimum points.

Algorithm 7.4: TDCS3
Input: Data set D, Cluster number K and Smoothing factor α
Output: cluster results C
(1) Generate the top search space Sα with α;
(2) Run any iterative refi nement clustering on Sα with random initialization, and

generate the cluster results Cα;
(3) while α αorg

(3.1) Generate the initialization Initα from Cα;
(3.2) α’ α – λ and generate new search space Sα’ with α’;
(3.3) Run on Sα’ with Initα, and generate the cluster results Cα’;
(3.4) α α’ Cα Cα’;

(4) C Cα and return.

7.3 Using Approximate Backbone for Initializations in
Clustering

As described in Section 7.2, iterative refi nement clustering exactly is
NP-hard, even with just two clusters. In real application, K-centre clustering
algorithm is a traditional iterative refi nement clustering, so it inherits the
advantages and drawbacks from iterative refi nement clustering.

For a larger data set, researchers are seeking heuristic methods to solve
this clustering problem. For example, the K-centre clustering algorithm
is a popularly used clustering approach based on heuristic search by
minimizing the sum of squared error locally and obtaining the local
suboptimal clustering results. However, the heuristic search process makes
K-centre clustering algorithms heavily sensitive to the initialization, and
usually cannot guarantee the high quality clustering results with random
initializations [5]. On the other hand, different local suboptimal clustering
results do refl ect the different likelihood of data instances gathering around
various centres in a data set [43]. Due to the fact that there are 80% local
suboptimal solutions are observed to distribute around the global optimal
solutions [24, 30, 35], it is believed that fi nding the commonly overlapped
intersections of various local suboptimal clustering results will facilitate
locating the global optimal solutions. Moreover, for K-centre heuristic
clustering, it is expected that choosing these intersection areas as the initial
search space will result in better clustering results. Backbone analysis
is becoming an active research topic in NP-hard problem recently. The
backbone of a NP-hard problem is regarded as the core part of all global
optimal solutions, which was fi rst proposed in [26] for Travelling Salesman
Problem (TSP), and has attracted much attention recently [42, 38]. An exact
backbone, however, is generally hard to be obtained for many optimization
problems in real applications. Instead, Approximate Backbone (AB), as
indicated by the name—the approximate form of backbone, and defi ned
as the intersection of different local suboptimal solutions of a dataset, is
often used to investigate the characteristic of the dataset and expedite the
convergence speed of heuristic algorithms [44, 8, 19]. In this paper, we
intend to adopt the concept of AB to address the initialization problems
suffering the heuristic clustering described above, and in particular,
propose a Heuristic Clustering Approach Based on Approximate Backbone
(HC_AB). The basic idea of HC_AB is that: we, fi rst identify the AB from a
set of local suboptimal solutions derived from running K-centre clustering
with different initialization settings; then, construct a new restricted search

 Advanced Clustering Analysis 163

164 Applied Data Mining

space based on the AB for heuristic search; eventually re-run the K-centre
clustering algorithm by using this new search space which has the AB as the
part of initialization, and generate a better clustering result that is deemed
to best approximate the global optimal solution.

7.3.1 Defi nitions and Background of Approximate Backbone

In this section, we give several defi nitions to prepare the background of
approximate backbone. Given a data set D = x1, x2, ...xn contains N data
objects and each object xi Rd is defi ned over-dimensional feature space.
Let dist : Rd × Rd � R+ be a given distance function between any two objects
in Rd. A K-centre clustering algorithm takes D as an input and partitions
the N data objects into K clusters such that the sum of squared error =

K
k=1 xi Ck

 dist(xi, vk) is minimized, where Ck is a cluster and vk is the centre
of Ck. Since each cluster is represented by its centre, the K-centre clustering
result can be represented as V = v1, v2, ...vK. The local suboptimal clustering
result is represented by a set of centres such that the corresponding value
is minimized in a local area. The Global optimal clustering results are
the collection of suboptimal clustering results with the smallest value.
DEFINITION 1 (Backbone). Given the global optimal clustering results
Z* = V1*, V2*, ...Vp* where Vp* = vp

1*, vp
2*, ...vp

k*, p = 1, ...P. The backbone of
this clustering problem is defi ned as the intersection of P global optimal
clustering results. backbone(V1*, V2*, ...Vp*) = V1* ∩V2* ∩....∩Vp*.

Generally, the global optimal solution is hard to be obtained for a NP-
hard problem in fact, resulting in diffi culty in identifying the theoretically
ideal backbone. However, in many research areas, researchers have observed
an interesting fact that there are 80% local suboptimal solutions being
distributed around the global optimal solutions and a big valley structure
is seen. Motivated by this fact, we intuitively have an idea in mind on how
to approximate the ideal backbone by making use of the local suboptimal
solutions.

DEFINITION 7.4 (Approximate Backbone). Given the local suboptimal
clustering result Z = V1, V2, ..., VM, where Vm = vm

1, v
m
2 ..., v

m
K m = 1,,M. The

AB is defi ned as the intersection of M local suboptimal clustering results.

a_bone(V1, V2, ..., VM) = V1 ∩ V2 ∩ .. ∩ VM

As described above, our method aims to use the AB of local optimal
solutions to form the part of initialization (i.e., the start points for heuristic
search), thus constructing an appropriate AB for the heuristic search in
K-centre clustering algorithm is a key issue. In other words, the quality of
K-centre clustering results is greatly dependent on the characteristics of
AB. To address the concern, here we propose two parameters to describe

the characteristics of AB—Scale and Purity. The former one describes how
many percentages of total local optimal solutions are included in the AB;
whereas the later one denotes how many percentages of local suboptimal
solutions included in AB are also existed in the theoretically ideal backbone
as well. In particular, Approximate Backbone Scale (ABS) and Approximate
Backbone Purity (ABP) are defi ned as follows.

DEFINITION 7.5 (Approximate Backbone Scale). Given an AB, abone
(V1, V2, ..., VM). Approximate Backbone Scale is defi ned as the proportion
of the AB cardinality to the cluster number K.

ABS =
1 2| _ (, ,...,) |Ma bone V V V
K

DEFINITION 7.6 (Approximate Backbone Purity). Given an AB, abone(V1,
V2, ..., VM), and a backbone backbone(V1*, ..., VP*) Approximate Backbone
Purity is defi ned as the proportion of the cardinality of the intersection of
the AB and the backbone to the AB cardinality.

ABP =
1 2 1 2

1 2

(| _ (, ,...,) (*, *,..., *) |)
| _ (, ,...,) |

M P

M

a bone V V V backbone V V V
a bone V V V

∩

As the AB is used for the selection of initialization, in order to achieve
the best result of heuristic search, we expect to form an appropriate AB with
both large ABS and ABP values, which indicates the fact that the most of
whole local suboptimal solutions should be included in the initialization
and the included local suboptimal solutions (centres) are closely scattered
around the global optimal clustering result. In order to better understand
ABS and ABP, we give an example to explain them. Given a data set D,
which contains 500 objects and 10 clusters, each cluster is represented by
a representative object. An assumed global optimal clustering result V*
is located in the fi rst row in table 1 and three local suboptimal clustering
results V1, V2, V3, obtained by running K-centre clustering algorithm with
three initializations, are also listed in Table 7.3.1. For the simplifi cation, we
assume that each centre is represented by an objects ID in D, and there is
only one global optimal clustering result in D, that is backbone(V*) = V*.

For this example, we can obtain the AB: abone(V1, V2, V3) = 43, 78, 198,
240, 310, 366, 480. Known from the defi nition of ABS, the value of ABS in
this example is calculated as follow.

ABS =
1 2 3| _ (, ,...,) | 7 0.7

10
a bone V V V

K
= =

 Advanced Clustering Analysis 165

166 Applied Data Mining

Name Centre set

*
V 22, 78, 109, 180, 230, 292, 310, 366, 412, 475

1
V 43, 78, 109, 198, 240, 262, 310, 366, 412, 480

2
V 43, 78, 128, 198, 240, 262, 310, 366, 412, 480

3
V 43, 78, 128 198, 240, 252, 310, 366, 432, 480

Figure 7.3.1: Clustering results of D

We observed that there are three commonly overlapped centres existed
in AB and backbone, thus the value of ABP is,

ABP =
1 2 3

1 2 3

| _ (, ,) * | 3 0.429
| _ (, ,) | 7

a bone V V V V
a bone V V V

∩
= =

According to the Definition 7.5, the AB is derived from M local
suboptimal solutions, so the characteristics of AB has a close relationship
with M. In order to illustrate this relationship, we construct three data
sets: RandomS1, RandomS2 and RandomS3, each of which contains 34
clusters. And each cluster has 100 data objects, among which 99 objects
are generated by a Gaussian distribution function with different mean (µ)
and standard deviation (σ) and the last one is the mean of the rest, which
is deemed as the centre of the cluster. We run Vertex Substitution Heuristic
(VSH) algorithm [7], a classical K-centre clustering algorithm, on these
three data sets, and note the process as VSHRandomS1, VSHRandomS2 and
VSHRandomS3 respectively. VSH was executed for M=2:2:20 times on each
data set, where M=2:2:20 means M changing from 2 to 20 with step 2. The
relationships between ABS, ABP and M are shown in Fig. 7.3.2.

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16 18 20

number of local suboptinal cluster results,M

A
pp

ro
xi

m
at

e
B

ac
kb

on
e

Sc
al

e(
A

B
S) VSH_RandomS1

VSH_RandomS2
VSH_RandomS3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16 18 20

number of local suboptimal cluster results,M

A
pp

ro
xi

m
at

e
B

ac
kb

on
e

Pu
rit

y(
A

B
P)

VSH_RandomS1
VSH_RandomS2
VSH_RandomS3

Figure 7.3.2: The ABS and ABP of AB

number of local suboptinal cluster results, M number of local suboptinal cluster results, M

From Fig. 7.3.2, we can see that the trends of changes on ABS and
ABP are along opposite directions with M—ABS is decreasing while M
increasing, on the contrary, ABP increasing, and eventually, the changes of
ABS and ABP become slight and a balanced state is reached. As indicated
above, we hope to form a better AB with both higher ABS and ABP values to
construct a good searching start for K-centre clustering algorithm. Due to the
inconsistent changes of ABS and ABP with M, we have to choose a tradeoff
between ABS and ABP to ensure the better clustering results. According
to the experimental results, we fi nd the fact that choosing a reasonable M
can guarantee a better AB. The setting of M is an open question in various
applications [19]. In this chapter, we experimentally set M value based on
the size of data set and the cluster number.

7.3.2 Heuristic Clustering Algorithm based on Approximate Backbone

7.3.2.1 Reconstruct the New Searching Space

A new search space, S determined by the AB, is crucial to heuristic clustering
algorithms. Various applications might have different new search space
reconstruction methods. For example, in TSP [16], the new search space is
reconstructed by including all the edges that are not occurred in AB. While
the construction of AB leads to the formation of the fraction of the new search
space, the number of centres within the AB is usually less than the number
of predefi ned clusters in K-centre clustering. In that case, how to select
the rest centres from the local suboptimal solutions is another important
issue. Essentially, a cluster centre that was’nt included in the AB but was
frequently occurred in local suboptimal clustering results is more likely to
be selected to represent a real cluster. Although we can refi ne the new search
space with all the centers occurred in local suboptimal solutions, in order to
reduce the size of the new search space, we therefore select a centre into the
new search space, only if it is a frequent centre. DEFINITION 5 (Frequent
Centre). Given an occurrence threshold β, the local suboptimal clustering
result Z = V1, ..., VM and the AB abone(Z), for each centre vi UZ abone(Z), if
the occurrence frequency of vi exceeds β, then vi is a frequent centre, where
is a set difference operator and UZ = Um = 1MVm.

We use the example shown in Table 1 to explain the new search space
refi nement. From table 1, we fi nd that there are 14 objects be selected as the
centre of clusters in V1, V2, V3. The AB of this example is abone(V1, V2, V3) =
109, 128, 130, 262, 252, 412, 432, if the occurrence frequency of vi exceeds β,
then it is a frequent centre and will be included in S. According to the big
valley phenomenon, here we set the parameter β = M * 80% = 2.4 (for this
example M=3), and we obtain the three additional centers 128, 262, 412.

 Advanced Clustering Analysis 167

168 Applied Data Mining

7.3.2.2 Framework of HC_AB

Algorithm 7.5 shows the framework of HC_AB. It works as follows.
A K-centre clustering algorithm is run on D with different initializations to
generate clustering results Z. The AB a_bone(Z) is generated based on the
Defi nition 2, as shown in step 2. The aim of step 3 is to refi ne the new search
space S according to the description in afore section. The best_V is produced
by re-running the K-centre clustering algorithm on S with AB as a fraction
of initializations along with the complementary frequent centres.

Algorithm 7.5: HC_AB
Input: D, K, M
Output: best _V
 (1) Generate M clustering result, Z ={V1, V2,..., VM}, by running K-centre clustering

algorithm;
 (2) Find the AB a_bone(V1, V2,..., VM);
 (3) Reconstruct a new search space S;
 (4) Rerun K-centre clustering algorithm with the a_bone(V1, V2,..., VM) as a fraction

initialization centres on S ;
 (5) Return best _V.

According to Defi nition 2, each centre of Z is uniquely represented by a
data object ID number in D. For some specifi c kinds of K-centre clustering
algorithms, such as K-means where the centres of clusters algorithms are
determined by the mean of all data objects in the cluster, we amend the
intersection operator of fi nding AB described above—the AB is defi ned
as the co-occurrence data objects in the same cluster, and then use their
means as the fraction of initialization of K-means clustering algorithm.
Heuristic clustering algorithms are sensitive to the initialization problem
and are prone to reach the local suboptimal solutions. Due to the strength
of AB on improving the performance of heuristic algorithms, many research
efforts have introduced it in heuristic algorithm design. In this chapter,
we have proposed a novel solution to this by devising an approximate
backbone based K-centre clustering approach. The main strength of the
proposed method is the capability of restricting the initial search space
around the global optimal results by using the approximate backbone, and
in turn, reducing the impact of initialization on clustering and improving
the effi ciency of heuristic clustering. Experiments on several synthetic
and real world data sets have shown that the approximate backbone has
signifi cant effects on improving the quality of clustering and reducing the
initialization impact.

7.4 Improving Clustering Quality in High Dimensional
Space

7.4.1 Overview of High Dimensional Clustering

Clustering is one of the frequently used tools in data mining. In many
applications, data objects to be clustered are described by points in a high
dimensional space, where each dimension corresponds to an attribute/
feature. A distance measurement between any two points is used to
measure their similarity. The research in [25] has shown that the increasing
dimensionality results in the loss of contrast in distances between data
objects. Thus, clustering algorithms that measure the similarity between data
objects based on all attributes/features of the data tend to degrade in high
dimensional data spaces. In addition, the widely used distance measurement
usually perform effectively only on some particular subsets of attributes,
where the data objects are distributed densely [20]. In other words, it is
more likely to form dense and reasonable clusters of data objects in a lower
dimensional subspace [1]. Recently, several algorithms for discovering
clusters of data objects in subsets of attributes have been proposed, and
they can be classifi ed into two categories: subspace clustering and projective
clustering [32]. Subspace clustering was fi rst proposed by Agrawal in [1].
The main task of subspace clustering is to search clusters in 2d subspaces of
a data set according to their individual cluster defi nition. A large number of
overlapping clusters are typically reported. Most of the cluster defi nitions
of subspace clustering are based on a global density threshold that ensures
anti-monotonic properties necessary for an Apriori style search. The setting
of global density threshold heavily relies on the domain knowledge and has
a signifi cant impact on clustering results. Large values of the global density
threshold will result in only low dimensional clusters, whereas small values
will lead to not only higher dimensional clusters but also a large number
of low dimensional clusters (many of which are too trivial to be kept) [32].
CLIQUE [1], ENCLUS [11], SSC [40] and SCUD [12] are the typical subspace
clustering algorithms in the lecture. In general, subspace clustering aims to
fi nd out overlapped clustering results in a bottom-up way, while, projective
clustering seeks to assign each point to a unique cluster (clusters embedded
in different subspaces) in a top-down way. PROCLUS [9] is one of the
classical projective clustering algorithms. It discovers groups of data objects
located closely in each of the related dimensions in its associated subspace.
In such case, the data objects would spread along certain directions which
are parallel to the original data axes. ORCLUS [10] aims to detect arbitrarily

 Advanced Clustering Analysis 169

170 Applied Data Mining

oriented subspaces formed by any set of orthogonal vectors. EPCH [34] is
focused on uncovering projective clusters with varying dimensionality,
without requiring users to input the expected average dimensionality l of
the associated subspace and the number of clusters K that inherently exists
in the data set. The d-dimensional histogram created with equal width, is
used to capture the dense units and their locations in the d-dimensional
space. A compression structure is used to store these dense units and their
locations. At last, a search method is used to merge similar and adjacent
dense units and form subspace clusters. P3C [31] can effectively discover
projective clusters in the data while minimizing the number of required
parameters. P3C also does not need the number of projective clusters as
input and can discover the true number of clusters. There are three steps
consisted in P3C. Firstly, regions corresponding to the clusters on each
attribute are discovered. Secondly, a cluster core structure described by a
combination of the detected regions is designed to capture the dense areas
in a high dimensional space. Thirdly, cluster cores are refi ned into projective
clusters, outliers are identifi ed, and the relevant attributes for each cluster
are determined. STATPC [32] uses a varying width hyper-rectangle structure
to fi nd out the dense areas embedded in the high dimensional space. By
using a spatial statistical method, all dense hyper-rectangles are found.
A heuristic search process is run to merge these dense hyper-rectangles
and clustering results are generated. The clusters of projective clustering
are defi ned as the dense areas in corresponding subsets of attributes. In
projective clustering, it is a common way that a hyper-rectangle structure
is used to fi nd out the dense areas in the d-dimensional space at fi rst; and
then, a search method is run to merge these hyper-rectangles for generating
clusters. Because the dense area is captured by the hyper-rectangle structure,
it is important to defi ne the structure before clustering. There are two
kinds of hyper-rectangle structures used in projective clustering—the
equal width hyper-rectangle and the varying width hyper-rectangle. For
the equal width hyper-rectangle structure, each dimension is divided into
equal width intervals, and the hyper-rectangles are constructed by these
intervals, for instance, the d-dimensional histogram is used as the fi rst step
of the construction of hyper-rectangle structure in EPCH. As for the varying
hyper-rectangle structure, it (1) randomly selects a data object from a data
set D; (2) constructs a hyper-rectangle structure around the data object with
randomly selected widths; (3) runs a statistical test on the hyper-rectangle
to decide whether it is a dense hyper-rectangle. In real applications, it is a
diffi cult task to set reasonable widths for these hyper-rectangles.

7.4.2 Motivation of our Method

Furthermore, data objects may belong to various clusters in different
subspaces. Projective clustering is an effi cient way to deal with high
dimensional clustering problems. Explicitly or implicitly, projective
clustering algorithms assume the following defi nition: Give a data set D of
d-dimensional data objects, a projected cluster is defi ned as a pair (Ck, Sk),
where Ck is a subset of data objects and Sk is a subset of attributes such that
the data objects in Ck are projected along each attribute in Sk onto a small
range of values, compared to the range of values of the whole data set in
Sk, and the data objects in Ck are uniformly distributed along every other
attributes not in Sk. The task of projective clustering is to search and report
all projected clusters in the search space. Generally, researchers often defi ne
the equal or varying width hyper-rectangle structure to capture the dense
area at fi rst, and then merge these dense areas to generate the projected
clusters. In real applications, however, it is hard to decide the widths of
these hyper-structures directly. The use of a histogram is a common and
easy way to defi ne the width of hyper-rectangles. The width defi ned by
this method has a strict bond of distribution which heavily affects the
quality of the clustering result. On the other hand, it is intuitive to decide
the width directly from the density distribution estimated from the real
data itself. Kernel width of a data object derived by using kernel estimator
has the ability of capturing the dense distribution around it [43]. So it is a
wise way that use kernel estimator to decide the width of hyper-rectangle
structure. Conversional kernel estimators, however, can not deal with
high dimensional data. Rodeo [27]. An effi cient local kernel estimator, has
the ability of estimating the kernel width around a data object in the high
dimensional space. By making use of Rodeo, we propose an innovative
projective clustering in this paper. Particularly, in this paper, we defi ne
a new structure named Signifi cant Local Dense Area (SLDA) to capture
the local dense area around the data object based on Rodeo and spatial
statistical theory; and then propose a greedy search algorithm to generate
whole SLDAs which could cover the data distribution in the d-dimensional
space; eventually, we merge the SLDAs to construct the projected clusters
and fi lter out outliers.

7.4.3 Signifi cant Local Dense Area

7.4.3.1 Rodeo Algorithm

Let x1, x2, ..., xN, xi Rd(i = 1, ...,N) be a sample set from a distribution F with
density function f. Non-parametric density estimation methods are often
used to estimate the f. Rodeo is an effective kernel density estimator for

 Advanced Clustering Analysis 171

172 Applied Data Mining

sparse and high dimensional data and it has the advantages of performing
the selection of subset of attributes and the determination of kernel width
simultaneously [43].

The kernel density estimator is defi ned as

� 1
1

1() (())
det ()

N
ii

f w x K W x X
N W

−
=

= −∑
where K(.) is a symmetric kernel with ∫ K(u)du = 1 and ∫ K(u)du = 0d and W =
diag(width1, ...,widthd) is a diagonal matrix. Rodeo algorithm uses an iterative
learning step to calculate the kernel value and estimate the kernel width
W of data object x. In order to reduce the time consuming of Rodeo, the
authors propose a greedy Rodeo method by embedding the Rodeo within
LARS (Least Angle Regression) [27]. In this chapter, we prefer to select this
modifi ed Rodeo as our subroutine in our experiments. Here we assume
that the attributes which have the signifi cant contribution on estimating the
kernel value of x are listed in the fi rst r columns in W and the rest attributes
are irrelative with the kernel estimation. So the kernel width W returned
by Rodeo satisfi es the following Theorem [27].

Theorem 7.1. Given the kernel width W = diag(width1, ...,widthd), it satisfi es:

P(wj = wj(0)) 1 for all j > p and P(w0
j (NbN)

1
4 r
−
+)≤ wj ≤ w0

j (NaN)
1

4 r
−
+) 1, where

w0
j is the original large kernel width on attribute j, a_N and b_N are the

constant.
From Theorem 7.1, we can fi nd that the kernel widths on relative

attributes which have the signifi cant contribution to the kernel estimation
are smaller than those original kernel widths. In this paper, we therefore
select these r attributes to construct the relative subspace S and its
corresponding kernel width set W* to form the hyper-rectangle.

In order to show the ability of Rodeo on fi nding out the subset of
attributes that has signifi cant efforts on the kernel estimation and the
corresponding kernel width determination, we give an example. Randomly
generate a data set D containing 50 data objects, each object described by
4 attributes, the range of each attribute is in [0,1]. The data of the fi rst two
attributes is subject to a normal distribution and the data of the last two
attributes is subject to a uniform distribution, as shown in Fig. 7.4.1(a) and
(b). Randomly select a data object x from D, and use the Rodeo method
to estimate the kernel density of it. The subset of attributes which has
signifi cant contributions to the kernel density estimation is on dimension
1 and 2. The kernel widths of x are shown in Fig. 7.4.1(c). From Fig. 7.4.1(c),
we can observe that the kernel width on dimension 1, 2 is smaller than the
widths on dimension 3, 4, which indicates the fact that the contribution of
dimension 1, 2 is higher than that of dimension 3, 4 to the kernel density
estimation.

7.4.3.2 Defi nition of SLDA
Let D = x1, x2, ..., xN be a data set of N d-dimensional data objects. Let
A = attr1, attr2, ..., attrd be the set of attributes of the data objects so that xij

 dom(attrj), where dom(attrj) denotes the domain of the attribute attrj, j = 1,
..., d. Without losing the generality, we assume that all the attributes have
been normalized, i.e., dom(attrj) [0, 1]. In this section, we fi rst construct
a hyper-rectangle structure of data object x based on the kernel width W*
and determine the corresponding subset of attributes S by running Rodeo;
and then, conduct a spatial statistical test on the hyper-rectangle to decide
whether it is a SLDA around the data object x. To better describe the process
of determining the SLDA, we introduce the following defi nitions.

Defi nition 7.6 (Hyper-Rectangle). Given a subset of attributes S and a kernel
width W* = width1, ...,widthp of data object x, the hyper-rectangle structure
H around x can be constructed as : H = I1???Ip, where Ij = [xj?widthj/2, xj
+widthj/2], j = 1, p, p = dim(S).

0

1

0.8

0.6

0.4

0.2

D
im

en
si

on
 4

0 0.5 1
Dimension 4

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3 4

Dimensions

K
er

ne
l w

ith
d

Kernel width

0

1

0.8

0.6

0.4

0.2

D
im

en
si

on
 2

0 0.5 1
Dimension 1

(a) Distribution on dimension 1 and 2 (b) Distribution on dimension 3 and 4 (c) the kernel width of each dimension

Figure 7.4.1: The distribution and the kernel width

The volume of hyper-rectangle around the data object x is vol(H) = j
= 1pwidthj. The number of data objects within the hyper-rectangle H can be
used to indicate the local density around x.

Defi nition 7.6 (Data Objects in Hyper-Rectangle). Given a data set D and
a hyper-rectangle H around a data object x in the subset of attributes S, the
data objects located in H are defi ned as: remm(H) = xi D | (xj − widthj/2)
≤ xij ≤ (xj − widthj/2), i = 1, ...,N; j = 1, ..., p.

Defi nition 7.7 (Local Density of Hyper-Rectangle). Given the identifi ed
data object set remm(H) of a data object x , the local density around x in the
subset of attributes S is defi ned as: LS(H) =|remm(H)|, where |·| means
the number of objects within the hyper-rectangle.

Known from the spatial statistical theory of assigning N data points
in a space, the number of data points which are assigned in a bounded
area is subject to the Binomial distribution with parameters of N and the

 Advanced Clustering Analysis 173

174 Applied Data Mining

volume of the bound area [16]. Here H is the hyper-rectangle in the subset
of attributes, which is a bounded area, and the local density LS(H) is the
number of data objects assigned in H. So LS(H) is subject to the Binomial
distribution with parameter N and vol(H), i.e.,

LS(H) Binomial(N, vol(H)).
To decide whether H is a dense hyper-rectangle, we run a null

hypothesis statistical test on H.
h0: Hyper-rectangle H in S contains LS(H) data objects.
The signifi cant level α of the statistical hypothesis is a fi xed probability

of wrongly rejecting the null hypothesis, when in fact it is true. α is also called
the rate of false positives or the probability of type I error. The critical value
of the statistical hypothesis test is a threshold which the value of the test
statistic is compared to determine whether the null hypothesis is rejected.
There are two test methods for hypothesis test: one-side test and two-side
test. For the one-side test, the critical value θ is computed based on α =
p(LS(H) > θ). For the two-side test, the computation of left critical value θL
is the same as the one-side test, but the right critical value θR is computed
based on α = p(LS(H) > θR) Where is a probability function.

Defi nition 7.8 (Signifi cant Local Dense Area). Let H be a hyper-rectangle
in the subset of attributes S. Let α be a signifi cant level and θ be the critical
value computed at the signifi cant level α based on the one-side test, where
the probability is computed using Binomial(N, vol(H)). If LS(H) > θ, (H,
S) is deemed as a Signifi cant Local Density Area (SLDA) around the data
object x.

0

1

0.8

0.6

0.4

0.2

D
im

en
si

on
 2

0 0.5 1
Dimension 1

H1 H2

Figure 7.4.2: Hyper-rectangle of dataset D

7.4.4 Projective Clustering based on SLDAs

7.4.4.1 Finding SLDAs

After using the Rodeo method, the subset of attributes S and the kernel
width w* of a data object x are generated. Based on S and w*, a hyper-
rectangle structure H is constructed around x. We also use the data set
described in Section 2.2 as an example to illustrate the constructed hyper-
rectangle. The subset of attributes having important supports on kernel
estimation is on dimensions 1 and 2.

The example of H is shown in Fig. 7.4.2. In this fi gure, there are two
hyper-rectangles H1, H2 around two randomly selected data objects. But
the local density values of each hyper-rectangle are different. Based on the
Defi nitions 7.6 and 7.7, the local density value of the dashed frame (H1) is
2, whereas the local density value of the real line frame (H2) is 5. According
to the spatial statistical hypothesis described in Section 2.3, we set the
signifi cant level α = 0.001 and the value of θ calculated by the one-side
statistical test is 3.21. So the dashed frame is not a signifi cant local density
area as LS(H1) < θ, and it will be deleted.

The greedy search method, G_SLDA as shown in Algorithm 7.6, is
utilized to fi nd the whole signifi cant local dense areas which can cover
the data distribution of D in the d-dimensional space. The main steps of
G_SLDA are to:
 (1) randomly select a data object x from D and calculate the subset of

attributes S and the kernel width W* using Rodeo (steps 3–4);
 (2) create a hyper-rectangle structure H around x based on Defi nition 7.5,

and obtain the local dense value of H based on Defi nition 7.6 and 7.7
(steps 5–6);

Algorithm 7.6: G_SLAD
Input: Data set D
Output: SLDA set SLD
1. SLD Ø;
2. Loop
3. Randomly select a data object x from D;
4. [S,W*] =Rodeo(D, x);
5. H = CreateH(x, S, W*);
6. remm(H) = G_remm(D, H);
7. Run a statistical test of LS(H)=|remm(H)|on H according to defi nition 4;
8. If LS(H) θ
9. SLD = SLD (H, S);
10. x and the data object in remm(H) are signed as visited;
11. end
12. Until all data objects in D are visited
13. return SLD

 Advanced Clustering Analysis 175

176 Applied Data Mining

 (3) decide whether H is a Signifi cant Local Dense Area based on Defi nition
7.8. If H is a signifi cant local dense area, store the pair (H, S) into SLD
set, and label x and the data objects in H as visited, otherwise, discard
the obtained hyper-rectangle H (steps 7–11). These steps iteratively
run until all data objects have been processed.

7.4.4.2 Generating Clusters by Merging SLDAs

G_SLDA fi nd out all the signifi cant local density areas of data set D. Each
SLDA, (H, S), in SLD contain a density hyper-rectangle satisfying LS(H) ≥ θ
and its relevant subset of attribute S. The main structure of the density area
in a subset of attributes can be captured by all the density hyper-rectangles
embedded in it. To further understand the relationship between the density
area and signifi cant local density area, we give an example to show it. Given
a data set D used in Fig. 7.4.1, each object is described by four attributes,
the range of each attribute is in [0,1]. The data of the fi rst two attributes is
subject to a normal distribution and the data of the last two attributes is
subject to a uniform distribution.

From the above discussion, we know that the identifi ed subset of
attributes is on S = 1, 2 denoted by nodes in Fig. 7.4.2, and the SLDAs
generated by G_SLDA on S = 1, 2 are represented by six solid rectangles (i.e.,
H1, H6). From Fig. 7.4.3, we therefore can conclude that the main structure
of data distribution is characterized by six dense hyper-rectangles.

Figure 7.4.3: Example of the relationship between SLDAs and the density area

0

1

0.8

0.6

0.4

0.2

D
im

en
si

on
 2

0 0.5 1
Dimension 1

H5
H2

H1
H3

H4

H6

The clustering result of projective clustering is represented by the data
objects which are located in small ranges in its specifi c subspace. As for
SLDA, the various Hs do indicate these small ranges in S. The data objects
that are scattered in deferent hyper-rectangle Hs but within the same
subspace S constitute the different parts of a dense area in S. To obtain the
fully projected clusters, we need to merge these hyper-rectangles within
the same subspace S to generate its corresponding cluster. More concretely,
the clusters derived by a projective clustering algorithm are represented by
all the dense areas and their related subsets of attributes.
Algorithm 7.7: MC_SLDA

Input. SLD
Output. Clustering results and outliers
(1) Divide SLD into several subsets;
(2) For each subset of SLD, a single-linkage merger algorithm is run to fi nd out the

clustering results;
(3) Refi ne the clustering results

Hence we merge all the dense hyper-rectangles in the same subset of
attributes to generate the clusters. Further, for the example shown in Fig.
7.4.3, the cluster in the subset of attributes S = 1, 2 is (h = 16, (1, 2)), where

h = 16 denotes the merger processing of density hyper-rectangles. The
three major steps of the merger clustering algorithm on SLDAs, named
MC_SLDA, are to (1) divide SLDAs into several subsets so that the hyper-
rectangles within one attribute subset have the same subspace S; (2) run a
single-linkage merger algorithm on these subsets to fi nd the fully projected
signifi cant local dense area; (3) refi ne the clustering results and detecting
the outliers. The pseudo codes of MC_SLDA are detailed in Algorithm 2.
The data objects which are not included in any clusters are denoted as Rest
= D\(K

k=1 Ck),
where\
is the set different operator. In the clustering result refi nement, we use
the reassign method proposed in [39] to assign data objects in Rest to the
corresponding clusters. After the refi nement, the data objects which do not
belong to any clusters can be regarded as outliers, and an outlier collection
is generated.

Hyper-rectangle structure is often used in fi nding the density area
in high dimensional data sets. The determination of the width of hyper-
rectangle structure is a crucial task in high dimension clustering applications.
The majority of projective clustering algorithms use the restrictive model
to determine the width of hyper-rectangle, which has signifi cant efforts on
discovering real clustering results. Inspired by the kernel density method,
we present a new way to design the hyper-rectangle structure, whose width
is determined by the true data distribution. In order to examine whether
a hyper-rectangle structure is a Signifi cant Local Density Area, we run a

 Advanced Clustering Analysis 177

178 Applied Data Mining

spatial statistical test on it. A greedy algorithm is proposed to fi nd out all the
SLDAs in the data set. At last, a merger algorithm is applied on SLDAs to
generate the clustering results and identify the outliers. Experiment results
on synthetic and real data sets have shown that our method outweighs the
traditional projective clustering algorithms in discovering the high quality
clustering results with varying density widths.

7.5 Chapter Summary
In this chapter, we focused on the modifi cation and improvement of heuristic
clustering algorithms at fi rst. Two different methods based on smoothing
space and approximate backbone respectively, were proposed to deal with
the drawbacks of heuristic clustering algorithm. For the method based on
smoothing space, different smoothing operator to reconstruct the search
space of clustering is used. The search space construction step needs more
executing time. For the method based on approximate, different clustering
results which are derived by other heuristic clustering algorithm, such as
k-means, VSH, etc., to capture the common part of the dataset are used.
It also needs more executing time for generating the clustering results.
And then, we discussed the method to improve the quality of projective
clustering algorithm in high dimensional space. A method based on Rodeo
and statistical theory was been proposed in this chapter. This method has
the ability to capture the real distribution of data objects in high dimensional
space. However, the Rodeo method needs more running time. It is an open
question that how to reduce the time cost of these three methods.

References
 [1] A. Hinneburg, C. C. Aggarwal and D. A. Keim. Automatic subspace clustering of high

dimensional data for data mining applications. Sigmod Record, 27(2): 94–105.
 [2] D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding. In:

Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms Algorithms,
pp.: 1027C1035, 2007.

 [3] B. Addis, M. Locatelli and F. Schoen. Local optima smoothing for global optimization.
Optimization Methods and Software, 20(4-5): 417–437, 2005.

 [4] M. A. Belal. A New Algorithm for Cluster Initialization. Enformatika Conferences, pp.
74–76, 2005.

 [5] J. F. Brendan and D. Dueck. Clustering by Passing Messages Between Data Points.
Science., 5814(315): 972–976, 2007.

 [6] P. S. Bradley and U. M. Fayyad. Refi ning Initial Points for K-Means Clustering. In:
Proceediing of International Conference on Machine Learning, pp. 91–99, 1998.

 [7] Brendan J. Frey and Delbert Dueck. Response to Comment on ”Clustering by Passing
Messages Between Data Points”. Science, 319(5864): 726, 2008.

 [8] A. Caprara and G. Lancia. Optimal and Near—Optimal Solutions for 3D Structure
Comparisons. In: Proceeding of the First International Symposium on 3D Data Processing
Visualization and Transmission, pp. 734–744, 2002.

 [9] C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf and P. S. Yu. Fast Algorithms for Projected
Clustering. Sigmod Record, 28(2): 61–72, 1999.

 [10] C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in high dimensional
spaces. Sigmod Record, 70–81, 2000.

 [11] Chun-Hung Cheng, Ada Wai-Chee Fu and Yi Zhang. Entropy-based subspace clustering
for mining numerical data. In: Proceedings of the International Conference on Knowledge
Discovery and Data Mining, pp. 84–93, 1999.

 [12] E. Ehsan and R. Vidal. Sparse subspace clustering. Computer Vision and Pattern Recognition,
2790–2797, 2009.

 [13] P. Drineas, A. M. Frieze, R. K., S.Vempala and V. Vinay. Clustering Large Graphs via the
Singular Value Decomposition. Mach. Learn, 56(1-3): 9–33, 2004.

 [14] A. Forgy, N. Laird and D. Rubin Maximum likelihood from incomplete data via codes
for analog input patterns. Applied Optics, (26): 4919–4930, 2004.

 [15] M. R. Garey, D. S. Johnson and H. S. Witsenhausen. The complexity of the generalized
Lloyd—Max problem. IEEE Transactions on Information Theory, 28(2): 255–256, 1982.

 [16] J. Gu and X. F. Huang. Effi cient local search with search space smoothing: a case study of
the traveling salesman problem (TSP). IEEE Transactions on Systems, Man, and Cybernetics,
24(5): 728–735, 1994.

 [17] J. He, M.Lan, C. L. Tan, S. Y. Sung and H. B. Low. Initialization of cluster refi nement
algorithms: a review and comparative study. In: Proceeding of International Symposium
on Neural Networks, pp. 297–302, 1998.

 [18] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data, Prentice Hall College Div,
1988.

 [19] H. Jiang, X. C. Zhang, G. L. Chen and M. C. Li. Backbone analysis and algorithm design
for the quadratic assignment problem. Science in China Series F: Information Sciences, 51(5):
476–488, 2008.

 [20] S. Jeffrey, Beis and David G. Lowe. What is the Nearest Neighbour in high dimensional
spaces. In: Proceeding of the 26th International Conference on Very Large Databases, pp.
506–515, 2000.

 [21] T. J. Tou and R. C. Gonzalez. Pattern recognition principles. Addison-Wesley Pub. Co.,
1974.

 [22] I. Katsavounidis, C. C. Kuo and Z. Zhang. A new initialization technique for generalized
Lloyd iteration IEEE Signal Processing Letters, 1(10): 144–146, 1994.

 [23] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis Wiley-Interscience, 2005.

 [24] K. D. Boese Cost Versus Distance In the Traveling Salesman Problem. Wiley- Interscience,
1995.

 [25] S. B. Kevin, J. Goldstein, R. Ramakrishnan and U. Shaft. When Is ”Nearest Neighbor”
Meaningful? In: Proceeding of International Conference on Database Theory, pp. 217–235,
1999.

 [26] S. Kirkpatrick and G. Toulouse. Confi guration space analysis of travelling salesman
problems. Journal De Physique, 46(8): 1277–1292, 1985.

 [27] J. D. Lafferty and L. A. Wasserman. Rodeo: Sparse Nonparametric Regression in High
Dimensions. In: Proceeding of the International Conference on Neural Information Processing
Systems, pp. 1–32, 2007.

 [28] J. F. Lu, J. B. Tang, Z. M. Tang and J. Y. Yang. Hierarchical initialization approach for
K-Means clustering Pattern Recognition Letters, 29(6): 787–795, 2007.

 [29] J. MacQueen. Some methods for classifi cation and analysis of multivariate observations
Berkeley Symposium on Mathematical Statistics and Probability, (1): 281–297, 1967.

 [30] P. Merz and B. Freisleben. Fitness Landscapes, Memetic Algorithms and Greedy
Operators for Graph Bi-Partitioning. Evolutionary Computation, 8(1): 61–91, 2000.

 Advanced Clustering Analysis 179

180 Applied Data Mining

 [31] G. Moise, J. Sander and M. Ester. P3C: A Robust Projected Clustering Algorithm. In:
Proceeding of IEEE International Conference on Data Mining, pp. 414–425, 2006.

 [32] G. Moise and J. Sander. Finding non-redundant, statistically signifi cant regions in high
dimensional data: a novel approach to projected and subspace clustering. Knowledge
Discovery and Data Mining, 533–541, 2008.

 [33] K. Niu, S. B. Zhang and J. L. Chen. An Initializing Cluster Centers Algorithm Based
on Pointer Ring. In: Proceeding of the Sixth International Conference on Intelligent Systems
Design and Applications, pp. 655–660, 2006.

 [34] Ka Ka Ng Eric, Ada Wai-chee Fu and Raymond Chi-wing Wong. Projective Clustering
by Histograms. IEEE Transactions on Knowledge and Data Engineering, 17(3): 369–383,
2005.

 [35] C. R. Reeves. Landscapes, Operators and Heuristic Search. Annals of Operations Research.,
86(0): 473–490, 2000.

 [36] S. Sahni and T. F. Gonzalez. P-Complete Approximation Problems. Journal of the ACM,
23(3): 555–565, 1976.

 [37] SAS Institute SAS User’s Guide Statistics Version 5. Sas Inst, 1985.
 [38] C. Sharlee and W. X. Zhang. Searching for backbones and fat: A limit-crossing approach

with applications. AAAI/IAAI’02, pp. 707–712, 2002.
 [39] Stephen J. Redmond and Conor Heneghan. A method for initialising the K-means

clustering algorithm using kd-trees. Pattern Recognition Letters, 28(8): 965–73, 2007.
 [40] G. Stephan, H. Kremer and T. Seidl. Subspace Clustering for Uncertain Data. SIAM

Inter- national Conference on Data Mining, pp. 385–396, 2010.
 [41] Kuo-lung Wu and Miin-shen Yang. Mean shift-based clustering. Pattern Recognition,

(40): 3035–3052, 2007.
 [42] W. X. Zhang. Phase Transitions and Backbones of 3SAT and Maximum 3SAT. Principles

and Practice of Constraint Programming, 153–167, 2001.
 [43] Z. H. Zhou and W. Tang. Clusterer ensemble. Knowledge Based Systems, 19(1): 77–83,

2006.
 [44] P. Zou, Z. Zhou, G. L. Chen, H. Jiang and J. Gu. Approximate-Backbone Guided Fast

Ant Algorithms to QAP. Journal of Software, 16(10): 1691–1698, 2005.

CHAPTER 8

Multi-Label Classification

8.1 Introduction
With the advent of affordable digital facilities and the rapid development
of internet, a huge amount of data has been generated, and the volume is
still increasing explosively. In most cases, such data needs to be analysed
and thus potential knowledge hidden behind them could be extracted
and summarized. Classifi cation, also known as supervised learning, is a
fundamental technique for data analysis. In the framework of classifi cation,
each object is described as an instance, which is usually a feature vector
that characterizes the object from different aspects. Moreover, each instance
is associated with one or more labels indicating its categories. Generally
speaking, the process of classifi cation consists of two main steps: the fi rst is
training a classifi er based on a set of labelled instances, the second is using
the classifi er to predict the label of unseen instance.

It is usually assumed that each instance has only one label. Let X denote
the instance space and L be a set of labels, a single-label training set could
then be denoted as D = {(x1, l1), (x2, l2), . . . , (xn, ln)}, where xi is the ith instance
and li is its relevant label taken from L. The objective of classifi cation could
be viewed as learning a mapping from the instance space to the label space:
f : X Y, based on a training dataset D. Generally, this kind of learning is
also called single-label classifi cation [1].

However, the instances might be assigned with multiple labels
simultaneously, and problems of this type are ubiquitous in many modern
applications. For instance, Fig. 8.1.1 gives us two examples of multi-label
objects. As it has shown, a fi lm could be tagged as action, and adventure
simultaneously, and an outdoor scene can also be viewed as a sea scene,
etc. Learning for this kind of instances is called multi-label classifi cation
accordingly.

Recently, there have been a considerable amount of research concerned
with dealing with multi-label problems and many state-of-the-art

182 Applied Data Mining

methods has already been proposed. It has also been applied to lots of
practical applications, including text classifi cation [2, 3], gene function
prediction [4], music emotion analysis [5], semantic annotation of video
[6], tag recommendation [7, 8] and so forth. Motivated by the increasing
applications, multi-label classifi cation is becoming a hotspot and attracting
more and more academic researchers and industrial practitioners.

In this chapter, a comprehensive and systematic study of multi-label
classifi cation is carried out, in order to give a clear description of what is
the multi-label classifi cation and highlight the basic and representative
methods. The chapter is organized as follows. First, we introduce the
formal concept of multi-label classifi cation and several defi nitions from
different perspectives. Second, we divide the multi-label methods into
several types, and provide a thorough description of the state-of-the-art
methods according to different types. Subsequently, we present a number
of frequently-used benchmark datasets and evaluation metrics, which are
used to examine and compare the performance of different methods. Finally,
the conclusions and the further challenges are given in the last section.

(a) a movie with multiple genres (b) a scene have several meanings

Figure 8.1.1: Two examples of multi-label instances

8.2 What is Multi-label Classifi cation
To begin with, let us give the formal concept of multi-label classifi cation
fi rstly, in order to gain a better comprehension of it, and make the analysis
and comparison of the following algorithms more easy.

Let X denote the instance space and L = {l1, l2, ..., lm} be a set of labels,
so D = {(x1, C1), (x2, C2), . . . , (xn, Cn)} can be used to denote a set of multi-
label instances, where xk X is an instance, and Ck L is a subset of L that
denote xk’s true labels. The target of multi-label classifi cation is thus to learn
a classifi er: f : X 2L, which is a mapping from the instance space to the

space consists of all the possible subsets of L, where 2L is the power set of L.
Ck can also be represented as a Boolean vector yk = (bk1, bk2, . . . , bkm), where
bkj = 1 indicates label lj is xk’s true label (lj Ck), whereas bkj = 0 indicates the
opposite.

In the view of probability, the process of multi-label classifi cation can
also be viewed as to calculate the posteriori joint probability of each possible
label vector. If x is an unlabelled instance, and Y is a set of possible label
vector, then the reasonable label vector, for instance, x should be the one that
gets the greatest posteriori probability, as illustrated by Formula 8.2.1.

 yx = arg max (|)
Y y

P Y x
=

 (8.2.1)

However, it’s a NP-hard problem to calculate the posteriori probability

by using Formula 8.2.1 directly, so it’s very diffi cult and time-consuming.
One practicable alternative is to learn the relationship between labels and
characterize the joint probability as a Bayesian network. For each label yk,
let Parent(lk) denote the set of labels that label lk is dependent on, so P(y|x)
can be transformed as Formula 8.2.2

 P(y|x) =
1

(| (),)
m

k k
k

P y parent y x
=
∏ (8.2.2)

where yk denotes the kth label. Hence we can get the label vector’s posterior
probability by computing each label’s posterior probability respectively and
then multiplying them. It’s clear that how to fi nd the dependent labels for
each label is emerging as a critical issue now. Actually, how to learn the
appropriate dependencies among labels in order to improve the learning
performance is getting more and more important. We can also see various
methods in the following sections that try to incorporate label dependencies
into the learning process, and most of them indeed bring benefi t.

The predictions can also be a number of values besides Boolean label
vector in many cases, and each value indicates a label’s probability or
confi dence being the instance’s true label. In these cases, the task of multi-
label classifi cation could be transformed to learning a function f : X × L
R, and thus f(x, l) outputs a real value that indicates label l’s confi dence to
be instance x’s true label. Actually, many multi-label algorithms learn such a
function for each label, in other words, f = {f1, f2, . . . , fm}. Thus the predictions
for instance x takes the form as shown in Formula 8.2.3.

 f(x) = {f1(x), f2(x), . . . , fm(x)} (8.2.3)

The multi-label classifi cation problem thus can be tackled through
solving a label ranking (LR) problem, where the labels are sorted according
to their predicted values in descending order, then a threshold t, is learned

 Multi-Label Classifi cation 183

184 Applied Data Mining

to decide the relevant labels and irrelevant labels. For label li, it is predicted
as a relevant label if fi(x) ≥ t, otherwise it is predicted as an irrelevant label.
LR is a very important issue in multi-label learning, not only it is an effective
means of solving multi-label problems, but also it’s more suitable for some
real applications. For example, users of tag recommendation system might
prefer seeing the most interesting tags top the tag list, instead of just a set
of tags. So it poses a very interesting and useful way to solving multi-
label classifi cation. Usually, LR models can also be learned for single-label
instances to solve the multi-class problems.

Nowadays, researchers have proposed lots of effective and effi cient
methods for multi-label classification, and they mainly fall into two
main categories: (1) algorithm adaptation (2) problem transformation [9].
Algorithm adaptation methods extend traditional single-label algorithms,
such as kNN, decision tree, Naive Bayes etc., in order to enable them
to handle multi-label data directly [4, 10, 11]. By contrast, problem
transformation methods decompose the multi-label instances into one or
several single-label instances, thus existing methods could be used without
modifi cation [12, 13, 14]. In other words, the algorithm adaptation strategy
is to fi t the algorithms to data, whereas the problem transformation strategy
is to fi t data to the algorithms. The primary difference between these two
strategies is that the algorithm adaptation is algorithm-specifi c, therefore
the strategy used in one method can not be applied to another one usually.
Nevertheless the problem transformation is algorithm-independent, so it
is more fl exible and can be used with any existing models. The following
sections will elaborate on them by different categories.

8.3 Problem Transformation
As mentioned above, problem transformation is a fundamental strategy for
tackling multi-label problems. It enables most of the existing methods to
work easily, while making few modifi cations to them. Hence it gets much
popularity among researchers, and various methods based on it have
been proposed [12, 13, 14, 15, 16]. Several simple methods of this kind are
All Label Assignment (ALA), No Label Assignment (NLA), Largest Label
Assignment (LLA) and Smallest Label Assignment (SLA), as summarized
by Chen et al. and used for multi-label document transformation [17]. Let’s
explain these methods through a multi-label dataset shown in Table 8.1.

Table 8.1: A exmaple of multi-label dataset

instances labels
x1 l1, l3
x2 l1, l2, l4
x3 l2
x4 l2,l4

Suppose that we have a set of instances {x1, x2, x3, x4}, as shown in
Table 8.1. For each instance, ALA approach will make a copy of it and
assign the copy to all its true labels respectively. Namely, ALA will
replace an instance {xi, Ci} with |Ci| instances, each of which is associated
with one label in Ci. Thus instance xi will appear |Ci| times in the
dataset. The NLA approach only keeps instances, with a single label and
discards others with more than one label. Different from the previous
two approaches that either keep or delete all the labels of a multi-label
instance, LLA and SLA make a compromise by keeping only one label as
the instance’s fi nal label and discarding the remaining labels. LLA selects
the label that is most frequent among all instances, whereas SLA selects
the label that is least frequent among all instances instead. The results of
transformation for the above example dataset using these 4 approaches
Chen alsaorepsrhoopwonseidn aFignuorveel8.a3p.1p.roach is called
entropy-based weighted label assignment (ELA). This method actually
assigns a weight to each instance that is generated by ALA approach [17].
Generally speaking, the aforementioned approaches are straightforward,
but they ignore lots of potential information in the discarded instances and
labels, which could have been used to enhance the learning performance.
Currently, two commonly used strategies for problem transformation are
label powerset (LP) method that treats all the true labels of each instance
as a new single label, and binary relevance (BR) method that predicts each
label respectively [13, 9]. A considerable mount of methods based on these
two strategies have been proposed, some of them will be inspected in the
following parts respectively.

8.3.1 Binary Relevance and Label Powerset

BR method transforms a multi-label dataset D into |m| single-label datasets
{D1, D2, . . . , Dm}, each one corresponding to a label. Dataset Di includes the
same instances of D, while each instance’s label is changed to 1 if li is its true
labels in D, otherwise it is changed to 0. The generated datasets for dataset
given in Table 8.1 through using BR method are shown in Fig. 8.3.2.

 Multi-Label Classifi cation 185

186 Applied Data Mining

insts label
x1 l1
x1 l3
x2 l1
x2 l2
x2 l4
x3 l2
x4 l2
x4 l4

(a) ALA’s result

insts label
x3 l2

(b) NLA’s result

insts label
x1 l1
x2 l2
x3 l2
x4 l2

(c) LLA’s result

insts label
x1 l3
x2 l1
x3 l2
x4 l4

(d) SLA’s result

Figure 8.3.1: The Transformation results using ALA, NLA, LLA, and SLA

insts l1
x1 1
x2 1
x3 0
x4 0

(a) D1

insts l2
x1 0
x2 1
x3 1
x4 1

(b) D2

insts l3
x1 1
x2 0
x3 0
x4 0

(c) D3

insts l4
x1 0
x2 1
x3 0
x4 1

(d) D4

Figure 8.3.2: Transformation results through using BR method

We can see that one dataset is generated for each label, thus the original
multi-label problem is changed to multiple binary problems. Then a binary
classifi er fi can be trained based on dataset Di, which is responsible for giving
a yes/no prediction for label li. In the end, results from all the binary classifi ers
will be aggregated into a fi nal prediction. Basic BR approach is very straight-
forward and effi cient, and has become a benchmark algorithm for being
compared with other algorithms. However, it assumes that the labels are
independent each other and ignores the potential label dependencies during
the transformation process.

LP method deals with the multi-label problem from a different
perspective. Instead of treating labels respectively, it converts the label
set of each instance into a single label. Thus a set of single-label instances
is formed, where the label space consists of all the possible subsets of the
original label set. After being transformed through using LP method, the
result for dataset given in Table 8.1 should be as shown in Table 8.2.

Table 8.2: The transformation results through using basic LP method

instances labels
x1 {l1, l3}
x2 {l1, l2, l4}
x3 {l2}
x4 {l2, l4}

We can see that the result of LP method is only one dataset instead
of generating one dataset for each label as BR does. Since each instance’s
new label is a subset of original set of labels, the label set now is actually
the power set of the original label set, that’s why we name this method
as Label Powerset. A conventional multi-class classifi er will be trained on
this new dataset, and it will predict the possibilities of each possible subset
of labels directly. Compared with BR method, the benefi t of LP is that the
label dependencies have been taken into consideration since it predicts
multiple labels simultaneously. However, the number of labels would
grow dramatically, and become huge especially when the m is large. So the
instances with same label will be very few, and it’s very diffi cult to build
an effective multilabel classifi er. In order to eliminate the disadvantages
of BR and LP, various methods have been proposed consequently, some of
which will be introduced in the following parts.

8.3.2 Classifi er Chains and Probabilistic Classifi er Chains

Classifi er Chains (CC) algorithm was proposed by Read et al. recently
based on BR method [13]. Similar with BR method, CC also generates a
dataset and then trains a classifi er for each label respectively, but it takes
the dependencies among labels into consideration. CC methods mainly
consists of the following steps. First of all, it randomizes all the labels and
links them along a chain, and it assumes that each label is dependent on
all its preceding labels in the chain. Secondly, the feature set of each label’s
corresponding dataset is extended with all its preceding labels, and each
of these new features in every instance take value of 0/1, according to
whether it is the instance’s true label or not in original dataset. Finally, a
binary classifi er for label li is trained based on the new feature set consist
of original features and all the labels li is dependent on, thus the label
dependencies are incorporated in the process of training classifi ers. Let us
see an example of CC method using the dataset given in Section 8.1. We
simply assume that the randomized order of labels is still {l1, l2, l3, l4}, thus
the generated datasets for every label are given in Fig. 8.3.3.

When predicting labels for test instance x, these labels have to be
predicted in the chain order. Therefore, predictions could be merged with x
to form a new instance suitable for the next classifi er. Although CC method
could utilize label dependencies in a simple way, a potential problem is the
labels are ranked randomly, so the learned dependencies might not always
be consistent with the truth. Thus ECC (Ensemble of Classifi er Chains)
method was also proposed [13], which uses ensemble learning to learn
multiple CC classifi ers, each of which is trained using a different order

 Multi-Label Classifi cation 187

188 Applied Data Mining

of labels. During the prediction phrase, results from all the classifi ers will
be averaged to eliminate the impact of randomness of labels’ order and
increase the overall accuracy.

For every label, CC method always selects the optimal value currently
as its fi nal prediction, without considering its infl uence on the following
labels. So it’s a greedy algorithm essentially, and might not always reach
the globally optimal results. Inspired by CC method, Dembczynski et al.
proposed the probabilistic classifi er chains (PCC) method. It solves the
multi-label problem from the viewpoint of risk minimization and Bayes
optimal prediction [14]. PCC method uses Formula given in 8.3.1 to predict
labels for test instances.

 P(y|x) = 1 2 1
1

(| , ,..., ,)
m

k k
k

P y y y y x−
=
∏ (8.3.1)

where y1, y2, . . . , yk−1 is label yk’s preceding labels in the chain. Similar with
CC method, it also ranks the labels randomly, and assumes each label is
dependent on all the preceding labels. The difference is that PCC will check
all the possible label vector, that is 2m paths in the search space, to fi nd the
one with the highest joint probability, whereas CC only follows a single
path in the search space.

PCC method could achieve a better performance, but the possible
improvement is at the cost of a much higher complexity approximate to
O(2m). Hence it’s reasonable to design more suitable methods that could
depict the label dependencies in a lower-dimensional label space, where
the computation cost is affordable.

Figure 8.3.3: The transformation results using classifi er chains

insts l1
x1 1
x2 1
x3 0
x4 0

(a) D1

insts l1 l2
x1 1 0
x2 1 1
x3 0 1
x4 0 1

(b) D2

insts l1 l2 l3
x1 1 0 1
x2 1 1 0
x3 0 1 0
x4 0 1 0

(c) D3

insts l1 l2 l3 l4
x1 1 0 1 0
x2 1 1 0 1
x3 0 1 0 0
x4 0 1 0 1

(d) D4

8.3.3 Decompose the Label Set

We can view the aforementioned BR and LP methods as two extreme cases.
While BR assumes labels are independent, LP assumes dependencies exist in
any combination of labels. In most cases, the truth is that the labels could be
divided into several groups. Labels from the same group are dependent on
each other strongly, whereas labels from different groups are independent.
Methods based on this assumption usually consist of two primary steps:
one is how to partition the labels to determine the dependencies among
labels, the other is how to incorporate such dependencies in the learning
process. Based on such a learning framework, many approaches have been
proposed by researchers. Let us look through several typical methods in
this subsection.

RAkEL (RAndom k labELsets). This method was proposed based on
the LP transformation [16]. As mentioned above, the number of labels
may become very large and there would be not enough instances to train
an effective classifi er. Hence Tsoumakas et al. introduced the RAkEL
method, aiming at reducing the computation cost of LP while keeping label
dependencies will still be considered. The main idea in RAkEL is fi rstly
to break a large set of labels into a number of small-sized label subsets
randomly. The size of each of the subsets is k, a parameter that could be
adjusted to reach the best performance. Then a LP classifi er is trained for
each of these label subsets. Let’s see a example using the dataset given in
8.1. We simply assume that the set of labels {l1, l2, l3,4 } are divided into two
subsets: {l1, l3} and {l2, l4}, so the generated datasets are as shown in Fig.
8.3.4.

insts {l1, l3}
x1 1
x2 0
x3 0
x4 0

(a) dataset for label {l1, l3}

insts {l2, l4}
x1 0
x2 1
x3 0
x4 1

(b) dataset for label {l2, l4}

Figure 8.3.4: The transformation results using RAkEL method

From Fig. 8.3.4, we could see that this method generates a dataset for
each subset of labels, and the dataset contains all the instances but each
instance’s label is changed to 1 if all the labels in this group is its true labels,
otherwise it is changed to 0. Then the LP method is applied to learn the labels
in the same subset simultaneously. Thus the dependencies among labels
within the same group are incorporated in the learning process, whereas
the possible dependencies between labels from different groups are ignored.
Moreover, each new label will be associated with multiple instances, since

 Multi-Label Classifi cation 189

190 Applied Data Mining

the size of label subset k, might be far less than m, the size of the original
set of labels. For a test instance x, its fi nal prediction is given by combining
predictions of all the classifi ers.

Labels in the above example are divided into two disjoint groups,
however they can also be divided into overlapping groups. Since any
label might appear in multiple overlapping groups, it will be predicted
several times for a test instance. Thus the simple voting strategy will be
used to determine whether it’s true or false based on each value’s times be
predicted. Although having taken label dependencies into consideration,
the primary problem of RAkEL method is that it just determines the division
of labels randomly, so it might result in ignoring the true dependencies and
generating the wrong dependencies instead.

Tenenboim et al. proposed a similar framework with RAkEL method
[18]. In this framwork, Tenenboim assumes that label dependencies
could be analysed explicitly in the following several ways: (1) Label
distribution analysis; (2) Features among category distribution analysis;
(3) Category combinations shown in the training set; (4) Supervised
defi nition of dependencies. After determining the label dependency, one
kind of clustering method could be used to cluster all the labels into disjoint
subsets.

PS (Pruned sets) method has been proposed by Read et al. [15]. Similar
with RAkEL, it’s also based on the LP method and aims at solving the
problem of infrequent label vectors and the diffi culty to build effective
classifi ers. The difference is that RAkEL divides the labels into different
subsets and generates a dataset for each subset, whereas PS method would
prune the label sets until its occurrences n > p, a pruning threshold, and
only one dataset is generated fi nally. The main process is described in the
following steps:

 (a) Let us D = {(x1, C1), (x2, C2), . . . , (xn, Cn)} be a multi-label dataset. For
every label vector Ci, its number of times of occurrences in the whole
dataset D is computed and aggregated as ni.

 (b) For every label vector Ci, if its count ni > p, then all the instances
associated with it will be kept. Otherwise it will be decomposed into
the subsets: {s1, s2, . . . , sn}, while any subset si’s times of occurrences is
greater than p.

 (c) Furthermore, any instance xi associated with ci will be deleted from the
dataset fi rstly, and then be copied and associated with each of these
subsets, resulting in a set of instances {(xi, s1), (xi, s2), . . . , (xi, sn)}. All
these instances will be added to the dataset fi nally.

Now a single dataset is generated and each distinct label vector has
been associated with enough instances, so an effective LP classifi er could
be trained based on it.

8.3.4 Transform Original Label Space to Another Space

Although we have used a simple dataset to explain a number of methods
well, the number of labels in real problems may be huge, and it’s usually
very diffi cult to classify instances in a high-dimensional label space.
Hence researchers try to transform the original label space into a new label
space where the number of labels is smaller and the instances are more
separable.

ECC framework (Error-Correcting Codes). Ferring et al. have applied the
ECC framework on multi-label problems [19]. The main process of this
method includes three steps:

 (a) Firstly, an encoder en(•) : 0, 1m 0, 1k is used to transform each
instance’s original label vector y to a new label vector b, usually b <<
k. Thus each instance (xi, yi) is transformed to (xi, bi).

 (b) Then, a multi-label classifi er is learned based on the new dataset. In
other words, instead of learning a classifi er f(x) : x y, the objective
is changed to learn a classifi er h(x) : x b.

 (c) During the prediction phase for a test, for instance x, we fi rst predict
the label vector bx that might be associated with it, then use a decoder
den(•) : 0, 1k 0, 1m to get the prediction in the original label space.

We can see that this is a general framework and any encoder, decoder
and classifi er can be used in it. It’s also noted that when dividing labels
into overlapped groups, the previous RAkEL method can also be seen as a
special case of ECC method.

KDE-based methods (Kernel Density Estimation). Basic KDE method can
be used to learn the dependencies between two classes of objects [20]. When
used for multi-label classifi cation, it’s similar to the ECC framework and
consists of the same steps. The difference is that the main object of KDE-
based methods is to reduce the high dimensional label space into a low
dimensional label space, to fi nd the latent dependencies among labels and
make the computation cost affordable. However, it’s not necessary for the
encoder used in ECC framework to reduce the label space’s dimension, its
main object is to make the instance more separable. The encoder used in
KDE can also be implemented by various techniques. For instances, Hsu et
al. used CS (compressed sensing) to perform a linear transformation on the
label space [21]. Although the encoder of Compressive Sensing is linear, the
decoder is not. It needs to solve an optimization problem when predicting
labels, for instance, for something that is very time-consuming.

Motivated by the CS method, Tai et al. proposed the PLST (Principal
Label Space Transformation) method [22], which also performs a linear
transformation on the label space. It uses the principal components analysis

 Multi-Label Classifi cation 191

192 Applied Data Mining

technique as the encoder. In the viewpoint of linear algebra, we could create
a m × n matrix Y based on a training dataset, where each column yi is the
label vector of the ith instance. Thereby, the problem of space transformation
can be solved by fi nding an appropriate project matrix P to realize H = P
• Y, while H is a k × n matrix and k << m. Each column hi of H is the ith
instance’s label vector in the low-dimensional label space. In PLST, the SVD
decomposition is performed on the matrix Y, as shown in Formula 8.3.2.

 Y = U VT (8.3.2)

Here U is a k × k unitary matrix, and V is a n × n unitary matrix. The matrix
is a k × n diagonal matrix that contains the singular values σi of each singular
vector ui in matrix U. Without loss of generality, we could assume that the
singular values are ordered as σ1 > σ2 > . . . > σm. Now Formula 8.3.2 can be
rewritten as:

 UTY = VT (8.3.3)

Since the largest k singular values indicate the principle directions of the
original label space Y, so we could discard the rest of the singular values and
their corresponding singular vectors in U to get a smaller project matrix P =
UT

k = [u1, u2, . . . uk]
T that projects the original label matrix Y to a new matrix

H = VT. The decoder can also be obtained easily from Formula 8.3.3, it is
P−1, the inverse matrix of P. So we can see that it’s a straightforward method,
compared with CS method that has to solve an optimization problem.

8.4 Algorithm Adaptation
Algorithm adaptation is another fundamental strategy for multi-label
classifi cation. It extends conventional classifi cation models, such as KNN,
decision tree, Naive Bayes etc., to enable them to deal with the multi-
label problems. Currently, a large number of single-label classifi cation
methods have been extended, let’s see some representative examples in
this section.

8.4.1 KNN-based methods

ML-KNN (Multi-Label K-nearest Neighbour) is the fi rst multi-label lazy
learning algorithm [10]. As its name implies, ML-KNN is derived from the
popular K-nearest neighbor (KNN) algorithm. It decomposes a multi-label
problem into multiple independent binary problems, each one corresponds
to one label. ML-KNN fi rstly fi nds the K nearest neighbours in the training
set for a test instance, then some statistics are collected and the principle
of maximum a posteriori is used to determine the label set of the test
instance.

Let x be an instance, y be the binary label vector associate with x, and
N(x) represents its k nearest neighbours in the training set. For each label li,
ML-KNN will calculate the following statistics information fi rst of all.

 Cx(i) =
()

()x i
x N x

y l
∈
∑ (8.4.1)

where yx(li), the ith value of yx, is 1 if label li is x’s true label, and 0 else. Let
Hi

x represent the event that li is x’s true label, thus P(Hi
x |Cx(i)) represents

the posteriori probability of Hi
x, given Cx(i) instances in N(x) are assigned

with label li, and P(¬Hi
x|Cx(i)) represents the posteriori probability of Hi

x is
false. Thereby, for label li, we could get the classifi cation function fi for it:

fi(x) =
1 if (| ()) (| ())
0 else

i i
x x x xP H C i P H C i⎧ > ¬

⎨
⎩

Classifi cation is simple right now. For an instance x and a label li, we
fi rstly calculate Cx(i), P(Hi

x|Cx(i)) and P(¬Hi
x|Cx(i)), then li is predicted as

the x’s true label if P(Hi
x|Cx(i)) > P(¬Hi

x|Cx(i)), otherwise as a false label.
The key issue is how to calculate these probabilities. Using Bayesian rule,
P(Hi

x|Cx(i)) can be rewritten as

 P(Hi
x|Cx(i)) =

()
() (() |)

()

i i
x x x

x

P H P C i H
P C i

 (8.4.2)

where P(Hi
x) is event Hi

x’s prior probability, and P(Cx(i)|Hi
x) is the probability

that the number of instances in N(x) which are associated with label yi is
Cx(i), given Hi

x is true. We can estimate the P(Hi
x) and P(Cx(i)|Hi

x) by counting
the frequency in training set. Specifi cally speaking, the P(Hi

x) could be
estimated by

 P(Hi
x) = 1

()
2

n
x ii

s y l
s n

=
+

× +
∑

 (8.4.3)

Here s is a smoothing parameter and is usually set to 1, that is the
Laplace smoothing. Estimation of P(Cx(i)|Hi

x) is a little bit complicated. For
label li(1 ≤ i ≤ m), there will be an array: ki, which has k + 1 elements. The value
of ki’s jth element is the count of occurrences that label lj is a true label of
current instance, as well as j instances from its k nearest neighbouring. Then
we could get the conditional probability P(Cx(i)|Hi

x) as Equation 8.4.4.

 P(Cx(i)|Hi
x) =

0

[]

(1) []
j j

k
jr

s k C

s k k r
=

+

× + +∑
 (8.4.4)

 Multi-Label Classifi cation 193

194 Applied Data Mining

Similarly, we could compute P(¬Hi
x|Cx(i)) and P(Cx(i)|¬Hi

x) in the same way.
Since P(Cx(i)) is constant, so we can simply compare P(Hi

x) × P(Cx(i)|Hi
x) and

P(¬Hi
x) × P(Cx(i)|¬Hi

x) to get the prediction.
We can see that ML-KNN method learns a classifi er for each label,

so actually it can also be viewed as a problem transformation method.
Although it has been recognized as an effective algorithm, it assumes the
labels are independent of each other and could not utilize the dependencies
among labels to facilitate the learning process.

Similar with ML-KNN, Cheng et al. proposed IBLR-ML, a method
that is also based on the kNN method [23]. The difference is that it takes
label dependencies into consideration and combines model-based and
similarity-based inference for multi-label classifi cation. IBLR-ML fi rstly
uses the stacking framework to give a base prediction for each label, and
then gives the fi nal prediction for each label based on the base predictions
of other labels. Thus the prediction process for a test instance x consists
of two steps. Firstly, basic KNN method is used to predict base labels of x
respectively. For instance, for label l {0, 1}, its probability to be x’s base
label is given by the Equation 8.4.5.

 P(l = 1) =
|{ () | 1} |

()
i lx N x y

N x
∈ =

 (8.4.5)

Here N(x) is x’s k nearest neighbours. According to KNN model, the
probability of label l to be x’s base label is the proportion of instances in
N(x) that are also associated with l.

IBLR-ML then uses a logistic regression model to compute the fi nal
probability of each label li based on the base probabilities of all labels. Let
bpi and fpi denote the base and fi nal probability respectively, that li is x’s true
label. The fi nal probability can then be got by the Equation 8.4.6.

 0
1

log()
1

m
i

i i
ii

fp a a bp
fp =

= +
− ∑ (8.4.6)

Here a0, . . . , am is the parameters needed to be learned. Now it is
clear that when giving fi nal prediction for each label, all other labels are
considered, thus the potential dependencies are considered.

8.4.2 Learn the Label Dependencies by the Statistical Models

So far, most of aforementioned methods assume that labels are independent
or learn the dependencies in a intuitive way. Formal defi nition of label
dependency is not given and how to measure and depict it is also not clear.
Thus researches applied a number of statistical models to depict the label
dependencies explicitly.

Tenenboim-Chekina et al. proposed the ChiDep algorithm. It
measures the dependencies between pairwise labels using Chi-square
test and divides the labels into several mutually exclusive subsets [24].
Ghamrawi et al. applied the conditional random fi elds model to create an
undirected graphical representation of the relationships between labels
and features [25]. Bieza et al. proposed the multi-dimensional Bayesian
network [26], which organizes the labels and features into three subgraphs:
label subgraph, feature subgraph, and label-feature subgraph. Zhang et
al. proposed the LAED method [27], which uses a Bayesian network to
represent the relationships between labels. Fu et al. proposed the LDTS
method to depict the label dependencies using a tree model [28]. Guo et al.
used the conditional dependency network to create a cyclic directed graphic
model for representing the label dependencies [29].

8.5 Evaluation Metrics and Datasets
Evaluation is a critical way to fi nd the appropriate methods for a specifi c
application. Now we have encountered different kinds of multi-label
learning methods and there are more potential methods we haven’t
mentioned. With lots of available methods, we have to determine which one
could generate the most appropriate classifi cation model for a application
in practice. You may wish to evaluate and compare their performances to
fi nd the good ones. But what is good and how we can estimate it? Moreover,
in most cases we could characterize multi-label instances from different
aspects and these features are related to the model’s performance closely.
So what are the representative features of multi-label data and how could
we get them? These questions will be addressed in this section. First, some
typical evaluation metrics are introduced, then multiple datasets that are
widely used for evaluating different multilabel learning methods and
several statistics for characterizing these datasets are described.

8.5.1 Evaluation Metrics

Since each instance may have several labels simultaneously, conventional
metrics used for evaluating single-label classifi cation methods, such as
accuracy, error rate, etc. can not be used directly. Thus several appropriate
metrics that can deal with multi-label predictions are introduced by
researchers. Generally speaking, these metrics mainly fall into two
categories, i.e., bipartition-based metrics and ranking-based metrics.
Furthermore, they can be further divided as instance-based metrics and
label-based metrics [9]. Before going through the detail defi nitions of these
metrics, we fi rst specify the notations that will be used. Let D = {(x1, C1),

 Multi-Label Classifi cation 195

196 Applied Data Mining

(x2, C2), . . . , (xn, Cn)} be a dataset, where xi is its ith instance, and Ci L is its
true labels. Given a classifi er f and a test instance xi, Yi denotes the possible
labels of xi predicted by f. rank(xi) or ranki denotes the predicted rank of
labels, and rank(xi, l) denotes the label l’s position in the rank.

Bipartition-based metrics simply focus on whether the labels are
correctly predicted or not, without considering to what extent the labels
are correctly predicted. Thus predictions with different confi dences will get
the same evaluation value according to these metrics. Several well-known
metrics of this type are as follows:

 (1) Subset accuracy. It is similar to the accuracy used in single-label learning,
and computes the ratio of instances for which the predicted set of
labels match the true set of labels exactly. Its defi nition is given by the
Equation 8.5.1.

 SubsetAccuracy(f, D) =
1

1 ()
n

i i
i

I Y C
n =

=∑ (8.5.1)

where I(true)=0 and I(false)=0. Obviously it’s a very strict measure, since
the prediction will still be viewed as totally wrong, even if only few of
the labels are predicted incorrectly and the rest get right predictions. The
greater this measure is, the better the classifi er’s performance is, and the
optimal value could be 1, that indicates all instances’ labels get the exact
predictions. However, it’ should be noted that it’s very diffi cult to predict
all labels correctly when there are a huge number of labels, thus the actual
value should be very small in most cases.

 (2) Hamming Loss. This measure is proposed by Schapire and Singer [3],
and it’s defi nition is given in Equation 8.5.2.

 H-Loss(f, D) =
1

| |1 n
i i

i

Y C
n m=

⊕∑ (8.5.2)

where the operator calculates the symmetric difference of two sets of
labels. So |•| returns the number of misclassifi ed labels, for instance. We
can see that it’s a more reasonable measure compared with Subset accuracy,
since it results in better evaluation to the classifi er which can predict the
majority of the labels correctly. The smaller this measure is, the better the
classifi er’s performance, and the optimal value could be 0 when the labels
of all instances are predicted correctly. Hamming Loss can also be viewed as
a kind of label-based metric, since it can be decomposed by labels, and for
each label the evaluation is the same as the traditional accuracy for single-
label learning.

 (3) Precision. It calculates the ratio between intersection of the two sets of
labels and the set of true labels, as depicted in Equation 8.5.3.

 Precision(f, D) =
1

| |1
| |

n
i i

i i

Y C
n C=

∩∑ (8.5.3)

As shown, this metric would compute the portion of one instance’s
true sets of labels that are predicted correctly. The difference between it
and Hamming Loss is it only concerns the predictions of one instance’s
set of true labels and does not care about whether the remaining labels
are predicted correctly or not, while Hamming Loss takes all the labels’
predictions into consideration. The greater this measure is, the better the
classifi er’s performance is, and the optimal value could be 1 when all the
instances’ true labels get right predictions.

 (4) Recall. Different from Precision, this metric calculates the ratio between
intersection of the two sets of labels and the set of predicted labels, as
showed in Equation 8.5.4.

 Recall(f, D) =
1

| |1
| |

n
i i

i i

Y C
n Y=

∩∑ (8.5.4)

It evaluates the classifier’s performance from the perspective of
predicted labels, since it only focuses on the portion of an instance’s set
of predicted labels that are its true labels. The greater this measure is, the
better the classifi er’s performance, and the optimal value could be 1 when
all the predicted labels are the instance’s true labels, even some of its true
labels are still predicted wrongly.

 (5) F1 measure. Since precision and recall evaluate classifi er’s from different
prospectives, optimizing any one will make the other decline.
Therefore, F1 measure is introduced to make a trade-off between them
and get a reasonable result. It’s described by Equation 8.5.5.

 F1(f, D) =
1

2 | |1
| | | |

n
i i

i i i

Y C
n Y C=

∩
+∑ (8.5.5)

the better the classifi er’s performance is, and the optimal value could be 1.
The aforementioned 3 metrics are heavily used in information retrieval to
evaluate the returned documents given an ad hoc query.

 (6) Accuracy. It evaluates the average ratio of the intersection of the two
sets of labels and the union of the two sets of labels, as depicted in
Formula 8.5.6.

 Accuracy(f, D) =
1

2 | |1
| | | |

n
i i

i i i

Y C
n Y C=

∩
+∑ (8.5.6)

The greater this measure is, the better the classifi er’s performance,
and the optimal value could be 1. We can see that it’s a more strict metric

 Multi-Label Classifi cation 197

198 Applied Data Mining

compared with precision and recall, since only when the predicted label set
matches the true label set exactly, the optimal value could be reached.

All the above are bipartition-based metrics. There are other kinds of
metrics called rank-based metrics. While the former are based on binary
predictions of the labels, the latter are based on a predicted rank of labels,
instead of giving an explicit yes/no predictions. The following are the several
commonly used rank-based metrics.

 (1) One-error. It evaluates how many times the top-ranked label is not in
the instance’s set of true labels, as given in Equation 8.5.7.

One-error(f, D) =
1

1 (arg max (,))
i

n

il Yi
rank x l

n ∈=
∑ δ (8.5.7)

where δ(•) = 1 when l isn’t xi’s true label, otherwise δ(•) = 0. One-error is not
a very rigorous metric, since it only concerns whether the top-rank one is a
true label or not, while ignoring the remaining true labels’ predictions. So it
might not able to give a reasonable evaluation of the classifi er’s performance.
The smaller this measure is, the better the classifi er’s performance, and the
optimal value could be 0 when the top-rank label is the its true label for
all instances.

 (2) Coverage. It computes how far it is needed to go down the ranked list
of labels to cover one instance’s all true labels, as given in Formula
8.5.8

 Coverage(f, D) =
1

1 max (,) 1
i

n

il Ci
rank x l

n ∈=

−∑ (8.5.8)

Smaller value of this measure means more true labels are ranked before
the false labels and thus the classifi er’s performance is better.

 (3) Ranking Loss. It computes the number of times when false labels are
ranked before the true labels, as given in Equation 8.5.9.

R-Loss =
1

1 1 |{(,) : (,) (,), (,) } |
| || |

n

a b i a i b a b i i
i i i

l l rank x l rank x l l l C C
n C C=

> ∈ ×∑ (8.5.9)

where Ci is the set of false labels of instance xi. This metric compares any
possible pairwise labels’ rank that one is the true label and the other is a
false label. The smaller this measure, the better the classifi er’s performance,
and the optimal value could be 0 when any one of the true labels is ranked
before all the false labels.

 (4) Average Precision. This metric is fi rstly used in the fi eld of information
retrieval, to evaluate the rank of result documents, given a specifi c
query. It computes the average fraction of labels ranked above a

particular true label, while these labels are also true labels. The
defi nition is given in Formula 8.5.10.

AvePrec =
1

|{ : (,) (,)} |1 1
| | (,)

i

n
i i i

i l Ci i

l' C rank x l' rank x l
n C rank x l= ∈

∈ ≤∑ ∑ (8.5.10)

The greater this measure, the better the classifi er’s performance is, and
the optimal value could be 1.

Roughly speaking, all preceding bipartition-based and rank-based
metrics evaluate the performance of classifi ers from different aspects.
Therefore, there could be no single classifi cation model which could perform
well on all metrics, and there is also no general metric that could be used for
evaluating any kinds of classifi ers. It depends on the particular problems
and the objectives of learning to select appropriate metrics. Moreover,
there might be potential relationships between different metrics, which are
implicit now and need further investigation.

8.5.2 Benchmark Datasets and the Statistics

In this subsection, some representative datasets used extensively by
researchers are presented. Since different characteristics of multi-label
data might have different impacts on the learning methods, so the
explicit definitions of various characteristics should be given first to
assist observation of the relationship between datasets and classifi ers’
performances. The following are a number of fundamental statistics for
characterizing multi-label datasets.

 (1) Label Cardinality. It calculates the average number of labels for each
instance, which is defi ned as follows.

 LC =
1

1 | |
n

i
i

C
n =
∑ (8.5.11)

where |Ci| is the number of the ith instance’s true labels.

 (2) Label Density. It is calculated through dividing the label cardinality by
m, the size of original label set, which is defi ned as follows.

 LD =
1

1 n
i

i

C
n m=
∑ (8.5.12)

 (3) Distinct Label Sets. It counts the number of distinct label vectors which
appeared in the data set, which is defi ned as follows:

 DLS(D) = |{C| (x, C) D}| (8.5.13)

 Multi-Label Classifi cation 199

200 Applied Data Mining

 (4) Proportion of Distinct Label Sets. It normalizes the DLS(s) by the number
of instances, which is defi ned as follows.

 PDLS(D) =
()DLS S

n
∗

 (8.5.14)

Table 8.1: Description of representative multi-label benchmark datasets

name insts atts labels LC LD DLS PDLS
bibtex[7] 7395 1836 159 2.402 0.015 2856 0.386
bookmarks[7] 87856 2150 208 2.028 0.010 18716 0.213
CAL500[31] 502 68 174 26.044 0.150 502 1
corel5k[32] 5000 499 374 3.522 0.009 3175 0.635
delicious[5] 16105 500 983 19.020 0.019 15806 0.981
emotions[33] 593 72 6 1.869 0.311 27 0.045
enron 1702 1001 53 3.378 0.064 753 0.442
genbase[34] 662 1186 27 1.252 0.046 32 0.516
mediamill[35] 43907 120 101 4.376 0.043 6555 0.149
medical 978 1449 45 1.245 0.028 94 0.096
rcv1v2[36] 6000 47236 101 2.880 0.029 1028 0.171
tmc2007[37] 28596 49060 22 2.158 0.098 1341 0.046
scene[12] 2407 294 6 1.074 0.179 15 0.006
yeast[38] 2417 103 14 4.237 0.303 198 0.081

As mentioned in the beginning, multi-label data are ubiquitous in the
real applications, including text analysis, image classifi cation, prediction
of gene functions etc. Researchers have extracted multiple benchmark
datasets from these practical problems and used them to examine and
compare various multi-label methods’ performance. Tsoumakas et al. have
summarized a number of datasets used commonly, with corresponding
informations including source reference, number of instances, features,
labels, etc. and other statistics [9]. Table 8.1 gives the detailed descriptions
of the datasets and all of them are available for download at the homepage
of Mulan, an open source platform for multi-label learning [30].

8.6 Chapter Summary
So far we have introduced the defi nition of multi-label classifi cation and
various types of algorithms for it. The typical measure metrics and datasets
used for experiments are also given. Although we have reached a great deal
of achievements, the problem is actually not tackled very well. The following
issues still should be given enough concerns and need further research.

The fi rst one is the instance spareness problem, since the number of
possible label vectors has grown explosively with the increasing size of
original label space m. For example, the size of possible label space would
be 220 fi nally, even if m is only 20. Consequently, the number of positive

instances that have the same label vector would decrease dramatically, and
it is diffi cult to build an effective classifi er for each possible label vector.

The second one is the label spareness problem. In most cases, there
will be hundreds or even thousands of labels in the label space, whereas
most of the instances might only be associated with few labels only, for
example, less than fi ve. Hence most of the labels will have few positive
instances and too many negative instances. This situation would lead to
the class-imbalance problem that is common in machine learning when
building classifi ers label by label, and make learning the real distribution
of labels more diffi cult.

Moreover, there are always certain kinds of dependencies among the
labels in multi-label data. For instance, a thriller is likely to be an action
fi lm, while the same book could probably not be of technique and fi ction
simultaneously. It can be seen clearly that learning these dependencies
would benefi t the learning process. Although many methods have been
proposed, many of them simply assume that there are only random label
dependencies, not giving a formal defi nition of dependency and measure it
precisely. Thus the dependencies these method have learned might violate
the reality. Other primary challenges and practical issues include the curse
of dimension, how to explore the semantic meaning of labels etc., thus more
appropriate classifi cation models for multi-label problems are needed.

References
 [1] J. Han and M. Kamber. Data mining concepts and techniques. San Mateo, CA: Morgan

Kaufmann. 2006.
 [2] A. K. McCallum. Multi-label text classifi cation with a mixture model trained by EM. In:

Proceedings of AAAI’99 Workshop on Text Learning. 1999.
 [3] R. E. Schapire and Y. Singer. Boostexter. A boosting-based system for text categorization.

Machine Learning, Vol. 39, pp. 135–168, Number 2–3, 2000.
 [4] A. Clare and R. D. King. Knowledge discovery in multi-label phenotype data. In:

Proceedings of the 5th European Conference on Priciples of Data Mining and Knowledge
Discovery(PKDD2001). Freiburg, Germany, pp. 42–53, 2001.

 [5] G. Tsoumakas, I. Katakis and I. Vlahavas. Effective and effi cient multilabel classication
in domains with large number of labels. In: Proceedings of ECML/PKDD 2008 Workshop
on Mining Multidimensional Data (MMD08), pp. 30–44, 2008.

 [6] G. Qi, X. Hua, Y. Rui et al. Correlative multi-label video annotation. In: Proceedings of
the 15th International Conference on Multimedia. New York, pp. 17–26, 2007.

 [7] I. Katakis, G. Tsoumakas and I. Vlahavas. Multilabel text classifi cation for automated
tag suggestion. In: Proceedings of the ECML/PKDD 2008 Discovery Challenge. 2008.

 [8] Y. Song, L. Zhang and C. L. Giles. Automatic tag recommendation algorithms for social
recommender systems. ACM Transactions On the Web, Vol. 1, pp. 4, Number 5, 2011.

 [9] G. Tsoumakas, I. Katakis and I. Vlahavas. Mining multi-label data. In: M. Oded and
R. Lior (eds.). Data Mining and Knowledge Discovery Handbook, New York: Springer, pp.
667–85, 2010.

 [10] M. Zhang and Z. Zhou. ML-KNN: A lazy learning approach to multi-label learning.
Pattern Recognition, Vol. 40, pp. 2038–2048, Number 7, 2007.

 Multi-Label Classifi cation 201

202 Applied Data Mining

 [11] M. Zhang, J. M. Pena and V. Robles. Feature selection for multi-label naive bayes
classifi cation. Information Sciences, Vol. 179, pp. 3218–29, Number 19, 2009.

 [12] M. R. Boutell, J. Luo and X. Shen et al. Learning multi-label scene classifi cation. Pattern
Recognition, Vol. 37, pp. 1757–71, No. 9, 2004.

 [13] J. Read, B. Pfahringer and G. Holmes et al. Classifi er chains for multi-label classifi cation.
In: Proceedings of the European Conference on Machine Learning and Knowledge Discovery in
Databases: Part II. Bled, Slovenia: Springer-Verlag, pp. 254–69, 2009.

 [14] K. Dembczynski, W. Cheng and E. Hullermeier. Bayes optimal multilabel classifi cation
via probabilistic classifi er chains. In: J. Furnkranz and T. Joachims (eds.). Proceedings of
the 27th International Conference on Machine Learning (ICML2010). Aifa, Israel: Omnipress,
pp. 279–86, 2010.

 [15] J. Read. Multi-label classifi cation using ensembles of pruned sets. In: Proceedings of the
2008th IEEE International Conference on Data Mining(ICDM2008). Pisa, Italy, pp. 995–1000,
2008.

 [16] G. Tsoumakas, I. Katakis and I. Vlahavas. Random k-labelsets for multi-label classifi cation.
IEEE Transactions on Knowledge and Data Engineering, Vol. 23, pp. 1079–89, Number
7, 2011.

 [17] W. Chen, J. Yan and B. Zhang. Document transformation for multi-label feature selection
in text categorization. In: Proceedings of the 7th IEEE International Conference on Data
Mining. Omaha, NE, pp. 451–56, 2007.

 [18] L. Tenenboim, L. Rokach and B. Shapira. Multi-label classifi cation by analyzing labels
dependencies. In: Proceedings of the Workshop on Learning from Multi-label Data at ECML
PKDD 2009. Bled, Slovenia, pp. 117–131, 2009.

 [19] C. Ferng and H. Lin. Multi-label classifi cation with error-correcting codes. Journal of
Machine Learning Research, Vol. 20, pp. 281–95, 2011.

 [20] J. Weston, O. Chapelle and A. Elisseeff. Kernel dependency estimation. In: S. Becker,
S. Thrun and K. Obermayer (eds.). Advances in Neural Information Processing Systems
15 (NIPS 2002), pp. 873–80, 2003.

 [21] D. Hsu, S. Kakade and J. Langford. Multi-label rrediction via compressed sensing. In:
Y. Bengio, D. Schuurmans and J. D. Lafferty (eds.). Proceedings of 24th Annual
Conference on Neural Information Processing Systems. Vancouver, British Columbia,
Canada, pp. 772–80, 2009.

 [22] F. Tai and H. Lin. Multi-label classifi cation with principle label space transformation.
In: 2nd International Workshop on Learning from Multi-Label Data (MLD10). Haifa, Israel,
pp. 45–52, 2010.

 [23] W. Cheng and E. Hullermeier. Combining instance-based learning and logistic regression
for multilabel classifi cation. Machine Learning, Vol. 76, pp. 211–25, Number 2–3, 2009.

 [24] L. Tenenboim-Chekina, L. Rokach and B. Shapira. Identifi cation of label dependencies
for multi-label classifi cation. In: 2nd International Workshop on Learning from Multi-
label Data (MLD’10). Haifa, Isrel, pp. 53–60, 2010.

 [25] N. Ghamrawi and A. K. McCallum. Collective multi-label classifi cation. In: Proceedings of
the 2005 ACM Conference on Information and Knowledge Management (CIKM2005). Bremen,
Germany, pp. 195–200, 2005.

 [26] C. Bielza, G. Li and P. Larranage. Multi-dimensional classifi cation with Bayesian
networks. International Journal of Approximate Reasoning, Vol. 52, pp. 705–727, No. 6,
2011.

 [27] M. Zhang and K. Zhang. Multi-label learning by exploiting label dependency. In: B.
Rao, B. Krishnapuram, A. Tomkins et al. (eds.). Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD2010).
Washington, DC, USA, pp. 999–1008, 2010.

 [28] Bin Fu, Zhihai Wang, Rong Pan et al. Learning tree structure of labels dependency for
multi-label learning. In: P. Tan, S. Chawla and C. K. Ho (eds.). Proceedings of 16 Pacifi c-
Asia Knowledge Discovery and Data Mining (PAKDD 2012). Kuala Lumpur, Malaysia, pp.
159–170, 2012.

 [29] Y. Guo and S. Gu. Multi-label classifi cation using conditional dependency networks.
In: T. Walsh (eds.). Proceedings of the 22nd International Joint Conference on Artifi cial
Intelligence(IJCAI2011). Barcelona, Catalonia, Spain, pp. 1300–05, 2011.

 [30] G. Tsoumakas, E. Spyromitros-Xioufi s and J. Vilcek Mulan. A java library for multilabel
learning. Journal of Machine Learning Research, Vol. 12, pp. 2411–14, 2011.

 [31] D. Turnbull, L. Barrington and D. Torres. Semantic annotation and retrieval of music
and sound effects. IEEE Transactions On Audio, Speech, and Language Processing, Vol.
16, pp. 467–76, Number 2, 2008.

 [32] P. Duygulu, K. Barnard and J. F. G. de Freitas. Object recognition as machine translation:
Learning a lexicon for a fi xed image vocabulary. In: A. Heyden, G. Sparr and M. Nielsen
(eds.). Proceedings of the 7th European Conference on Computer Vision. Copenhagen,
Denmark, pp. 97–112, 2002.

 [33] K. Trohidis, G. Tsoumakas, G. Kalliris et al. Multi-label classication of music into
emotions. In: J. P. Bello, E. Chew and D. Turnbull (eds.). Proceedings of the 9th International
Conference on Music Information Retrieval (ISMIR2008). Philadelphia, PA, USA, pp. 325–30,
2008.

 [34] S. Diplaris, G. Tsoumakas and P. Mitkas. Protein classifi cation with multiple algorithms.
In: Proceedings of the 10th Panhellenic Conference on Informatics (PCI 2005). Volos, Greece,
pp. 448–56, 2005.

 [35] C. G. M. Snoek, M. Worring and J. C. van Gemert. The challenge problem for automated
detection of 101 semantic concepts in multimedia. In: Proceedings of the 14th annual ACM
international conference on Multimedia, New York, USA, pp. 421–30, 2006.

 [36] D. D. Lewis, Y. Yang and T. G. Rose. RCV1: a new benchmark collection for text
categorization research. Journal of Machine Learning Research, Vol. 5, pp. 361–97, 2004.

 [37] A. Srivastava and B. Zane-Ulman. Discovering recurring anomalies in text reports
regarding complex space systems. In: Proceedings of the 2005 IEEE Conference on Aerospace.
pp. 3853–62, 2005.

 [38] A. Elisseeff and Jason Weston. A kernel method for multi-labelled classifi cation. In:
T. G. Dietterich, S. Becker and Z. Ghahramani (eds.). Advances in Neural Information
Processing Systems 14. Vancouver, British Columbia, Canada, MIT Press, pp. 681– 87,
2001.

 Multi-Label Classifi cation 203

CHAPTER 9

Privacy Preserving in Data Mining

Privacy preserving in data mining is an important issue because there is an
increasing requirement to store personal data for users. The issue has been
thoroughly studied in several areas such as the database community, the
cryptography community, and the statistical disclosure control community.
In this chapter, we present the basic concepts and main strategies for the
privacy-preserving data mining.

The k-anonymity approach will be presented in Section 9.1. The
l-diversity strategy will be introduced in Section 9.2. The t-Closeness
method will be presented in Section 9.3. Discussion on privacy preserving
data mining will be presented in Section 11.4. Chapter summary will be
presented in Section 11.5.

9.1 The K-Anonymity Method
Due to the importance of privacy preserving in various applications,
especially for protecting personal information, Samarati [21] fi rst introduced
the issue and proposed several effi cient strategies to address it. Samarati
observed that although the data records in many applications are made
public by removing some key identifi ers such as the name and social-
security numbers, it is not diffi cult to identify the records with the help of
taking into account some other public data. This happens especially more
commonly in the medical and fi nancial fi eld where microdata that are
increasingly being published for circulation or research, can lead to abuse,
compromising personal privacy.

Figure 9.1.1 shows a concrete example to explain the personal
information leaking issue. The published data in Fig. 9.1.1 (a) has been
de-identifi ed by removing the users’ names and Social Security Numbers
(SSNs). It is thus thought to be safe enough. Nevertheless, some attributes
of the public data, such as ZIP, DateOfBirth, Race, and Sex can also exist
in other public datasets and therefore, this information can be jointly used

to identify the concrete person. As shown in Fig. 9.1.1 (a), the attributes of
ZIP, DateOfBirth, and Sex in the Medical dataset can be linked to that of
the Voter List (Fig. 9.1.1 (b)) to discover the corresponding persons’ Name,
Party, and so forth. Given the concrete example, we can observe that there
is one female in the Medical dataset who was born on 09/15/61 and lives in
the 94142 area. This information can uniquely recognize the corresponding
record in the Voter list, that the person’s name is Sue J. Carlson and her
address is 900 Market Street, SF. Through this example, we can see that there
exists personal information leak by jointly considering the public data.

(a) Medical dataset

(b) Voter list

Figure 9.1.1: Re-identifying anonymous data by linking to external data [21]

To address the problem mentioned above, Samarati [21] introduced an
effective concept, i.e., k-anonymity, defi ned as follows:

Defi nition 1 (k-anonymity) Each release of the data must be such that every
combination of values of quasi-identifi ers can be indistinguishably matched to at
least k respondents.

The key idea is that, to reduce the risk of record identifi cation, it requires
that each record in the public table should be not distinct and no fewer than
k records can be returned according to any query.

To fulfi ll the purpose of k-anonymity, the author in [21] introduced two
main strategies, i.e., generalization and suppression. For the generalization
approach, it generalizes the attribute values of records to a larger range so
that the granularity of the representation is reduced. For the above example,
it could generalize the date of birth to the year of birth and therefore, make
those records indistinct. The idea of the suppression strategy is to remove
those sensitive attributes’ value or hide them. As we can see, the privacy
obtained from these strategies is at the price of losing some information
of the original data. Therefore, there is always a trade-off between privacy
preserving and the accuracy of the transformed data. To take a good balance
between privacy and accuracy, the author in [21] introduced the concept of

 Privacy Preserving in Data Mining 205

206 Applied Data Mining

k-minimal generalization to limit the level of generalization while keeping
as much data information as possible with regard to some determined
anonymity.

Although the work in [21] has tackled the privacy preserving issue
for some extent, the problem itself is very diffi cult to solve optimally. It is
well known that the problem of optimal k-anonymization is NP-hard, as
demonstrated in [20]. As a result, most existing studies aim to introduce
effective and effi cient heuristic strategies to address it, such as [21, 5, 13].
More detail survey about the issue can be found in [6].

Bayardo et al. [5] introduced an order-based strategy to improve
the effi ciency of tackling the issue. It takes the attributes of records into
two groups, i.e., quantitative attribute and categorical attribute. For the
quantitative attributes, the values of them are discretized into intervals. For
the categorical attributes, the values are clustered into different classes. The
authors deal with each group as an item that could be ordered. Similar to
traditional database techniques, the authors [5] introduced an effective index
to facilitate the traversing process on a set enumeration tree. This tree is in
a similar sense of that applied in the frequent pattern mining literature (See
Chapter 6), which is used to enumerate all the candidate generalizations
based on the items. The construction of the tree is as follows: (1) fi rst set
the root of the tree, which is a null node; and (2) each successive level of
the tree is built by adding one item which is larger than all the items in
the previous tree. The order is based on the lexicographical order. We can
see that it could be possible the tree grows too large and thus, could be
impractical to deal with. To address this issue, the authors [5] proposed
several effective strategies to prune the candidate generalizations as early as
possible. However, all of these techniques are heuristic and the complexity
of the tree building (and item generalization) is not optimal. The proposed
strategy in [5] follows a branch and bound manner, that it could terminate
the item generalization process earlier. As demonstrated in the paper [5],
the introduced algorithm shows a good performance compared with the
state-of-the-art ones.

To further improve the effi ciency, in a later paper [13], LeFevre et
al. proposed the Incognito algorithm. The basic idea of Incognito is that it
utilizes bottom-up breadth fi rst search strategy to traverse all the candidate
generalizations. Specifi cally, it generates all minimal k-anonymous tables
through the following steps: (1) for each attribute, it removes those
generalizations which could not satisfy the k-anonymity; (2) it joins two
(k)-dimensional generalizations to obtain the (k+1)-dimensional candidate
generalization and then evaluate the candidate. If it cannot pass the
k-anonymity test, the candidate will be pruned. This step is in a similar sense
of that introduced for frequent pattern mining (i.e., candidate-generate-
and -test in Chapter 6). All the candidate generalizations can be traversed

without duplication and loss. There is a distinct for [14, 13] that the authors
deal with the data as a graph instead of a tree, which was assumed in the
previous work [21].

There are some other works applying the generalization and suppression
strategies to tackle the privacy preserving issue [23, 10]. The basic idea of
[10] is that it applies a top down approach to traverse all the candidate
generalization. Because of the special property of the process, which is to
reverse the bottom up process, it will decrease the privacy and increase
the accuracy of the data while traversing the candidates. As stated in the
paper [10], the method can control the process so as to obey the k-anonymity
rule. In a later paper [23], the authors introduced several complementary
strategies, e.g., bottom-up generalization, to further improve the whole
performance.

The essential step to generate the candidate generalization is to
traverse all the subspaces of multi-dimensions. As a result, it could use
genetic algorithm or simulated annealing to tackle the issue. Iyengar [11]
introduced the genetic algorithm based strategy to transform the original
into k-anonymity model. In another work [24], the authors proposed a
simulated annealing algorithm to address the problem.

In addition to the commonly used strategies, i.e., generalization and
regression, there is some other techniques proposed, such as the cluster
based approach [8, 2, 3]. The basic idea for these works is that the records
are fi rst clustered and each cluster is represented by some representative
value (e.g., average value). With the help of these pseudo data, privacy can
be effectively preserved while the aggregation characteristics of the original
data is well reserved. However, how to measure the trade-off between the
privacy and the reserved data information seems to be an issue.

Figure 9.2.1: Example for l-diversity [17]

Using views appropriately is another technique to protect privacy. The
basic idea is that we can just show a small part of the views (that sensitive
attributes can be controlled) to the public. However, this approach may fail if
we unintentionally publish some important part of the views, which lead to

 Privacy Preserving in Data Mining 207

208 Applied Data Mining

the violation of k-anonymity. [26] studied the issue of using multiple views
and clarifi ed that the problem is NP-hard. Moreover, the authors introduced
a polynomial time approach if the assumption of existing dependencies
between views holds.

The complexity of tackling the k-anonymity issue is diffi cult to measure.
The existing works limit the analysis on the approximation algorithms
[4, 3, 20]. These methods guaranteed the solution complexity to be within a
certain extent. In [20], the authors introduced an approximate method that
at O(k · logk) cost, while in [4, 3], the authors proposed some algorithms
that guaranteed O(k) computation cost.

9.2 The l-Diversity Method
Although the k-anonymity is simple and effective to tackle the issue of
privacy preserving to some extent, it is susceptible to many vicious attacks,
such as homogeneity attack and background knowledge attack [17, 18],
defi ned as follows.

 • Homogeneity Attack: For this case, there are k tuples that have the
same value of a sensitive attribute. From the previous viewpoint, it
follows the privacy preserving of the k-anonymity. However, these k
tuples as a group can be identifi ed uniquely.

 • Background Knowledge Attack: For this case, it is possible that the
sensitive and some quasi-identifi er attributes can be combined together
to infer certain values of some sensitive attributes.

The concrete examples which describe the attacks are illustrated in
Fig. 9.2.1. It shows the patient information from a New York hospital (Fig.
9.2.1 (a)). There are no critical attributes such as name, SSN, and so forth.
The attributes are classifi ed into two categories, i.e., the sensitive and non-
sensitive attributes. The values of the sensitive attributes are preferred by
adversaries. Figure 9.2.1 (b) presents the 4-anonymity transformed data,
i.e., the mark * indicates a suppression value between 0 and 9 for Zip code
and Age. The examples for the attacks which cannot be prevented by the
k-anonymity are shown as follows:

 • Example of Homogeneity Attack [17]: Alice and Bob are neighbors
who know each other very well. Alice fi nds the 4-anonymous table,
i.e., Fig. 9.2.1 (b), which is published by the hospital and she knows
that Bob’s information exists in it. Moreover, Alice knows that Bob is
an American whose age is 31 and lives in the 13053 area. As a result,
it is easy to infer that Bob’s number is between 9 and 12. From the
table, Alice can make a conclusion that Bob has cancer because any
person whose number in the range (i.e., [9,12]) has the same health
problem.

 • Example of Background Knowledge Attack [17]: Alice has another
friend, Tanaka, whose medical information also appears in the table
(i.e., Fig. 9.2.1 (b)). Tanaka is a Japanese female whose age is 21 and
lives in the 13068 area so it can be inferred that Tanaka’s number is
between 1 and 4, whose health problem could be heart disease or viral
infection. Because it is well known that Japanese people seldom got
heart disease, Alice knows that Tanaka has a viral infection issue.

From the above examples, we can see that although the k-anonymity
is an effective solution to preserve the records’ privacy, in some cases, it
may lose effectiveness on protecting sensitive information. To tackle these
issues, l-diversity [17, 18] was proposed by keeping the diversity of the
attributes to hide sensitive information.

Machanavajjhala et al. [17, 18] proposed the diversity principle, i.e.,
l-diversity, to protect sensitive information from malicious attacks. To fulfi ll
this purpose, it requires each quasi-identifi er attribute group has at least l
“well represented” different values, which can be used to make the tuple
indistinct. To defi ne how well the values of attributes represented, several
possible models could be applied. The simplest one is that at least l distinct
values exist in the attribute group. If we have l=k, then it should satisfy
the k-anonymity. This model is mentioned in [22]. However, this simple
implementation can still be attacked, i.e., probabilistic inference attack. The
reason is that some values are more frequent than others in the group and
it is not diffi cult to deduce those frequent ones based on the distribution
of the values. To tackle this issue, some more deliberated principles based
on l-diversity are introduced.

 • Entropy l-diversity [17]: For entropy l-diversity, in each quasi-identifi er
group, we have − s S P(qid, s)log(P(qid, s)) ≥ log(l), where S is a sensitive
attribute, and P(qid, s) is the probability of tuples in a quasi-identifi er
group which have the value s. Because of the property of entropy, we
can know that a larger value of the entropy indicates the sensitive
values can distributed more evenly in the group, which makes the
tuples more indistinct. However, the entropy l-diversity is still not
perfect to prevent all the attacks. Moreover, it has the drawback that
the entropy value is diffi cult to understand for users, who prefer
some probability based explanation, i.e., malicious attackers have 20%
chance to know that Bob has cancer, according to the current l-diversity
setting.

 • Recursive (c, l)-diversity [17]: Similar to the entropy l-diversity, the
key idea of the recursive (c, l)-diversity also ensures that the sensitive
values are distributed as more evenly as possible, that the frequent
values are not so frequent and the rare values are not so rare. In a given
quasi-identifi er group qn, ri is denoted as the number of times the ith

 Privacy Preserving in Data Mining 209

210 Applied Data Mining

most frequent sensitive value appears in qn. Given a constant c, qn
satisfi es recursive (c, l)-diversity if r1 < c(rl+rl+1+· · ·+rm). A table satisfi es
the recursive (c, l)-diversity if every quasi-identifi er group satisfi es the
recursive -diversity. Note that 1-diversity is always satisfi ed.

There are some other principles based on the l-diversity introduced,
i.e., positive disclosure-recursive (c, l)-diversity and negative/positive
disclosure-recursive (c1, c2, l)-diversity [17, 18]. The basic idea of these
principles is that although with the help of some background an attacker
may remove some values from the group, he still cannot recognize sensitive
information. From another viewpoint of these principles, some work is
introduced to estimate the maximum disclosure risk of the published data
[19] based on different privacy preserving metrics.

Note that the above mentioned issues are based on such an assumption
that only one sensitive attribute exists. If there are multiple sensitive
attributes, the l-diversity problem becomes more challenging. Some works
have explored this issue, i.e., [18, 25]. However, all these works suffer from
the issue of the curse of dimensionality.

9.3 The t-Closeness Method
Due to the intrinsic drawback of the l-diversity, Li et al. [16] found that
leakage of sensitive information could happen when the overall distribution
of a sensitive attribute is skewed. The reason is that because the l-diversity
requirement ensures “diversity” of sensitive values in each group, it does
not take into account the semantical closeness of these values. For example,
suppose we have a patient table where 90% of the tuples have headache
and 10% have cancer. If we have a quasi-identifi er group which has 50% of
headache and 50% of cancer, it satisfi es the 2-diversity rule. Nevertheless,
this quasi-identifi er group may face to a privacy problem because it is easy
to infer that any person in this group has 50% chance to get cancer, yet
consider in the whole table, this probability reduces to 10%. The obvious
difference between these two conclusions makes the l-diversity principle
lose its effect.

To protect the attack from the above mentioned example, Li et al. [16]
introduced the t-closeness principle. The key idea is that t-closeness requires
the distribution of each sensitive attribute in every group should be similar
to that in the overall table. Moreover, in [16], the authors introduced a new
distance metric, i.e., Earth Mover Distance (EMD), to estimate the closeness
between two distributions. A constant t is used as a threshold to satisfy
the t-closeness principle. Although the advantage it may obtain, there are
several issues brought by this interesting principle: (1) it is not easy to protect
privacy according to different security levels; (2) the introduced distance

metric, i.e., EMD, lacks a fl exibility to cope with numerical attributes [15];
and (3) the utility of the published data may largely be sacrifi ced because
it is too strict a rule to let all the distributions of attributes be similar to
each other. Several solutions are introduced to tackle part (if not all) of
these issues [9].

9.4 Discussion and Challenges
In this chapter, we presented the main strategies for privacy preserving
data mining. There are several issues which should be mentioned. The fi rst
one is how to keep a good balance between different evaluation metrics,
such as privacy and utility. It is intuitive that the safest strategy to protect
privacy is to publish as few data as possible, though this approach, leads
to low utility. For some principle (e.g., entropy l-diversity), how to explain
the semantic meaning of the setting becomes more diffi cult and thus, is
challenging to be applied on the real applications. Another main issue for
privacy preserving is the curse of dimensionality. The work in [1] states that
to keep privacy, a large number of the attributes may need to be suppressed
or generalized. This requirement also leads to the loss of the data’s utility.
More seriously, it seems that some methods become infeasible to implement
with more dimensionality taken into account.

9.5 Chapter Summary
In this chapter, we introduced the basic concept and main techniques for
the privacy-preserving data mining issue. We presented a variety of data
transformation strategies such as k-anonymity, l-diversity, and t-closeness
based methods. Furthermore, we gave some concrete examples to illustrate
the advantages and disadvantages of these approaches and analyzed them
thoroughly. Some related issues, i.e., curse of dimensionality and balance
between utility and privacy, were also discussed.

References
 [1] C. C. Aggarwal. On k-anonymity and the curse of dimensionality. In: Proceedings of the

31st International Conference on Very Large Data Bases, pp. 901–909, 2005.
 [2] C. C. Aggarwal and P. S. Yu. A condensation approach to privacy preserving data mining.

In: Proceedings of International Conference on Extending Database Technology, pp. 183–199,
2004.

 [3] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy, D. Thomas and A. Zhu.
Achieving anonymity via clustering. In: Proceedings of the Twenty-fi fth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pp. 153–162, 2006.

 [4] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas and
A. Zhu. Anonymizing tables. In: T. Eiter and L. Libkin, editors, ICDT, pp. 246–258, 2005.

 Privacy Preserving in Data Mining 211

212 Applied Data Mining

 [5] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In:
Proceedings of the 21st International Conference on Data Engineering, pp. 217–228, 2005.

 [6] V. Ciriani, S. D. C. di Vimercati, S. Foresti and P. Samarati. Anonymity, Vol. 33 of Advances
in Information Security. Springer, 2007.

 [7] C. Clifton. Using sample size to limit exposure to data mining. J. Comput. Secur., 8:
281–307, December 2000.

 [8] J. Domingo-Ferrer and J. M. Mateo-Sanz. Practical data-oriented microaggregation for
statistical disclosure control. IEEE Trans. on Knowl. and Data Eng., 14: 189–201, January
2002.

 [9] J. Domingo-Ferrer and V. Torra. A critique of k-anonymity and some of its enhancements.
In: Proceedings of the 2008 Third International Conference on Availability, Reliability and
Security, pp. 990–993, 2008.

 [10] B. C. M. Fung, K. Wang and P. S. Yu. Top-down specialization for information and privacy
preservation. In: Proceedings of the 21st International Conference on Data Engineering, pp.
205–216, 2005.

 [11] V. S. Iyengar. Transforming data to satisfy privacy constraints. In: Proceedings of the
eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 279–288, 2002.

 [12] L. V. S. Lakshmanan, R. T. Ng and G. Ramesh. To do or not to do: the dilemma of
disclosing anonymized data. In: Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, pp. 61–72, 2005.

 [13] K. LeFevre, D. J. DeWitt and R. Ramakrishnan. Incognito: efficient full-domain
kanonymity. In: Proceedings of the 2005 ACM SIGMOD international conference on Man-
agement of data, pp. 49–60, 2005.

 [14] K. LeFevre, D. J. DeWitt and R. Ramakrishnan. Mondrian multidimensional k-anonymity.
In: Proceedings of the 22nd International Conference on Data Engineering, 2006.

 [15] J. Li, Y. Tao and X. Xiao. Preservation of proximity privacy in publishing numerical
sensitive data. In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, pp. 473–486, 2008.

 [16] N. Li, T. Li and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity
and l-diversity. In: Proceedings of the 21st International Conference on Data Engineering,
pp. 106–115, 2007.

 [17] A. Machanavajjhala, D. Kifer, J. Gehrke and M. Venkitasubramaniam. ?-diversity: Privacy
beyond k-anonymity. In: Proceedings of International Conference on Data Engineering, 2006.

 [18] A. Machanavajjhala, D. Kifer, J. Gehrke and M. Venkitasubramaniam. L-diversity: Privacy
beyond k-anonymity. ACM Trans. Knowl. Discov. Data, 1, March 2007.

 [19] D. J. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke and J. Y. Halpern. Worst-case
background knowledge in privacy. In: Proceedings of International Conference on Data
Engineering, pp. 126–135, 2007.

 [20] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In: Proceedings
of the twenty-third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pp. 223–228, 2004.

 [21] P. Samarati. Protecting respondents’ identities in microdata release. IEEE Trans. on Knowl.
and Data Eng., 13: 1010–1027, November 2001.

 [22] T. M. Truta and B. Vinay. Privacy protection: p-sensitive k-anonymity property. In:
Proceedings of the 22nd International Conference on Data Engineering Workshops, 2006.

 [23] K. Wang, P. S. Yu and S. Chakraborty. Bottom-up generalization: A data mining solution
to privacy protection. In: Proceedings of the Fourth IEEE International Conference on Data
Mining, pages 249–256, 2004.

 [24] W. E. Winkler. Using simulated annealing for k-anonymity, 2002.
 [25] X. Xiao and Y. Tao. Anatomy: simple and effective privacy preservation. In: Proceedings

of the 32nd International Conference on Very Large Data Bases, pp. 139–150, 2006.
 [26] C. Yao, X. S. Wang and S. Jajodia. Checking for k-anonymity violation by views. In:

Proceedings of the 31st international conference on Very large data bases, pp. 910–921, 2005.

Part III

Emerging Applications

This page intentionally left blankThis page intentionally left blank

CHAPTER 10

Data Stream

Data stream mining is an important issue because it is the basis for numerous
applications, such as network traffic, web searches, sensor network
processing, and so on. Data stream mining aims to determine the patterns
or structures of continuous data. Such patterns of structures may be used
later to infer possible events that could occur. Data streams exhibit unique
dynamics in that such data can be read only once. This feature presents a
limitation to numerous traditional strategies from analyzing data streams
because such techniques always assume that all data could be stored in
limited storage. Thus, data stream mining could be considered as the
performance of computations on a large amount of data or even unlimited
data. In this chapter, we will introduce the basic concepts and main strategies
that can be employed to address the aforementioned challenge.

The general data streaming models will be introduced in Section 10.1.
The sampling approach will be presented in Section 10.2. The wavelet
method will be discussed in Section 10.3. The sketch method will be
presented in Section 10.4. The histogram method will be introduced in
Section 10.5. A discussion on data stream will be presented in Section 11.4.
A chapter summary will be presented in Section 11.5.

10.1 General Data Stream Models
Several models have been introduced in the data stream literature [53].
Given an input stream, S, the items arrive sequentially, that is, a1, a2, . . . ,
an. Each item, ai, describes a corresponding underlying signal Ai. Different
models are distinct in terms of describing signals based on the items in the
stream.

 • Time Series Model. Each item ai is the same as signal Ai. The items are
received based on an increasing order of i. Numerous applications such
as stock price stream and Web server log fi t this kind of model well.

216 Applied Data Mining

 • Cash Register Model [35]. In this model, the items ai are accumulated
to the signals Aj. Similar to a cash register, multiple ai could be
aggregated and set to a given Aj over time. This model can be applied
to applications such as counting the access 198 number of the same IP
address to a website.

 • Turnstile Model [53]. In this model, the items ai are updates to Aj. The
update operator can be insertion or deletion. The model is the most
generalizable in that it fi ts a large number of applications such as the
dynamic people situation in a subway system.

 • Sliding Window Model. In this model, the mapping or computation
of items is focused over a fi xed-sized window in the stream. While
the stream is in progress, items at the end of the sliding window are
deleted, and the new items from the stream are considered. This kind
of model fi ts applications such as weather prediction, which require
the most up-to-date data stream.

As introduced in [53], the models in decreasing order of generality are
as follows: turnstile, cash register, and time series1. Designing appropriate
algorithms specifi c models is more practical, and the challenge lies in
making these approaches suffi ciently generalizable for strong models such
as the turnstile.

10.2 Sampling Approach
Sampling is an important approach that is employed for numerous
applications, such as signal processing, information survey, computer
graphics, and so on. Sampling is based on the assumption that directly
dealing with an extremely large amount of data is impractical, and therefore,
some form of approximation is necessary. In statistics, sampling is concerned
with the selection of a subset of items from a large data set to retain (and
further measure) the properties of the whole data [4].

Sampling has the following advantages: (1) low cost; (2) effi cient data
storage; and (3) convenience in addressing the sampling data because of
the small size. Compared with all other commonly used techniques for
data streams, such as wavelets, sketches, histograms, the sampling strategy
is probably the easiest and the most applicable approach, especially for
challenging issues such as high dimensional data.

From a statistical perspective, the sampling technique aims to store the
posterior distribution of the data stream to retain similar expectations and
variances. Therefore, the expectation and variance of some function f(α) with

1The sliding window model can be considered as the constrained versions of the above three
models.

respect to a probability distribution p(α), where α denotes the components
that could be continuous or discrete, must be determined. To measure the
expectation, we have the following formula [12]:

 E[f] = ∫ f(α)p(α)dα (10.2.1)

where the integral is the summation if α represents discrete variables. After
sampling, we need to ensure that the new expectation of the sampled items
is stored the same manner as that of the whole data set (i.e., E [�f]=E[f]). The
new expectation estimator (i.e., �f) based on the samples αn (where n ranges
from 1 to N) relative to discrete variables is defi ned as follows:

 α�
1

1 ()
N

n

n
f f

N =

= ∑ (10.2.2)

Further, the variance of the new expectation estimator must also be
the same as the former value (i.e., var[�f]=var[f]) and can be represented
as follows:

 var[�f] = � � 21 E[(E[])]f f
N

− (10.2.3)

Thus, different sampling strategies have been introduced with a focus
on how to select sample instances to satisfy the given rules, although
these rules may vary for different applications and domains (e.g., sum
aggregation). Another challenging issue is that the variables considered are
not always independent, thus resulting in more complex estimation.

For a few applications, in addition to the expectation E[f] and the
variance var[f], we need to measure the mean µ (i.e., µ=E[f]) and the standard
deviation σ (i.e., σ = []var f), which are commonly used to describe the
distribution of the total data set. We introduce a number of inequalities, such
as the Markov and Chebychev inequalities, to estimate these features [8].

To estimate the bound of the random variable α, we can use the Markov
inequality:

 P(α > β) ≤ µ/β (10.2.4)

where β is a random variable of the data stream. The Chebychev inequality
can be obtained by employing the Markov inequality for the random
variable (α − µ)2/σ2:

 P(|α − µ| > β) ≤ σ2/β2 (10.2.5)

The Markov and Chebychev inequalities have been proven to be
suffi ciently generalizable. Specifi c applications such as Chernoff bound
and Hoeffding inequality may be more suited to tighter bounds. For these
bounds, we can employ the Markov inequality based on the parameterized
functions relative to the specifi c applications. Moreover, the manner by

 Data Stream 217

218 Applied Data Mining

which to select a sample from the stream is another issue, that is, the size
of the sample must be determined. Intuitively, this size is determined by
the total size of the stream, which cannot be known apriori. Therefore,
the probability that any item is stored as a sample should be dynamically
changed according to the data stream.

10.2.1 Random Sampling

From a statistics perspective, random sampling denotes the selection of a
group of individuals (samples) randomly from a large data set (i.e., data
stream). The probabilities for all individuals to be chosen during the process
should be the same [67, 65]. Given its simplicity, random sampling can be a
basis or component of other more sophisticated sampling methods.

A concrete example to illustrate the idea of random sampling is as
follows [1]. Suppose that n students wish to obtain tickets for a football
game. However, the tickets (i.e., M) are insuffi cient. Therefore, the students
have to employ a fair method to determine the persons who can go. To fulfi ll
this goal, every student is randomly given a number (i.e., from 0 to n-1). The
students who obtain the fi rst (or the last) M numbers are the winners.

In numerous applications, this kind of sampling is commonly applied
without replacement, i.e., any number will not be chosen more than once.
Under this assumption, the probability of one instance being chosen by
the process is no longer independent, but the result is still reasonable,
especially in the case of selecting a small group of samples from a large
data set, because the probability of choosing the same individual is low.
However, for other applications, sampling with a replacement strategy
may be more appropriate.

The given example is built upon the assumption that the data are static,
that is, the size of the data set is known apriori. However, for a data stream,
the selection of individual samples is more challenging because the process
is performed under a dynamically changing environment [8].

Suppose we want to extract M individual samples from a data stream.
While receiving the data, we maintain a list of size M to store the candidate
samples. In the initialization stage, the fi rst M individuals in the data stream
are stored in the list. As more data are received, we need to determine
whether the next individual should be stored. The probabilities of storing
these individuals as samples should be the same (i.e., M/n, where n is the
size of the individuals received thus far in the data stream). Considering
the replacement model in the process, an old individual has to be removed
from the list before a new individual is stored as a sample. As proven by
Aggarwal [8], the probability of storing any individual as sample in the
list is M/(n+1).

As introduced in Section 10.1, the assumed model is a time series, in
which the individual item is received with the same importance. However,
for a few applications, recent individual items may be of importance. We can
use a sliding window to partition the data stream, and more recent windows
are given larger weight relative to the results of queries. This issue has been
explored by a number of researchers [32, 13, 11]. The sliding window-based
model is more practical for real data stream applications considering the
limitation resources such as the main memory and CPU.

10.2.2 Cluster Sampling

Cluster sampling [3] is another commonly used technique in the literature
that was introduced mainly for static data [48]. The total data set is fi rst
clustered intuitively into several groups, and the representative individual
of each group can then be deemed as a sample. The clusters should be
mutually exclusive and collectively exhaustive. This method is cost effective,
and the criteria for clustering on the data is domain specifi c, including time,
position, nationality, and so on.

Considering that several clustering algorithms (e.g., [9]) take into
account the dynamic property of data, the clustering sampling strategy
can be implemented on data streams.

Compared with random sampling, cluster sampling generally needs
more samples to achieve the same effectiveness (i.e., accuracy) because these
samples are necessary to distinguish clusters from one another. Moreover,
the implementation of cluster sampling is always conducted through
multi-steps: the fi rst step aims to build the clusters that will subsequently
be used; in the second step, primary individuals are randomly selected as
samples for each group; and in the following steps, we recursively determine
whether other individuals from the selected clusters are samples. This kind
of multi-step sampling can largely reduce sampling cost.

Another sampling technique called stratifi ed sampling [5], is similar
to cluster sampling. This approach fi rst partitions the whole data into
homogeneous subgroups before sampling using two criteria: (1) the strata
should be mutually exclusive, such that every individual in the data set must
be assigned to only one stratum; and (2) the strata should be collectively
exhaustive, such that no individual can be excluded. These criteria are
similar to those of cluster sampling. Finally, random sampling can be used
for each stratum. Through these strategies, stratifi ed sampling can improve
the representativeness of the samples by reducing sampling error.

Cluster and stratifi ed sampling have a number of key differences: (1)
in cluster sampling, the cluster is treated as the sampling unit, and the
analysis is executed on the level of clusters, whereas in stratifi ed sampling,
the analysis is implemented on the individuals in the strata; (2) in stratifi ed

 Data Stream 219

220 Applied Data Mining

sampling, a sample is randomly chosen from each strata, whereas in cluster
sampling, only the randomly selected clusters are explored; and (3) cluster
sampling primarily aims to reduce costs by increasing sampling effi ciency,
whereas stratifi ed sampling aims to increase effectiveness (i.e., precision).
However, both of these sampling methods are limited by the unknown
size of the total data.

As introduced in [27], several issues confront existing sampling
techniques. First, data streams have an unknown dataset size. Therefore,
the sampling process on a data stream requires a special analysis to limit
the error bounds. Another problem is that to check the sampling strategy
may be inappropriate for checking anomalies in surveillance analysis
because the data rates in the stream are always changing. Thus, we explore
the relationship among the data rate, sampling rate, and error bounds for
real applications.

10.3 Wavelet Method
The wavelet-based technique is a fundamental tool for analyzing data
streams. From a traditional perspective, a wavelet is a mathematical function
used to divide a given function or continuous time series into different scale
components [6]. This approach has been successfully applied to applications
such as signal processing, motion recognition, image compression, and so on
[63, 7]. The wavelet technique provides concise and general summarization
of data (i.e., stream), which can be used as the basis for effi cient and accurate
query processing methods. Numerous strategies have been introduced
based on the idea of wavelet, in which the most commonly used approach
for data streams is called Haar wavelets [68].

The Haar wavelet provides a foundation for query processing on stream
and relational data. It creates a decomposition of the data (or compact
summary) into a set of Haar wavelet functions, which can be used for later
query processing. The essential step is the determination of the Haar wavelet
coeffi cients. Only coeffi cients with high values are typically stored. Higher
order coeffi cients in the decomposition generally indicate broad trends in
the data, whereas lower order coeffi cients represent the local trends. We will
show a concrete example to illustrate the Haar wavelet process [66, 31].

Suppose our data stream is {3, 2, 4, 3, 1, 5, 0, 3}. The data in the
vector are computed as averaged values between neighbors to obtain
a lower resolution representation (i.e., level 2) of the data, such as

3 2 4 3 1 5 0 3 5 7 3, , , , , 3,
2 2 2 2 2 2 2
+ + + +⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. This transformation results in the loss

of information, thus requiring more information to be stored. The Haar
wavelet technique computes the differences of the averaged values between

neighbors, such as 3 2 4 3 1 5 0 3 1 1 3, , , , , 2,
2 2 2 2 2 2 2
− − − −⎡ ⎤ ⎡ ⎤= − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. These eight data values

are the fi rst-order coeffi cients of the sample data, which can be used to
recover the original data set. Similarly, we can obtain the lower resolution

representation (i.e., formal part of level 1) as
5 7 3 5 7 33 3 9 1 32 2 2 2 2 2, , , 3, , ,

2 2 2 2 4 2 4

⎡ ⎤+ + − −⎢ ⎥ ⎡ ⎤= −⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎣ ⎦

.

Recursively, we can obtain the fi nal Haar wavelet transformation of the data

as
21 3 1 3 1 1 3, , , , , , 2,
8 8 2 4 2 2 2

⎧ ⎫− − −⎨ ⎬
⎩ ⎭

. The whole transformation process is illustrated

in Fig. 10.3.1.

Haar wavelet transformation on {3, 2, 4, 3, 1, 5, 0, 3}

Original data (level 3) 3 2 4 3 1 5 0 3

level 2 2.5 3.5 3 1.5 0.5 0.5 -2 -1.5

level 1 3 2.25 -0.5 0.75

level 0 2.625 0.375

Figure 10.3.1: Sample Haar wavelet transformation

Haar wavelet analysis commonly assumes that the size q of the time
series data is a power of two without loss of generality because the series
can be decomposed into segment subseries, each of which has a length that
is a power of two. From the process of Haar wavelet transformation, we
obtain 2l+1 coeffi cients of level l (as shown in Fig. 10.3.1). Each coeffi cient
(i.e., 2l+1) represents (and summarizes) a contiguous part of the data stream
(i.e, q/2l+1). In the segment series data, the ith of the 2l+1 coeffi cients covers
the part beginning from(l + 1) · q/2l+1+1 to i · q/2l+1.

Previous works were not concerned about retaining all coeffi cients,
but only a smaller number of them (i.e., top-B) [36]. Given this simplicity,
some information on the original data during the transformation will be
lost. In [36], the authors report that the highest B-term approximation is
in fact the best B-term approximation that it minimizes the sum squared
error for a given B.

A large number of existing approaches employ a lossy mechanism
because of the large number of coefficients introduced by the Haar
wavelet transformation, that is, the number is equal to the length of the
total data stream. While keeping the top-B coeffi cients with large values,
the other ones are set to zero. This heuristic is thus, employed to reduce
the dimensionality of the time series data. However, a trade-off always
exists between the number of coeffi cients and the error introduced by the
transformation. Obtaining the optimal number of Haar wavelet coeffi cients
is an interesting issue in the literature. Nevertheless, previous works assume
that only a small number of coeffi cients dominate the full effectiveness of
the transformation.

 Data Stream 221

222 Applied Data Mining

In addition to the determination of the optimal number of the Haar
wavelet coeffi cients, another issue is the selection of the appropriate
coeffi cients. The absolute value is not the sole optimal criterion to dominate
performance. For example, based on different evaluation metrics for various
applications such as mean square error vs. least maximum error, different
selection strategies may be appropriate [29, 30, 63]. However, other issues
such as computation effi ciency should also be considered.

As introduced in [8], other important topics are related to Haar wavelet
transformation. A number of applications prefer to monitor large quantities
of information simultaneously in the same stream data source. Taking sensor
applications, the monitors may store a large number of data features, such
as location, pressure, wind direction, and so on. Therefore, the Haar wavelet
transformation needs to process all of these features simultaneously. An
intuitive approach is the application of decomposition on each feature,
such that the top-B coeffi cients are discovered by merging the transformed
results [63]. However, this strategy may be ineffi cient, because duplicate
transformations may be conducted on the same individual data (relative to
different features). The authors in [22] introduced several effective strategies
for the simultaneous monitoring and transformation of multi-feature data
by using bitmaps to determine the optimal features.

In summary, Haar wavelet transformation continuously builds a
summarization of the B representative wavelet coeffi cients (e.g., with
largest absolute values) for time series data set. Considering the special
properties of dynamic stream data, the following criteria should be satisfi ed:
(1) sub-linear space usage must be available to store the summarization
and (2) sub-linear per-item update time must be suffi cient to maintain the
summarization. Applications on query processing may further need to
consider another criterion, that is, sub-linear query time.

10.4 Sketch Method
The sketch-based technique is one of the major tools for stream data analysis.
Sketches are small space summarizations of stream data in a centralized or
distributed environment. The main advantage of sketch-based techniques is
that they require storage that is signifi cantly smaller than the input stream
length. For most sketch based algorithms, the storage usage is sub-linear in
N, that is, logkN, where N is the input size and k is some constant. The hashing
function is generally employed by sketch based algorithms to project the
data stream into a small space sketch vector that can be easily updated and
queried. As demonstrated by numerous experimental evaluations, the cost
of updating and querying on the sketch vector is only a constant time for
each operation.

Given the property of a sketch, the answers to the queries that are
determined by examining the sketches are only approximations because
only part of the data information is stored (as sketch). A sketch generally
contains multiple counters for random variables relative to different
attributes. The error boundary on the answers should be held with
probabilistic guarantees. The introduced sketch-based algorithms differ in
terms of defi ning and updating random variables as well as in the effi cient
querying of the sketches.

The sketch-based technique is closely related to the random projection
strategy [45]. Indyk et al. [41] introduced this strategy into the database
domain (i.e., time series domain) to discover the representative trends.
The key idea is that a data point with dimensionality d is reduced by
(randomly) selecting k dimensionalities. The dot product of the these k
dimensionalities between data points is computed. Each k dimensionality
(i.e., random vectors) follows the normal distribution with zero mean and
unit variance. Moreover, the random vector is normalized relative to one
unit in magnitude. Accuracy is dependent on the value of k, where a larger
value of k results in high accuracy. We will then introduce several sketch-
based algorithms for processing data streams. Please refer to [17, 62, 8] for
a more detailed survey of related issues.

10.4.1 Sliding Window-based Sketch

Indyk et al. [41] introduced the sketch-based technique into the database
domain to discover the trends governing data streams. The authors observed
that the length of a time series can be considered to have one dimensionality.
Therefore, we can construct the sketch by considering the length as the
random vector. Two situations are considered in [41]: fi xed window sketches
and variable window sketches.

For fi xed window sketches, the aim is to obtain sliding window sketches
with a fi xed length l. Thus, l · k operations should be conducted for a sketch
with size k. Given the total of O(n−l) sliding windows, O(n · l · k) operations
are necessary. From this analysis, we fi nd that if the window length l is large
(i.e., the same order of magnitude as the time series), the cost of calculation
would be quadratic to the size of the series. Therefore, this approach could
be impractical for large time series data (i.e., stream). As introduced in
[41], the construction of fi xed window-based sketches can be considered
as the computation of the polynomial convolution of random vectors of
appropriate length over the time series data. Therefore, we can use the fast
Fourier transform to address the issue. This observation indicates that the
fi xed window sketches can be obtained effi ciently.

For variable window sketches, the aim is to construct the sketches for
any sub-vector between length l and u [41]. This approach requires O(n2)

 Data Stream 223

224 Applied Data Mining

sub-vectors that may have the length O(n) in the worst case. Through this
analysis, we fi nd that the total cost is O(n3), which limits the application of
the technique for large time series data (i.e., stream). To address this issue,
Indyk et al. [41] proposed the construction of a set of sketches. The size of
the group must be considerably smaller than the total sketches. To determine
the sketches to be stored, the authors deliberately chose sub vectors out of
the original ones, such that the computation can be achieved in O(1) time
with suffi cient accuracy guaranteed for each vector. The experimental
evaluation demonstrates the effectiveness and effi ciency of the introduced
strategies [41]. Please refer to [41] for more details about this technique.

10.4.2 Count Sketch

Alon et al. [10] were the fi rst to introduce the term sketch as a tug-of-war
sketch. The authors aim to measure and optimize the second order of the
frequency moment F2= i f

2
i. Notably, more recent studies found that the

introduced summarization in [10] can also be utilized to measure the inner
product of two distributions on frequency, that is, i fi f'i, where fi and f'i
denote the two frequency distributions. From the observation, we fi nd that
if fi can be obtained from a data stream, the product of f'i=1 and f'j=0 for all
j i can be calculated during the query processing. Thus, we fi nd that for
the error bound, the value should be F1/2

2 ≤ n, which has more than 1-δ

probability for a sketch with size of O(2

1
ε

 log 1/δ).

The cost of updating the count sketch is high because all the sketches
should be rebuilt if a new instance comes in. Thus, the naive count sketch
technique as an appropriate strategy for data streams. To address the issue,
Charikar et al. [14] proposed an improved algorithm that requires only a
small part of the sketches to be updated when a new instance comes in.
Thus, performance is signifi cantly improved.

We briefl y describe the idea in [14]. Interested readers are referred
to the previous paper for more details. The introduced sketch structure
contains a d × ω array (denoted as C) that stores counters (where d is the
number of rows), with two hash functions presented for each row. One hash
function g maps the instances of the data stream into [ω], whereas the other
hash function h maps the instances into {–1, +1}. For each row j (i.e., 1 ≤ j
≤ d), the corresponding mapping on instance i, that is, hj(i), is stored in the
array element C[j, gj (i)]. We fi nd that �f i is median 1≤j≤dh

j(i)C[j, gj (i)] [17].
The analysis shows that for each value of j, the expectation and variance
depending on F2/ω can be accurately derived.

10.4.3 Fast Count Sketch

To improve the effi ciency of count sketches further, Thorup and Zhang [64]
introduced the fast count sketch technique, that uses one random hashing
to hasten the update time while maintaining reasonable error bounds. The
price of obtaining this improvement is that more sketch vectors are utilized,
and deliberately designing the hash function is necessary. In the fast count
sketches, the counters in the vector are the same as those of count sketches,
the only difference is that the former contains a four-universal hash function
that is associated with the vector.

When a new data instance i arrives, its mapped value, ω, is immediately
stored into the corresponding counter, that is, xf[h(i)] = xf[h(i)] + ω, where
h : I {1, , n} is the four-universal hash function [64].

We can deduce the estimate of the size of the join attributes based on the
second frequency moment as in [62]. As claimed by the authors, the estimate
is an unbiased one of the inner product f g. The variance is retained in the סּ
fast count sketches in a manner similar to that in the count sketches. The
multiplicative factor is 1

1n − for the fast count sketches but 1
n
 for the count

sketches. More entries are needed in the fast count sketches than in the count
sketches, but the difference is negligible for large values of n.

10.4.4 Count Min Sketch

Cormode and Muthukrishnan [18] introduced another effective sketch type,
that is, count min sketches, for facilitating the construction and update of
the synopsis. The data structure of count min sketches is the same as that
of fast count sketches. Count min sketches apply a series of two-universal
functions to map the data instances, which differs from the four-universal
functions used in fast count sketches. The mechanism of sketch update in
Count Min sketches is the same as that in fast count sketches.

An issue for count min sketches is that they employ the L1 norm,
whereas count sketches utilizes the L2 norm. Thus, count min sketches
require more space to maintain the same level of error bound compared
with count sketches. This condition is attributable to the fact that the L2
norm is generally smaller than the L1 norm.

In summary, given an input data stream of length N and user specifi ed
parameters δ and epsilon, the count min sketch technique can store the
frequencies of all the instances with the following guarantees: (1) all the
stored frequencies differ from the truth at most N with a probability of at
least δ; (2) the space usage is O(1

∈ log 1
∈δ); and (3) for each update and query,

the cost is constant, that is, O(log 1
∈δ

).

 Data Stream 225

226 Applied Data Mining

10.4.5 Some Related Issues on Sketches

In addition to the above introduced sketch based algorithms, several other
extended approaches are based on the sketch techniques.

Pseudo random vector generation. A primary issue for sketch construction
is that the number of distinct items may be large and, therefore, the size of
the corresponding random vector will also be large. This issue will reduce
the effi ciency of building the sketches. To address this problem, we fi rst
generate a set of k random vectors, and then, when the data instance comes
in, we can map it to the corresponding pre-generated random vector. This
strategy, however, may consume a large amount of space. A more feasible
idea is that we can store the random vectors implicitly (i.e., as seeds), which
are utilized dynamically to generate the vectors.

The authors in [10] have found that we can generate the random vectors
with four-wise independent random vectors from a seed of size O(log(N)).
Gilbert et al. [37] demonstrated that if Reed-Muller codes are used, we can
generate seven-wise independent random vectors. The properties of the
pseudo random vectors generation approach are as follows: (1) we can
generate a random vector in poly-logarithmic time from the seed; and (2)
the dot-product of two vectors can be approximately computed using only
their sketch representations. We can observe that the dot product of two
vectors is closely related to the Euclidean distance, which is an indication
derived through the random projection strategy [45].

Sketch partitioning. Dobra et al. [23] introduced the sketch partitioning
technique. The authors deliberately partitioned the join attributes to
construct the separate sketches of each group. The fi nal estimation is
accumulated from all partitions. The essential part of the introduced
technique is the partition of the domains to bind the variance, which can
result in high accuracy for applications. The authors in [24] further studied
the issue by extending it to multi-query processing.

Sketch skimming. Ganguly et al. [28] observed that sketch skimming
can be utilized to improve the estimation of join size. The variance of the
join estimation is largely affected by the most frequent random variables,
which are generally few even for a large data set. Given that high variance
is undesirable, the frequent instances are deliberately separated from
others. Therefore, the skimmed sketches can be identifi ed by removing
the sketches with frequent instances. We can estimate the join size using
four-wise independent random vectors and the experimental evaluation
demonstrates the effi ciency of the proposed technique in [28].

10.4.6 Applications of Sketches

A large number of applications can utilize the sketch based strategies. One
practical issue is the heavy hitters [19, 49, 17]. For this problem, we need to
detect the most frequent items in the data stream. Recognizing the difference
among networks in the data stream was explored in [20], and detecting the
differences among data streams was studied in [25, 26]. Similar issues on
XML data (or tree data) were presented in [57, 58, 61]. These works aimed
to construct the synopsis for structured queries, which can be used later to
improve query processing performance.

Sketches based strategies are also well utilized in network research.
Improving the communication effi ciency for signals in sensor networks
is important. Moreover, considering resource limitations (e.g., battery),
effi cient storage by using concise summarization on the stream data is an
essential issue for sensor networks. A number of works have been conducted
to address the aforementioned issues, [15, 38, 46]. Please refer to [8] for
more details on these issues.

10.4.7 Advantages and Limitations of Sketch Strategies

Sketch-based strategies have several advantages. First is the space usage.
Sketch-based approaches have been theoretically and experimentally
proven to obtain an optimal sub-linear space usage in the data size. This
fi nding can be attributed to the fact that the space requirement is logarithmic
in the number of distinct items in the stream, which is relevant small by
considering the large volume of the data.

Despite the advantages of sketch based methods, several challenging
issues remain. First, almost all related studies use Lp norm as the aggregate
measure, which may not refl ect the actual data distribution. Thus, the sketch
summarization may fail to store the essential information of the data.

Another issue is high dimensionality. The existence of hundreds of
independent dimensions in the data stream may hinder the practical
usage of the existing state-of-the-art sketch-based techniques. This issue
has been raised by several researchers [16]. However, the problem remains
challenging because of its intrinsic complexity.

As highlighted in [8], most sketch-based works only focus on identifying
the frequent instances and estimating the frequency moments and join size.
This emphasis on the micro view may neglect the macro trends in the stream
data, such as the temporal property. Thus, the temporal information may
be lost because of the transformation process when building the sketches.
Although several scholars have mentioned this issue and consequently
introduced effective techniques for temporal analysis [41], the strategy
requires signifi cant space usage, which makes the approach impractical

 Data Stream 227

228 Applied Data Mining

for real large data streams. Extending the state-of-the-art strategies for
temporal trends analysis with limited space usage remains an interesting
and challenging issue.

As previously mentioned, a trade-off exists between space usage and
data rate. For real applications, considering that we have a suffi cient storage
resource (i.e., main memory, SSD), addressing data streams with relevant
slow data update rate (but may have a large volume of distinct items) [37]
may be practical. The real challenging applications are therefore those that
need to process very fast data streams such as sensor networks [21, 55, 46,
47] because of the power and hardware limitation.

10.5 Histogram Method
The histogram approach is another major tool used for analyzing data
streams. In statistics, the term histogram was fi rst introduced as a graphical
representation to illustrate the visual impression of the distribution of data
[2]. A histogram is an estimate of the probability distribution of a continuous
variable and was fi rst introduced by Pearson [56].

Histograms are commonly used to describe the density of data and
measure the probability density function of the underlying variable.
Specifi cally, in database research, the histogram approach partitions the
data into a series of categories (known as bins or buckets) relative to some
feature (or dimension). Each count of the bin is stored.

From a formal mathematical view, a histogramis a function m that
accumulates the number of instances that fall into each of the disjoint
buckets, whereas the graph of a histogram is one method to describe the
histogram. Let n be the total number of instances, k be the total number
of bins, and mi be the histogram, we then have n = k

i=1 mi. A cumulative
histogram is a mapping that measures the cumulative number of instances
in all buckets up to the specifi ed bucket. The cumulative histogram Mi of
a histogram mj is defi ned as Mi = i

j=1 mj.
By analyzing the process of histogram construction, we fi nd that

the space usage for a histogram is determined by the total number of
buckets used. Buckets can intuitively be obtained by partitioning the data
into equal sizes. Such equi-width division technique is related to Haar
wavelet coeffi cients in that if the wavelet summarization of the frequency
distribution is built relative to any dimension, then the Haar coeffi cients
present the difference in relative frequencies in equi-width histogram
buckets [8].

Although this technique is easily implemented for equi-width
histogram strategy, it has the drawback of low representation accuracy.
This low accuracy can be attributed to the fact that the distribution of data

is not well kept by the equi-width mechanism because of the assumption
of uniform distribution. The localized data distribution is commonly cut
by the bucket boundaries. For instance, the number of points distributed in
different buckets may vary signifi cantly. This issue may lend diffi culty to
query estimations. Therefore, the histogram technique requires the design
of an appropriate bucket construction mechanism.

Similar to the idea of kd-tree, we can build buckets to enable each one
contain approximately equal instances (known as equi-depth histogram).
Numerous experiments have illustrated that equi-depth histograms are
considerably more effective than equi-width histograms. Therefore, a large
number of commercial vendors switched to the equi-depth histograms in
the years following their introduction [42]. Multidimensional equi-depth
histograms were introduced in [52]. However, for the special data such as
a stream, the construction of buckets based on the equi-depth technique is
diffi cult because the data are dynamic and unknown apriori.

To improve the effectiveness of histograms, Ioannidis et al. introduced
the V-optimal histograms [43], which aim to minimize the frequency
variance of different values in buckets. In this way, the assumption of data
uniform distribution can be satisfi ed. Specifi cally, if a bucket b with count
c contains the frequency of n instances, then the average frequency of each
instance in b is c/n. Let f1 . . . fn be the frequencies of the n instances in b.
The variance v of the frequencies based on the averages is obtained as
v = l

i=1(fi − c/n)2. Finally, the overall variance V on all the buckets is obtained
as V = b

v.
Improvement on the V-optimal histogram construction has been

introduced in [44]. In this work, the Lp-difference function between
two vectors with cardinalities that are based on the distinct instances is
considered as the objective function. Other works consider alternative
objective functions to optimize the histogram construction [60]. The
advantage and disadvantage of V-optimal histograms is explained as
follows.

Advantage of V-optimal histogram: V-optimal histograms can optimally
measure the contents of buckets. However, any histogram could encounter
an error when used to summarize data. V-optimal histograms binds
the error by fi nding the smallest variance among all possible buckets.
As demonstrated in [59], V-optimal histograms can achieve the best
performance in terms of accuracy in summarizing data.

Limitation of V-optimal histogram: The major drawback of V-optimal
histograms is that they are diffi cult to update. Rebuilding all histograms
is necessary when new data are received. By contrast, the equi-width
histogram technique can address this issue. Moreover, although equi-
depth histograms also have to rebuild, the cost is lower compared with

 Data Stream 229

230 Applied Data Mining

V-optimal histograms because the structure of the former is simpler and
easier to construct. This intrinsic disadvantage may hinder the V-optimal
histogram from being appropriate strategy for fast dynamical updating of
data such as a stream.

Another issue is that numerous studies use absolute errors as the
accuracy metric. However, as emphasized by [51], the absolute error may
not always be a good representation of the error, thus necessitating the use
of other metrics. To address this issue, Guha et al. [40] introduced several
strategies to improve the relative error.

Another difference between the equi-width histogram and equi-
frequency (V-optimal) histogram is that the former would have almost all
the samples in one bucket, whereas latter would have numerous narrow
buckets in one area even with the same number of buckets. If we consider
the height of a bucket as a variable, then the equi-frequency histogram will
better spread the available distribution information among the variables.

10.5.1 Dynamic Construction of Histograms

Given the special property of data streams, the requirement of dynamically
building the histograms exists for a large number of real applications. In this
section, we fi rst review the static histograms and then explore the dynamic
histograms. Please refer to [42] for more details.

Static histograms are those that, once built from the original data (or the
sample instances), will not change later regardless of whether the original
data (or the samples) is changed.

However, as more new data come in (or updated), the error will
accumulate until the requirement for query processing applications can no
longer be satisfi ed. To address this issue, recomputing all the histograms
is necessary. Therefore, the cost of histogram reconstruction has to be
considered as a measure of the performance of different histogram-based
algorithms. For a few histogram construction strategies such as equi-width
and equi-depth, this factor is not a major problem because the rebuilding
process is simple and easy to implement. However, for traditional equi-
frequency strategy (i.e., V-optimal histogram), the cost may be high because
the number of source parameter values is exponential. Therefore, a trade-off
exists between the effectiveness and the effi ciency of different histogram
construction strategies. To address this issue, dynamic programming-based
approaches have been introduced [44, 39]. The work in [44] built V-optimal
histograms quadratically based on the number of source parameters and
linearly based on the number of buckets. This contribution makes the
V-optimal histograms acceptable for the histogram rebuilding scenario.
The work in [39] reduced the total cost to be linear to the number of source
parameters. Despite these achievements, however, building Voptimal

histograms on multi-dimension data. Thus, [54] introduced the approximate
strategies.

For dynamic data such as a stream, the aforementioned techniques may
be ineffective because the data in the stream can be scanned only once, and
the introduced strategies always need to verify the data multiple times.
Several studies have been conducted to address this issue. For example,
Gibbons et al. [33] proposed the equi-depth histograms based approach.
Gilbert et al. [34] introduced the V-optimal histogram based technique
for data stream processing. Given the high complexity and importance of
this issue, histogram construction for data streams remains an open and
challenging topic in the literature.

10.6 Discussion
A number of challenging issues should be addressed in future research on
building synopses for data streams.

 • Comparing different kinds of synopsis-based strategies such as
sampling, wavelet, sketch, and histogram remains diffi cult. Different
techniques may have their own advantage for specifi c applications yet
may lose their effectiveness when employed for other applications.
Thus, comprehensive comparisons among these approaches are
necessary. For fair assessment, different setting environments have to
be built for the evaluation of the performances of the strategies relative
to effectiveness in terms of the error bound, effi ciency in terms of
synopsis construction and consumed space, as well as usage on high-
dimensional data streams. Furthermore, analyses must be conducted
not only from a micro view (e.g., frequent item counting), but also
from a macro view (e.g., temporal trend detection).

 • Workload aware strategy is one of the possible ways to improve the
effi ciency and effectiveness of synopsis construction. Several groups
have already studied this issue [54, 50]. However, the complex dynamic
properties of data streams require more intelligent techniques to
provide higher effectiveness with lower cost of synopsis construction
and update.

 • Considering that the current data type taken into account is commonly
quantitative or categorical, the future direction is to extend the data
type to others, e.g., text, XML, and so on. Some studies, such as [58, 57],
have already addressed this issue yet more researches are preferred.
We believe that there is considerable scope for extension of the current
synopsis methods to domains such as sensor data mining in which
the hardware requirements force the use of space-optimal synopsis.
However, the objective of constructing a given synopsis needs to be

 Data Stream 231

232 Applied Data Mining

carefully calibrated in order to take the specifi c hardware requirements
into account. While the broad theoretical foundations of this fi eld
are now in place, it remains to carefully examine how these methods
may be leveraged for applications with different kinds of hardware,
computational power, or space constraints.

10.7 Chapter Summary
In this chapter, we presented an overview of the different methods to
construct synopsis for data streams. We introduced random sampling,
wavelets, sketches, and histograms. In addition to the properties of different
strategies, the advantages and limitations of these approaches have been
thoroughly discussed. We also gave some possible challenges which may
be the future works explored in the literature.

References
 [1] http://en.wikipedia.org/wiki/Simple_random_sample.
 [2] http://en.wikipedia.org/wiki/Histogram.
 [3] Cluster sampling explanation on wiki, 2012.
 [4] Sampling explanation on wiki, 2012.
 [5] Stratifi ed sampling explanation on wiki, 2012.
 [6] Wavelet explanation on wiki, 2012.
 [7] K. D. A. and H. M. Wavelets and their applications in databases. In: Proceedings of the

21st International Conference on Data Engineering, 2001.
 [8] C. Aggarwal, editor. Data Streams—Models and Algorithms. Springer, 2007.
 [9] C. C. Aggarwal, J. Han, J. Wang and P. S. Yu. A framework for clustering evolving data

streams. In: Proceedings of the 29th International Conference on Very Large Data bases, Vol.
29, pp. 81–92, 2003.

 [10] N. Alon, Y. Matias and M. Szegedy. The space complexity of approximating the frequency
moments. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of
computing, pp. 20–29, 1996.

 [11] B. Babcock, M. Datar and R. Motwani. Sampling from a moving window over streaming
data. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete algorithms,
pp. 633–634, 2002.

 [12] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag New York, 2006.

[13] V. Braverman, R. Ostrovsky and C. Zaniolo. Optimal sampling from sliding windows. In:
Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of database systems, pp. 147–156, 2009.

 [14] M. Charikar, K. Chen and M. Farach-Colton. Finding frequent items in data streams. In:
Proceedings of the 29th International Colloquium on Automata, Languages and Programming,
pp. 693–703, 2002.

 [15] G. Cormode and M. Garofalakis. Sketching streams through the net: distributed
approximate query tracking. In: Proceedings of the 31st International Conference on Very
Large Data Bases, pp. 13–24, 2005.

 [16] G. Cormode, M. N. Garofalakis and D. Sacharidis. Fast approximate wavelet tracking
on streams. In: EDBT, pp. 4–22, 2006.

 [17] G. Cormode and M. Hadjieleftheriou. Finding frequent items in data streams. Proc.
VLDB Endow., 1: 1530–1541, August 2008.

 [18] G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1): 58–75, Apr. 2005.

 [19] G. Cormode and S. Muthukrishnan. What’s hot and what’s not: tracking most frequent
items dynamically. ACM Trans. Database Syst., 30: 249–278, March 2005.

 [20] G. Cormode and S. Muthukrishnan. What’s new: fi nding signifi cant differences in
network data streams. IEEE/ACM Trans. Netw., 13: 1219–1232, December 2005.

 [21] A. Das, S. Ganguly, M. Garofalakis and R. Rastogi. Distributed set-expression cardinality
estimation. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases
—Vol. 30, pp. 312–323, 2004.

 [22] A. Deligiannakis, M. Garofalakis and N. Roussopoulos. Extended wavelets for multiple
measures. ACM Trans. Database Syst., 32, June 2007.

 [23] A. Dobra, M. Garofalakis, J. Gehrke and R. Rastogi. Processing complex aggregate queries
over data streams. In: Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, SIGMOD’02, pp. 61–72, 2002.

 [24] A. Dobra, M. Garofalakis, J. Gehrke and R. Rastogi. Sketch-based multi-query processing
over data streams. In: EDBT, pp. 551–568, 2004.

 [25] J. Feigenbaum, S. Kannan, M. Strauss and M. Viswanathan. An approximate l1- difference
algorithm for massive data streams. In: Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, 1999.

 [26] J. H. Fong and M. Strauss. An approximate lp-difference algorithm for massive data
streams. In: Proceedings of the 17th Annual Symposium on Theoretical Aspects of Computer
Science, pp. 193–204, 2000.

 [27] M. M. Gaber, A. Zaslavsky and S. Krishnaswamy. Mining data streams: a review. SIGMOD
Rec., 34(2): 18–26, Jun. 2005.

 [28] S. Ganguly, M. Garofalakis and R. Rastogi. Processing data-stream join aggregates using
skimmed sketches. In: Proc. Int. Conf. on Extending Database Technology, pp. 569–586,
2004.

 [29] M. Garofalakis and P. B. Gibbons. Wavelet synopses with error guarantees. In: Proceedings
of the 2002 ACM SIGMOD international conference on Management of data, pp. 476–487,
2002.

 [30] M. Garofalakis and A. Kumar. Deterministic wavelet thresholding for maximum-error
metrics. In: Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, pp. 166–176, 2004.

 [31] M. N. Garofalakis. Wavelets on streams. In: Encyclopedia of Database Systems, pp.
3446–3451. 2009.

 [32] R. Gemulla and W. Lehner. Sampling time-based sliding windows in bounded space.
In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of data,
pp. 379–392, 2008.

 [33] P. B. Gibbons, Y. Matias and V. Poosala. Fast incremental maintenance of approximate
histograms. ACM Trans. Database Syst., 27(3): 261–298, Sep. 2002.

 [34] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan and M. J. Strauss. Fast,
small-space algorithms for approximate histogram maintenance. In: Proceedings of the
Thiry-fourth Annual ACM Symposium on Theory of Computing, pp. 389–398, 2002.

 [35] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan and M. Strauss. Surfi ng wavelets on streams:
One-pass summaries for approximate aggregate queries. In: Proceedings of the 27th Inter-
national Conference on Very Large Data Bases, pp. 79–88, 2001.

 [36] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan and M. Strauss. Surfi ng wavelets on streams:
One-pass summaries for approximate aggregate queries. In: Proceedings of the 27th Inter-
national Conference on Very Large Data Bases, pp. 79–88, 2001.

 [37] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan and M. Strauss. Surfi ng wavelets on streams:
One-pass summaries for approximate aggregate queries. In: Proceedings of the 27th Inter-
national Conference on Very Large Data Bases, pp. 79–88, 2001.

 Data Stream 233

234 Applied Data Mining

 [38] M. B. Greenwald and S. Khanna. Power-conserving computation of order-statistics over
sensor networks. In: Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pp. 275–285, 2004.

 [39] S. Guha, P. Indyk, S. Muthukrishnan and M. Strauss. Histogramming data streams with
fast per-item processing. In: Proceedings of the 29th International Colloquium on Automata,
Languages and Programming, pp. 681–692, 2002.

 [40] S. Guha, K. Shim and J. Woo. Rehist: relative error histogram construction algorithms.
In: Proceedings of the Thirtieth International Conference on Very large data bases—Vol. 30, pp.
300–311, 2004.

 [41] P. Indyk, N. Koudas and S. Muthukrishnan. Identifying representative trends in massive
time series data sets using sketches. In: Proceedings of the 26th International Conference on
Very Large Data Bases, VLDB ’00, pp. 363–372, 2000.

 [42] Y. Ioannidis. The History of Histograms (abridged). In: Proceedings of the 29th Interna-
tional conference on Very Large Data Bases—Vol. 29, pp. 19–30, 2003.

 [43] Y. E. Ioannidis and V. Poosala. Balancing histogram optimality and practicality for query
result size estimation. In: Proceedings of the 1995 ACM SIGMOD International Conference
on Management of Data, pp. 233–244, 1995.

 [44] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik and T. Suel.
Optimal Histograms with Quality Guarantees. In: Proceedings of the 24th International
Conference on Very Large Data Bases, pp. 275–286, 1998.

 [45] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mapping into Hilbert space.
In: Conf. in Modern Analysis and Probability, Vol. 26, pp. 189–206, 1984.

 [46] D. Kempe, A. Dobra and J. Gehrke. Gossip-based computation of aggregate information.
In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science,
2003.

 [47] G. Kollios, J. W. Byers, J. Considine, M. Hadjieleftheriou and F. Li. Robust aggregation
in sensor networks. IEEE Data Eng. Bull., 28(1): 26–32, 2005.

 [48] S. L. Lohr. Sampling: Design and Analysis. Duxbury Press, Dec 1999.
 [49] G. S. Manku and R. Motwani. Approximate frequency counts over data streams. In:

Proceedings of the 28th International Conference on Very Large Data Bases, pp. 346–357,
2002.

 [50] Y. Matias and D. Urieli. Optimal workload-based weighted wavelet synopses. In: ICDT,
pp. 368–382, 2005.

 [51] Y. Matias, J. S. Vitter and M.Wang. Wavelet-based histograms for selectivity estimation.
In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of data,
pp. 448–459, 1998.

 [52] M. Muralikrishna and D. J. DeWitt. Equi-depth histograms for estimating selectivity
factors for multi-dimensional queries. In: Proceedings of the 1988 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 28–36, 1988.

 [53] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends
in Theoretical Computer Science, 1(2), 2005.

 [54] S. Muthukrishnan, V. Poosala and T. Suel. On rectangular partitionings in two dimensions:
Algorithms, complexity, and applications. In: Proceedings of the 7th International Conference
on Database Theory, pp. 236–256, 1999.

 [55] C. Olston, J. Jiang and J.Widom. Adaptive fi lters for continuous queries over distributed
data streams. In: Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, pp. 563–574, 2003.

 [56] K. Pearson. Contributions to the mathematical theory of evolution. ii. skew variation
in homogeneous material. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, (186): 326–343, 1895.

 [57] N. Polyzotis and M. Garofalakis. Structure and value synopses for xml data graphs.
In: Proceedings of the 28th International Conference on Very Large Data Bases, pp. 466– 477,
2002.

 [58] N. Polyzotis and M. Garofalakis. Xcluster synopses for structured xml content. In:
Proceedings of the 22nd International Conference on Data Engineering, 2006.

 [59] V. Poosala, P. J. Haas, Y. E. Ioannidis and E. J. Shekita. Improved histograms for selectivity
estimation of range predicates. In: Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, pp. 294–305, 1996.

 [60] V. Poosala and Y. E. Ioannidis. Selectivity estimation without the attribute value
independence assumption. In: Proceedings of the 23rd International Conference on Very
Large Data Bases, pp. 486–495, 1997.

 [61] P. Rao and B. Moon. Sketchtree: Approximate tree pattern counts over streaming labeled
trees. In: Proceedings of the 22nd International Conference on Data Engineering, 2006.

 [62] F. Rusu and A. Dobra. Statistical analysis of sketch estimators. In: Proceedings of the 2007
ACM SIGMOD International Conference on Management of Data, pp. 187–198, 2007.

 [63] E. J. Stollnitz, T. D. Derose and D. H. Salesin. Wavelets for Computer Graphics: Theory and
Applications. Morgan Kaufmann Publishers Inc., 1996.

 [64] M. Thorup and Y. Zhang. Tabulation based 4-universal hashing with applications to
second moment estimation. In: Proceedings of the fi fteenth annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 615–624, 2004.

 [65] J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1): 37–57,
Mar. 1985.

 [66] J. S. Vitter and M. Wang. Approximate computation of multidimensional aggregates
of sparse data using wavelets. In: Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, pp. 193–204, 1999.

 [67] D. S. Yates, D. S. Moore and D. S. Starnes. The Practice of Statistics. Freeman, 2008.
 [68] H. A. Zur. Theorie der orthogonalen funktionensystemes. Mathematische Annalen, (69):

331–371, 1910.

 Data Stream 235

CHAPTER 11

Recommendation Systems

Recommendation systems are important applications that are essential for
numerous business models. Recommendation systems suggest appropriate
items based on user preference and historical purchase data. These systems
are based on the principle that if users shared the same interests in the past,
they will, with high probability, exhibit similar behavior in the future. The
historical data that refl ect user preference may comprise explicit ratings,Web
click logs, or tags. Personalization is evidently an important factor in an
effective recommendation system. In this chapter, we will introduce the
basic concepts and main strategies for recommendation systems.

The collaborative fi ltering (CF) approach will be presented in Section
11.1, in which user- and item-based CF methods are introduced. The
probability latent semantic analysis (PLSA) will be presented in Section
11.2. The tensor method will be introduced in Section 11.3. A discussion
on data stream will be presented in Section 11.4. A chapter summary will
be given in Section 11.5.

11.1 Collaborative Filtering
One of the most basic and important techniques in recommendation
systems is collaborative fi ltering (CF). The key idea of CF is that automatic
predictions (or fi ltering) are made about the interests of users by collecting
preference information from a large number of users (i.e., collaborate).
The preference data may include explicit ratings, Web click logs, reviews,
or tags. Through deliberate analysis of the interrelation between people
(represented as user profi le) and items based on preference information,
effective recommendations can be suggested. To encode the profi le of a
user, a common method is to use a vector of the user’s ratings on items. The
rating values can be either binary (i.e., like or dislike) or numeric values that

indicate the degree of the rating. Researchers have proposed two categories
of CF algorithms: memory- and model-based [17, 3, 11]. We will introduce
these two kinds of methods in the subsequent sections.

11.1.1 Memory-based Collaborative Recommendation

Memory-based collaborative methods always employ the total ratings of
users in the training data to make a recommendation. These strategies can be
further divided into two classes: user- and item-based approaches [20].

11.1.1.1 User-based Recommendation

In this section, we introduce one representative user-based recommendation
algorithm: the user-based k nearest neighborhood algorithm (UBkNN).
UBkNN fi nds a set of users who have similar preferences as the target user by
calculating the similarity among users. To fulfi ll this purpose, the algorithm
applies a number of state-of-the-art kNN (i.e., top-k nearest neighborhood)
strategies. After the process of fi nding the kNN users, the approach applies
the common CF algorithm to propose a list of item recommendations to the
user. Given a query user u, the recommendation of item i is computed as

follows: pu,i = ,1

1

((,))

(,)

k
j ij

k

j

R sim u j

sim u j
=

=

∑
∑ , where Rj,i denotes the rating by user j on item

i, whereas the k most similar users (with regard to user i) are considered.

11.1.1.2 Item-based Recommendation

In contrast to the UBkNN algorithm, the item-based kNN method [20] is
another kind of CF approach that computes the similarity between two
items, instead of users. In the item-based kNN algorithm, the similarity
among items is computed by comparing the item vector, after which a
similarity table is constructed. In this table, each row is modeled as a set of
ratings by all users on one item, whereas each column is modeled as a set
of ratings by one user on all the items. To assess the rating on an item i for
user u, the algorithm computes the ratio of the sum of the ratings given by
the user on the items that are similar to i with respect to the sum of involved

item similarities as follows: pu,i =
,1

1

((,))

(,)

k
u jj

k

j

R sim i j

sim i j
=

=

∑
∑ , where Ru,j denotes rating

by user u on item j, and the k most similar items (with regard to item i) are
considered.

 Recommendation Systems 237

238 Applied Data Mining

11.1.2 Model-based Recommendation

Another main class of CF algorithms is the model-based approach. Model-
based recommendation constructs a model from the historical data (i.e.,
rating, tag, etc.) and then uses this model to make a recommendation.
Several approaches can be used to build the model, such as the hidden
Markov model, decision tree, clustering, Bayesian networks, neural
networks, latent semantic analysis, and so on.

Mobasher et al. introduced a model-based recommendation system,
i.e., Profi le Aggregations based on Clustering Transaction that applies
clustering strategies to aggregate user sessions. Users are then clustered
based on similar preferences (i.e., access pattern). The clustering model
learned from the training data can be used to make a recommendation for
a newcomer, such that the representative of the clustering is suggested to
the person who has a similar access pattern as the cluster.

Notably, the similarity metric is important for its function in evaluating
how similar two users (or items) are. Common metrics include cosine,
jaccard, and so on. However, this subject is not within the scope of this
chapter, and we direct interested users to [20].

11.2 PLSA Method
The PLSA model was fi rst proposed in [10] to address text mining. The
basic idea of PLSA is related to that of LSA [5], the difference being the
fact that the latter is based on linear algebra and downsizes the occurrence
tables (via a singular value decomposition), whereas the former is built by
mixture decomposition derived from a latent class model in statistic theory
[1]. PLSA intuitively aims to recognize the hidden semantic relationships
among co-occurrence activities, usually based on the aspect model.

To illustrate the PLSA, we present its application on Web usage mining.
User sessions over Web pages can be deemed as co-occurrence activities to
deduce the latent usage pattern. The aspect model assumes the existence of
a latent factor space Z = (z1, z2, . . . , zk), and each co-occurrence observation
data (si, pj) (i.e., the visit of page pj in user session si) is associated with the
factor zk Z by a varying degree to zk. Intuitively, the relationships between
users and Web pages should be different and determined by a variety of
factors, which can then be used to represent the latent usage patterns of
the users.

For example, when applying PLSA on an e-shopping website, we can
assume k categories of navigational behavior patterns (determined by k
latent factors). The k factors could be the probabilities that: (1) users have
an interest in the travel-related product category; (2) users merely browse
different products; (3) users tend to buy entertainment products, and so on.

To refl ect all of these probabilities, we can project the training data into the
corresponding latent factor space. The representation of these projections
can be defi ned as the conditional probability distribution that refl ects the
relationships among users or Web pages (which are, indeed, latent usage
patterns). In a brief summary, PLSA aims to identify and represent user
access behavior in latent semantic spaces, and determine the corresponding
factors. In the following section, the mathematical theory of PLSA will
be presented. First, we give several defi nitions that are necessary in the
framework: P(si) represents the probability that a user session si appears
in the training data; P(zk|si) indicates that, given a user session si, the
probability of the latent factor zk associated with si; and P(pj |zk) denotes
that, given the latent factor zk, the probability of the pages pj exists.

The algorithm of the PLSA model is executed as the following steps: (1)
a user session si is selected with probability P(si); (2) a factor zk is chosen with
probability P(zk|si); and (3) a Web page pj is presented with probability P(pj
|zk). Through these steps, we can derive the probability of the observation
data (si, pj) relative to the latent factor zk. The process can be presented by
the following formula:

 P(si, pj) = P(si) · P(pj|si) (11.2.1)

where, P(si, pj) = P(si) · P(pj|si). Through the Bayesian rule, the above
equations can be transformed to:

 P(si, pj) = () (|) (|)i j
z Z

P z P s z P p z
∈
∑ (11.2.2)

Based on the likelihood rule, the total likelihood of the observation
data can be presented as:

 Li =
,

(,) (,)
i j

i j i j
s S p P

m s p logP s p
∈ ∈

⋅∑ (11.2.3)

where m(si, pj) denotes the element of the matrix (determined by user sessions
and web pages) associated with user session si and page access pj.

To maximize the total likelihood, the conditional probabilities P(z),
P(si|z), and P(pj |z) must be recursively optimized based on the observation
data. The Expectation Maximization (EM) strategy [6] is known to be an
effective tool for addressing this issue. In EM, two steps are recursively
implemented: (1) expectation (E) step, where the posterior probabilities are
computed for the latent factors based on the current computations of the
conditional probability; and (2) maximization (M) step, where the estimated
conditional probabilities are updated and used to maximize the likelihood
based on the posterior probabilities computed in the previous E step.

The procedure is executed as follows: We fi rst set the initial values of
P(z), P(si|z), and P(pj |z) randomly. In the E-step, we employ the Bayesian
rule to compute the following values relative to the observation data:

 Recommendation Systems 239

240 Applied Data Mining

 P(zk|si, pj) =
() (|) (|)

() (|) (|)
k

k i k j k

z Z k i k j k

P z P s z P p z
P z P s z P p z∈∑

 (11.2.4)

In the M-step, we calculate the following values:

 P(pj|zk) =
,

(,) (| ,)
(,) (| ,)

i

i j

s S i j k i j

s S p' P i j k i j

m s p P z s p
m s p' P z s p'

∈

∈ ∈

∑
∑

 (11.2.5)

 P(si|zk) =
,

(,) (| ,)

(,) (| ,)
j

i j

p P i j k i j

s' S p P i j k i j

m s p P z s p

m s' p P z s' p
∈

∈ ∈

∑
∑

 (11.2.6)

 P(zk) =
,

1 (,) (| ,)
i j

i j k i j
s S p P

m s p P z s p
R ∈ ∈

∑ (11.2.7)

where R = si S,pj P m(si, pj). Substituting Eqs. 11.2.5 with 11.2.7 into Eqs.
11.2.2 to 11.2.3 will yield the total likelihood Li of the observation data with
monotonic increasing property. The E-step and M-step are recursively
executed until convergence occurs, which indicates that the result is
maximized to be the optimal estimate of the observation data. In terms of
the complexity of the PLSA algorithm, the computational cost is O(mnk),
where m denotes the number of sessions, n denotes the number of the Web
pages, and k denotes number of latent factors.

Through the aforementioned process, we can see that the estimated
probability distribution intrinsically refl ects the local maximum likelihood
and therefore encodes the critical information that could be used to deduce
the latent factors.

11.2.1 User Pattern Extraction and Latent Factor Recognition

In the PLSA model, latent factors (are assumed to) indicate features that
refl ect usage co-occurrence observation activities. As an intuitive result,
every latent factor could have a specifi c user access pattern. To address
the issue of decoding latent factor and extracting user patterns, we can
build aggregated user profi les to present the user access behaviors based
on the estimated probability distributions. A simple representation for
the aggregated user profi les is achieved by using a set of clustered pages
that are weighted to illustrate their contributions to the clustered group.
The semantic meaning of the latent factor can be deduced by analyzing
the aggregated user profi le, that is, the representative topic of the cluster
group.

11.2.1.1 User Session Partition

Given a user session si, the estimated probability distribution in the factor
space may indicate the user’s access pattern over the whole latent factor
space, which can thus be explored to discover the dominant factors by
recognizing the top probability values. By using Bayesian rule, we can
calculate a set of probabilities over the latent factor space as follows:

 P(zk|si) =
(|) ()

(|) ()
k

i k k

z Z i k k

P s z P z
P s z P z∈∑

 (11.2.8)

Considering that only a few probability distributions can pass
the predefi ned threshold test, the probability group P(zk|si) is always
very sparse. To mitigate this problem, the users can be clustered into a
corresponding probability distribution that is larger than the threshold.
Notably, a user session can be represented by a set of pages, and a mixture
model can be utilized based on the latent factor zk relative to the weighted
pages. The pseudo code of user session partition is shown as follows:

Algorithm 6: User Session Partition

Input: A set of calculated probability values of P (zk|si), a user session-page matrix
SP , and a predefined threshold μ.

Output: A set of session clusters SCL=(SCL1, SCL2, . . . SCLk)
Set SCL1 = SCL2 = . . . = SCLk = ϕ;
for each si ∈ S do

select P (zk|si);
if P (zk|si) ≥ μ then

SCLk = SCLk ∪ si;
end

end
if there are remaining users sessions to be clustered then

go to line 2;
end
Output session clusters SCL = { SCLk};

11.2.1.2 Latent Factor Recognition

Analyzing the latent factor is important because of its signifi cance in the
PLSA model. To address this issue, similar to the user session partition,
the probability distribution can be employed to partition Web pages into
corresponding clusters relative to the latent factors. A threshold-based
strategy can also be used to identify the conditional probabilities that pass
the test and possess similar semantic meaning. After clustering, the URLs
of the pages and the weights deduced from the model will be utilized to

 Recommendation Systems 241

242 Applied Data Mining

analyze the semantic meaning of the latent factors. The pseudo code of the
algorithm for recognizing latent factors is as follows:

Algorithm 7: Latent Factor Recognition

Input: A set of conditional probabilities, P (pj |zk), a predefined threshold μ
Output: A set of latent semantic factors represented by several essential pages
Set PCL1 = PCL2 = . . . = PCLk = ϕ;
for each zk do

select the web pages which have P (pj |zk) ≥ μ and P (zk|pj) ≥ μ;
PCLk = pj ∪ PCLk;

end
if there are remaining users pages to be clustered then

go to line 2;
end
Output PCL = { PCLk};

11.3 Tensor Model
Tensors are geometric objects that describe linear relations among vectors,
scalars, and other tensors [2]. In this section, we will briefl y introduce the
tensor method, which is a commonly used strategy for recommendation
systems.

A matrix is an effective tool that encodes the relationship between two
types of objects, such as the information between the users and their clicked
Web pages. A common characteristic of a matrix is that each row can be
considered as a linear combination of values from different column spaces,
and vice versa, where each column is represented by a vector of elements
in the row space. Computation based on matrix can effectively address
a number of real problems because two dimensional model (i.e., matrix-
based model) can fi t these problems well. Nevertheless, high-dimensional
problems such as user vs. pages vs. time vs. keywords must likewise be
addressed. A tensor, which can be considered as a high-dimensional version
of a matrix, can be considered as a general model for high-dimensional
data. Therefore, the tensor model is employed for all problems that involve
multiple dimensional issues. The existence of numerous models related
to tensor also provides a powerful tool. We discuss the mathematical
background of the tensor model as follows:

We fi rst present a number of basic defi nitions used in the tensor model
with meanings that differ from those under a two-dimensional situation.
Specifi cally, the order, mode, and dimension are used to denote the concepts
of dimensionality, dimension, and attribute value that are used in linear
algebra. For instance, a third-order tensor is the same as a three-dimensional
data expression. Furthermore, we defi ne several specifi c symbols for the

tensor model, which are presented as follows: (1) scalar is denoted by a
lowercase letter, such as a; (2) vector is denoted by a boldface lowercase
letter, such as a; (3) the ith entry of a is denoted by ai; (4) matrix is denoted
by a boldface capital letter, such as A; (5) the j-th column of A is denoted
by aj , whereas the element of jth column and ith row is denoted by aij ; (6)
tensor is denoted by an italicized boldface letter, such as X; (7) element (i,
j, k) of a third-order tensor is denoted by Xijk; and (8) a tensor of order M
closely resembles a data cube with M dimensions. Formally, we write an
Mth order tensor X RN1×N2×...N

m, where Ni(1 ≤ i ≤ M) is the dimensionality
of the ith mode. For brevity, we often omit the subscript [N1, . . . ,NM].
Moreover, more important concepts used in the tensor model are defi ned
as follows [21].

Figure 11.3.1: Sample multiplication of a third-order tensor with a matrix

Defi nition 2 (Matricizing or Matrix Unfolding) [21]. The mode-d matricizing
or matrix un-folding of an Mth order tensor X RN1×N2×...N

m is a vector in RNd
obtained by keeping index d fi xed and varying the other indices. Therefore, the
mode-d matricizing X(d) is in R i d Ni×Nd.

Defi nition 3 (Mode Product) [21]. The mode product X ×dU of a tensor
X RN1×N2×...N

m and a matrix U RNd×N’ is the tensor in RN1×...×Nd−1×N’×Nd+1×...×NM
defi ned by:

 1 1 1 1 1 1
1

(,..., , , ,...,) (,..., , , ,...,) (,)
i

d

N

d d d M d d d M d
i

X U i i j i i X i i i i i U i j− + − +
=

× =∑ (11.3.1)

for all index values.
An example is illustrated in Fig. 11.3.1 for third-order tensor X (i.e.,

three-dimensional data) mode-1 multiplied by a matrix U. The process is
executed in three steps: (1) matricizing X along mode-1; (2) performing
matrix multiplication between ×1 and U; and (3) folding the result back as
a tensor.

Based on Defi nition 2, we can calculate a set of multiplications of a
tensor X RN1×N2×...N

mUi|
M

i=1 RNi×Di as: X ×1 U1 . . . ×m UM RD1×...×DM, which
can be represented as × M

i=1 ×iUi. Moreover, we present the following
multiplications of all Uj except the i-th: X ×1 U1 . . . ×i−1 Ui−1 ×i+1 Ui+1 . . . ×M
UM as X j i ×jUj .

 Recommendation Systems 243

244 Applied Data Mining

Definition 4 (Rank-(R1, . . . ,RM) approximation). Given a tensor
X RN1×...NM, its best Rank-D1, . . . ,DM approximation is the tensor X
 RD1×...

DM with rank X
 (d) = Dd for 1 ≤ d ≤ M, which satisfi es the optimal criterion
of least square error argmin||X − X
 ||2

F.
The best Rank-(R1, . . . ,RM) approximation is X
 = Y M

j=1 ×jUj, where the
tensor Y is the core tensor of approximation Y RN1×...×NM, and Uj|

M
j =1 RNj×Dj

is the projection matrices.

11.4 Discussion and Challenges
Recommendation systems are confronted by several issues. The fi rst issue
is the cold start problem, which refers to a case in which items (or users)
that are not rated by others (or new user) are not recommended. Numerous
studies have been conducted to address this issue. Another challenge is the
sparsity issue, a case in which only a small percentage of the total items
are rated by users [15]. To address the sparsity issue, several works have
introduced an award-giving mechanism that encourages users to rate more
items. Other works focus on the implicit behavior of users, which indicates
the users’ rating [18]. Other problems for recommendation systems include
data redundancy, noisy data, and so on [23].

In addition to the aforementioned problems, we will introduce other
important issues related to the recommendation systems.

11.4.1 Security and Privacy Issues

A recommendation system is known to achieve optimal performance
when more information is known about the users, which means that the
users need to present as much personal information as possible to the
system to obtain good suggestions. This process, however, may give rise to
privacy problem. Personal information typically includes the user’s name,
birth date, postal code, email, and so on. A registration process is always
necessary if a user hopes to obtain a recommendation from the system. As
explained in Chapter 9 (i.e., issues on privacy preservation), combinations
of such personal information may be highly identifying (Quasi-identifi er1).
Therefore, the personal data submitted to the recommendation systems may
become quasi-identifi ers [12]. Moreover, such personal information may be
disseminated, intended or unintended, by the recommendation system.

1 Quasi-identifi er: “Variable values or combinations of variable values within a dataset that are
not structural uniques but might be empirically unique and therefore in principle uniquely
identify a population unit.”(OECD, Glossary of statistical term, 2010)

In an ideal environment, users should trust that not only will
recommendation systems protect their privacy, but will also provide highly
accurate resultant recommendations [12]. Nevertheless, this condition is
not true for numerous real applications.

Considering these problems, recommendation systems should prevent
the disclosure or misuse of user’ data. Other security-related issues also
exist. For instance, a product creator may manipulate the recommendation
provided by the system such that his product will be recommended to
users [4, 13].

11.4.2 Effectiveness Issue

Recommendation systems primarily aim to provide good suggestions
to users. This aim embodies the effectiveness issue. The evaluation of
effectiveness has thus been an important and thoroughly studied subject
over the past several decades [8, 9, 14, 22]. A large number of commonly used
evaluation metrics are based on coverage and accuracy. Coverage estimates
the percentage of items that a recommendation system can recommend [8].
Accuracy can be calculated through statistical or decision support-based
methods [8].

Statistics-based metrics include root mean squared error, mean absolute
error, and so on. The basic idea for statistics-based metrics is that computed
ratings are compared with real ratings. Decision support-based metrics
include those commonly used in the information retrieval literature, such
as precision (the percentage of real “high” ratings compared with those
computed to be “high” by recommendation systems), recall (the percentage
of real computed to be “high” ratings compared with those known to be
“high”), F measure, and so on [8]. Support-based metrics compute how
well recommendation systems make suggestions.

Despite the given metrics, tests of recommendation effectiveness on
an unbiased random sample remain limited because uncovering the real
scenario is time consuming [14]. Thus, existing experimental evaluations
only test data that users have already selected to rate, which may introduce
bias, that is, users may rate mostly the items that they like. Moreover, for
real recommendation systems, relying solely on accuracy, recall, or any of
the given metrics is impractical. For instance, in a supermarket application,
recommending obvious items (e.g., via the association rule) will yield high
precision but may not be helpful to the user because the user is already
familiar with such items. Thus, recommendation systems must provide
uncommon and useful recommendations based on economics-oriented
measures, similar to those given [7, 16, 19].

 Recommendation Systems 245

246 Applied Data Mining

11.5 Chapter Summary
In this chapter, we provided an overview of the basic concepts and
different methods for recommendation systems. We discussed the CF,
PLSA, and tensor methods. In addition, we discussed the important issues
and problems related to recommendation systems, including cold start,
data sparsity, privacy, and effectiveness. This chapter explored the basic
methodologies that could be further explored for interested readers.

References
 [1] http://en.wikipedia.org/wiki/Probabilistic_latent_semantic_analysis.
 [2] http://en.wikipedia.org/wiki/Tensor.
 [3] J. S. Breese, D. Heckerman and C. M. Kadie. Empirical analysis of predictive algorithms

for collaborative fi ltering. In: UAI, pp. 43–52, 1998.
 [4] P. -A. Chirita, W. Nejdl and C. Zamfi r. Preventing shilling attacks in online recommender

systems. In: Proceedings of the 7th annual ACM international workshop on Web information
and data management, pp. 67–74, 2005.

 [5] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer and R. Harshman. Indexing
by latent semantic analysis. Journal of the American Society for Information Science, 41(6):
391–407, 1990.

 [6] A. P. Dempster, N. M. Laird and D. B. Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1–38, 1977.

 [7] F. R. Dwyer. Customer lifetime valuation to support marketing decision making. Journal
of Direct Marketing, 11(4): 6–13, 1997.

 [8] J. L. Herlocker, J. A. Konstan, A. Borchers and J. Riedl. An algorithmic framework for
performing collaborative fi ltering. In SIGIR ’99: Proceedings of the 22nd annual inter-
national ACM SIGIR conference on Research and development in information retrieval, pp.
230–237, 1999.

 [9] J. L. Herlocker, J. A. Konstan, L. G. Terveen and J. T. Riedl. Evaluating collaborative
fi ltering recommender systems. ACM Trans. Inf. Syst., 22: 5–53, January 2004.

 [10] T. Hofmann. Probabilistic latent semantic indexing. In: Proceedings of the 22nd an-nual
international ACM SIGIR conference on Research and development in information retrieval,
pp. 50–57, 1999.

 [11] T. Hofmann and J. Puzicha. Latent class models for collaborative fi ltering. In: IJCAI, pp.
688–693, 1999.

 [12] S. K. Lam, D. Frankowski and J. Riedl. Do you trust your recommendations? an
exploration of security and privacy issues in recommender systems. In: ETRICS, pp.
14–29, 2006.

 [13] S. K. Lam and J. Riedl. Shilling recommender systems for fun and profi t. In: Proceedings
of the 13th international conference on World Wide Web, pp. 393–402, 2004.

 [14] R. J. Mooney and L. Roy. Content-based book recommending using learning for text
categorization. In: Proceedings of the fi fth ACM conference on Digital libraries, pp. 195–204,
2000.

 [15] M. Papagelis and D. Plexousakis. Qualitative analysis of user-based and item-based
prediction algorithms for recommendation agents. Eng. Appl. Artif. Intell., 18: 781–789,
October 2005.

 [16] S. Rosset, E. Neumann, U. Eick, N. Vatnik and Y. Idan. Customer lifetime value modeling
and its use for customer retention planning. In: Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 332–340, 2002.

 [17] B. Sarwar, G. Karypis, J. Konstan and J. Reidl. Item-based collaborative fi ltering
recommendation algorithms. In: Proceedings of the 10th international conference on World
Wide Web, pp. 285–295, 2001.

 [18] B. M. Sarwar, J. A. Konstan, A. Borchers, J. Herlocker, B. Miller and J. Riedl. Using fi ltering
agents to improve prediction quality in the grouplens research collaborative fi ltering
system. In: Proceedings of the 1998 ACM conference on Computer supported cooperative work,
pp. 345–354, 1998.

 [19] D. C. Schmittlein, D. G. Morrison and R. Colombo. Counting your customers: who are
they and what will they do next? Manage. Sci., 33: 1–24, January 1987.

 [20] X. Su and T. M. Khoshgoftaar. A survey of collaborative fi ltering techniques. Adv. in
Artif. Intell., 4:2–4:2, January 2009.

 [21] J. Sun, D. Tao and C. Faloutsos. Beyond streams and graphs: dynamic tensor analysis.
In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 374–383, 2006.

 [22] Y. Yang and B. Padmanabhan. Evaluation of Online Personalization Systems: A Survey
of Evaluation Schemes and A Knowledge-Based Approach. Journal of Electronic Commerce
Research, 6(2): 112–122, 2005.

 [23] K. Yu, X. Xu, J. Tao, M. Ester and H.-P. Kriegel. Instance Selection Techniques for Memory-
Based Collaborative Filtering. In: Proceedings of the 2nd SIAM International Conference on
Data Mining, 2002.

 Recommendation Systems 247

CHAPTER 12

Social Tagging Systems

In this chapter, we present the literature review on works on tag-based
systems. First, we introduce the background of this chapter. The purpose of
literature review is to gain insight in research that has been done already;
in turn this process enables us to identify useful ideas, unsolved issues and
shortcomings in the current methods.

Accordingly, this chapter is structured as follows: in Section 12.1 we
explore the literature on the basic concept of data mining and information
retrieval which links this chapter to the whole book; in Section 12.2
the related work in recommender systems in details, we review the
recommendation algorithms, and discuss the tag-based recommender
system; subsequently we review the clustering algorithms which helps to
improve the recommendation in Section 12.3. Following that in Section 12.4
we discuss the Clustering algorithms in Tag-Based Recommender Systems
in details. Finally, a summary is given in Section 12.5.

12.1 Data Mining and Information Retrieval
Data mining is one of the popular research areas which has a long processing
of research period. Data mining can take the evolutionary process and
analyze data from various perspectives, and then summarize the useful
information for the users [53]. We want to utilize the techniques and
algorithms from data mining to process the data in the various fi elds to
fi nd the correlations with the different attributes.

Information Retrieval is a broad but full of challenge part of research
areas. It also has a long history, as early as 1968, when Lancaster [33] gave
the perfectly straightforward idea. It mainly focuses on providing useful
and helpful information to users by easy access.

Information retrieval (IR) should provide the useful and interesting
information according to the users’ need with easy access from the dataset.
And it also helps to represent, store and reorganize the information items
[3].

When a user enters a query into an information retrieval system, the
system will compute a numeric score based on the similarity between each
object and such query, and then rank the objects to generate the ranking
list, so the value will present how well each object in the database matches
the query [34].

There are various IR systems based on the different user queries, such
as text documents, images, [18] audio, [14] mind maps [4] or videos. We
involved different approaches to improve the calculation of ranking scores
with different degrees of relevancies; they can obtain the top ranked objects
to generate better recommendations.

In [8], an information retrieval system is composed in three parts:

Feedback

Processor

Documents

Queries

Input
Output

Figure 12.1.1: Framework of Information Retrieval System ([8])

The representation of the documents in the dataset and the query from
user will initialize as the input part in the beginning.

And then, some of the techniques and algorithms will involve to
structure information in an appropriate way. It will also involve performing
the actual retrieval function. The output part is usually a set of document
lists.

 Social Tagging Systems 249

250 Applied Data Mining

12.2 Recommender Systems
The search engines based on the data mining technique can help user to
obtain suffi cient information resources; however, they have to fi lter the
bulky information resources themselves to get proper information. So how
to deal with the problems of ambiguity and redundancy represents the
urgent and challenging needs. Thus the recommender systems came into
birth according to the basic needs for the different users.

The recommender system provides a list of recommended items to
the user by calculating the similarity between the collected data and the
documents in the dataset. It can also help users to discover the useful items
they might not have found by themselves.

The fi rst overview of recommender systems was from an intelligent
agent’s perspective which was provided by Montaner [44]. Herlocker et al.
[23] surveyed the evaluation techniques for recommender systems.

The recommender systems improve the performance of the search
engines to index the non-traditional data. Tag has been widely used as an
additional attribute in recommender systems. Tag is a kind of metadata
which helps to describe an item and allows it to be found again by
browsing or searching. It is assigned by the individual user to the web
resource which can represent the user’s personal opinion expression [7].
The websites like Del.icio.us, Last.fm, and Flickr are the masterpieces of
Web 2.0’s applications. They allow users to express their own preferences
on the original resources with freely annotated words. So how to use the
social tagging data for better recommendation in appropriate way becomes
an active research topic recently.

Tags are used as an additional feature to re-model users or resources
over the tag vector space, and the annotation attribute can improve the
personalized recommendation. Different users can annotate the various
tags on the same resource, and the same tags also can be annotated by
different users as well [40].

Figure 12.2.1: Relationship of Users, Tags, Resources in Tagging System

Before we start digging into tag based recommender systems we
will shortly discuss developments in the recommender systems area in
general.

12.2.1 Recommendation Algorithms

In the previous subsection, we introduced the primary processing of
recommendation, and we will review the current recommendation
algorithms in this section. Overall, the recommendation algorithms are
utilized to recommend items which users are searching for currently, or
predict the items that they have not considered yet. Adomavicius and
Tuzhilin formulate the recommendation problem as follows [15]:

Let U = {u1, · · · um} be a set of users, and let I = {i1, · · · im} be a set of items.
Let U × I R, where R is a totally ordered set, and the g(um, in) measures
the similarity between item in to user um. Then, we want to recommend
unknown item imax,u I to the user u U, which maximize the function g:

u U, imax,u = arg max (,)
i I

g u i
∈

The basic concept of recommendation algorithms is shown as above,
which provides the fundamental background to the research. Below we
will introduce the Collaborative Filtering techniques and Content-based
techniques which are two basic types of recommendation methods.

12.2.1.1 Collaborative Filtering Recommendation

Collaborative Filtering (CF) is a mellow technique which has been widely
used in the recommender systems. It processes for fi ltering information
or patterns using techniques involving collaboration among multiple
conditions [24]. The collaborative fi ltering typically focuses on user data
from very large data sets. Generally speaking, it is based on the user’s
historical behavior that means when the user is interested in an item in the
past; it will be the same in future. If another user who is interested in the
same item, the system will defi ne them have one of the common options.
Then the system will provide recommendation according to the same
preferences of them.

It can produce personal recommendations by computing the similarity
between the user’s preference and other related people.

 Social Tagging Systems 251

252 Applied Data Mining

Figure 12.2.2: Principle of Collaborative Filtering Recommendation

The basic mechanism behind collaborative filtering systems is the
following:

 • Collect a large group of people’s preferences;
 • Analyze the similarity among a subgroup of people;
 • Select the people who has the similar preferences as the person who

seeks advice;
 • Calculate the average preferences score for that subgroup people;
 • Generate the recommended items to the user based on preference

function.

The collaborative fi ltering has several mechanisms as below:

12.2.1.1.1 Memory-based It utilizes users’ rating data to compute similarity
between users or items. In principle, there are neighborhood-based
collaborative fi ltering and item-based or user-based top-N recommendations
[62].

The neighborhood-based algorithm calculates the similarity between
two users or items. It predicts the average preferences score for all of the
rating items. We involve the mechanisms of cosine similarity on vector space
for our research work. The approach we implemented is as below:

Firstly the algorithm calculates the similarity value on the vector model,
secondly it collects the k most similar users by using top-N recommendation
algorithm, and then, it aggregates the user item matrices corresponding to
the identifi ed k most similar users; fi nally it can identify the set of items to
be recommended.

In addition, another popular method used to fi nd the similar users is
called the Locality Sensitive Hashing. It implements the nearest neighbor
mechanism in linear time.

The advantages of this approach are: The result is convenient to explain;
the implementation is easy to create and use; when the system has the
new data, it can be updated easily and incrementally; the content of the
recommended items do not need to be considered.

However, there are several disadvantages of this approach: First, it
depends on the users’ rating histories, so it has the limitation called “cold-
start”, meaning that systems can only generate the recommendation when
there are enough user data. Second, it has the poor prediction with the large
dataset especially when data get sparse or the number of similar users is

small. Third, it cannot generate the recommendation for the new users or
the users without rating histories.

12.2.1.1.2 Model-based Models are developed by using data mining and
machine learning algorithms to fi nd patterns based on training data.
There are many algorithms such as Bayesian Networks, clustering models,
Markov decision process based models, and so on. The classifi cation and
clustering techniques help the models to identify the user with the different
parameters. The number of the parameters can be changed by different
types according to principal component analysis [63].

The advantages of this approach are: It has the better preference on
the sparsity, so it is more suitable for large data sets on the prediction
performance. It provides the recommendation with more intuitive
rationale.

The disadvantages of this approach are: It is diffi cult to explain the
predictions for some of the models. Modeling process is more complex. It
is diffi cult to gain both well prediction performance and scalability. Some
of the useful information would be lost by reducing models.

12.2.1.1.3 Hybrid It is based on the combination of the memory-based and
the model-based CF algorithms. Such technique improves the scalability
of model-based approach and the accuracy of memory-based approach;
therefore, it performs more effectively than both of them. In addition, it
solves the problem of data sparsity. However, it increases the complexity
to implement [64].

12.2.1.2 Content-based Recommendation

Content-based fi ltering recommendation is based on the content similarity
of the items. It aims on recommending items based on the idea that if a
user liked an item in the past which had been recorded by the system,
he/she might probably like other similar items in the future. The system
collected attributes for the items from the previous information, and then
provided the recommended items. The recommendation decision is made
by comparing the candidate items with the previously rated item. The best-
matching items are recommended to the users [65].

In content-based recommendation approaches, the function g(um, in) is
formulated as:

g(um, in) = sim(ContentBasedUserProfi le(um),ContentBasedItemProfi le(In))

Where ContentBasedUserProfi le(um) is composed by content-based user
preferences of a user u U, and the ContentBasedItemProfi le(In) is the set of
content features characterizing item i I .

 Social Tagging Systems 253

254 Applied Data Mining

Basically, the above method characterizes items within the system by
item profi le. Then, different characteristics of item are expressed as a score
vector. Finally, the system forms a content-based profi le of users based on
score vector.

Overall, the recommendation scores denote the importance of each
characteristic to the user. The recommendation scores can be calculated
from individually rated content vectors.

Alternatively, calculating the similarity between the attributes that the
user preferred and those are not preferred is also a method of generating
the recommendation score. The scores can then be used to estimate the
probability of a specifi c part of the attributes that is potentially preferred by
the same user. Some other methods to calculate the recommendation scores
estimate the preferences of the users over the items by utilizing machine
learning techniques [66].

Figure 12.2.3: Principle of Content-based Recommendation

Web pages or other kinds of documents can be clustered into the same
group by the same characteristics; the system stores the relationship among
users, tags and documents. When the users have the similar preferred
document, the system can recommend other documents to him which can
be collected from the other users with the same experience hobbies.

The advantages of this approach are: It is easy to establish the content-
based user profi le based on the weighted vector of item attributes, without
a need of other users’ data; it can explain the recommendation by listing
content-feature items; there is no “First-Rater Problem” for the new item.

The disadvantages of this approach are: It excessively depends on the
particular user relevance; it provides recommendation relying on all content
information, whereas there is only a very shallow analysis of content that
can be supplied, and the content must be encoded as meaningful features;
it also has the problem of “over-specialization”, that means, the system
can only recommend users with the similar items that they have already
preferred, to the user according to the highest score.

12.2.2 Tag-Based Recommender Systems

Tagging system has some advantages in [48] as: Low cognitive cost and
entry barriers; immediate feedback and communication; individual needs
and information of organization.

The simple tagging system allows any web user to annotate the free
words on their favorite web resources rather than the predefi ned vocabulary.
Users can communicate with each other implicitly by the tag suggestions
to describe resources on the web. Therefore, the tagging system provides
a convenient way for users to organize their favorite web resources. In
addition, due to the development of the system, the user can fi nd other
people who are interested in similar projects. Consensus around stable
distributions and shared vocabularies emerge [21], even in the absence of
a centrally controlled vocabulary.

12.2.2.1 Folksonomy

When users want to annotate web documents for better organization and
use the relevant information to retrieve their needed resources later, they
often comment such information with free-text terms. Tagging is a new
way of defi ning characteristics of data in Web 2.0 services. The tags help
users to collectively classify and fi nd information and they also represent
the preference and interests of users. Similarly, each tagged document also
expresses the correlation and the attribute of the document. A kind of data
structure can be established based on the tagging annotation.

Hotho et al. [26] combined users, tags and resources in a data model
called folksonomy. It is a system which classifi es and interprets contents. It
is the derivative of the method of collaboratively creating and organizing
tags.

Folksonomy is a three-dimensional data model of social tagging
behaviors of users on various documents. It reveals the mutual relationships
between these three-fold entities, i.e. user, document and tag. A folksonomy
F according to [26] is a tuple F = (U, T, D, A), where U is a set of users, T
is a set of tags, D is a set of web documents, and A U×T×D is a set of
annotations. The activity in folksonomy is tijk {(ui, dj, tk) : ui U, dj D, tk

T}, where U = {U1, U2, · · · , UM} is the set of users, D = {D1, D2, · · · , DN}
is the set of documents, and T = {T1, T2, · · · , TK} is the set of tags. tijk = 1 if
there is an annotation (ui, dj, tk); otherwise tijk = 0.

Therefore a social tagging system can be viewed as a tripartite hyper-
graph [43] with users, tags and resources represented as nodes and the
annotations represented as hyper-edges connecting users, resources and
tags. There are some social applications which are based on the folksonomy
such as social bookmarking and movies annotation.

In this section, the preliminary approach for recommender system
is based on the folksonomy model, which helps us to obtain the tagging
information, and generate the user profi le, document profi le and group
profi ling.

 Social Tagging Systems 255

256 Applied Data Mining

The advantage of the folksonomy is to combine the three-dimensional
data into one data model; each two parts can represent the related
information, furthermore it is much more convenient for analyzing the
users’ behaviors and the documents’ attributes in the folksonomy model.

12.2.2.2 Standard Recommendation Model in Social Tagging System

Standard social tagging systems may vary in the ways of their ability of
handling recommendation. In this subsection, we focus our discussion on
the folksonomy model, which is derived from the information retrieval
principle. In folksonomy model, each user can be represented in the tag set
vector. Tag frequency represents the popularity of different tags. We use the
tag frequency as [25], TF = |a = u, r, t A : u U, r R, t T|, to calculate
the weight of the vector, which means, if a user u, has an annotation A, and
he assigns a tag t, on a resource r, such behavior will be assigned as “1”
in the tagging matrix; otherwise “0”, so the user can be represented as u =
utf (t1), utf (t2) , · · · , utf (t|T|) , Likewise each resource, r, can be modelled as r =
rtf (t1), rtf (t2) , · · · , rtf (t|T|) .

There are various similarity measures such as the Jaccard Coeffi cient,
Pearson Correlation or Cosine similarity to calculate the similarity scores,
and there are different approaches based on the user vector or resource
vector. The system provides top-N items as the recommendation list
according to the ranked similarity values.

There are several other recommendation algorithms proposed
to generate the recommendation list, such as FolkRank algorithm,
LocalRank algorithm, and so on. The FolkRank is enlightened by the
[67], the basic idea for FolkRank is that if an important user annotated a
resource by an important tag, then, such resource would be important, the
recommendation is based on calculating the importance weight [26]. Kubatz
et al. [68] improved the FolkRank by utilizing a neighborhood-based tag
recommendation algorithm called LocalRank, focuses on the relevant ones
only, and the recommendation accuracy is on a par with or slightly better
than FolkRank.

Figure 12.2.4: Relationship of Users, Tags, Resources in Folksonomy

12.3 Clustering Algorithms in Recommendation
The traditional recommendation algorithms such as collaborative fi ltering
approach, content-based fi ltering approach, and so on, are too much reliant
on users’ data and such data generally has the problem of sparseness.
When collecting the user profi les by the approaches above, the sparse data
would exacerbate the computational complexity and reduce the precision
of recommendation. So we consider involving the clustering algorithms
to reduce the dimensions of users and documents data. With the help of
clustering algorithms, both recommendation performance and results can
be improved.

Clustering algorithms refer to algorithms which are trying to fi nd
hidden structures in unlabeled data. The clustering algorithms are used to
estimate, summarize and explain the main characteristic of the data. There
are many cluster methods which are based on data mining [30].

We will introduce the K-means, hierarchical clustering and density
based clustering in the following sections.

12.3.1 K-means Algorithm

The K-means clustering algorithm assigns the objects into k number of
clusters based on the various factors; it is a top-down algorithm. k is a
positive integer number and specifi ed apriority by users. The processing is
fi nished by minimizing the sum of squares of distances between data and
the corresponding cluster centroid [52].

The basic idea behind K-means is as follows: In the beginning the number
of clusters k is determined. Then the algorithm assumes the centroids or
centers of these k clusters. These centroids can be randomly selected or
designed deliberately. One special case is when the number of objects is
less than the number of clusters. If such case exists, each object is set as
the centroid of the individual cluster and assigned a cluster number. If
the number of objects is bigger than the number of clusters, the algorithm
calculates the distance (i.e., Euclidean distance) between each object and all
of the centroids to obtain the minimum distance. When the process starts,
the centroid location is unknown, so algorithm updates centroid location
according to the processed information, such as the minimum distance
between the objects and the new centroids. When all of the objects are
assigned to the k clusters, the centroids have fi nished updating. Such above
process repeats until there are no longer large changes for assigning the
objects into the clusters, or centroids do not change in successive iterations.
So the iteration convergence can be proved mathematically [19].

 Social Tagging Systems 257

258 Applied Data Mining

Description: Given a set of observations (x1, x2, · · · , xn), where each
observation is a d-dimensional real vector, k-means clustering aims to
partition the n observations into k sets (k ≤ n), S = {S1, S2, · · · , Sk} so as to
minimize the Within-Cluster Sum of Squares (WCSS), where µi is the mean
of points in Si.

2

1
arg min || ||

j i

k

j i
S i x S

x u
= ∈

−∑ ∑ μ

The advantages of the K-means algorithm are: The low time
consumption and the fast processing speed on the condition of value k is
small; the compacted clusters production performance is satisfactory; the
clusters do not overlap since they are in non-hierarchical structure.

There are some disadvantages of K-means algorithm: The algorithm
is not able to calculate the applicable number of clusters automatically;
the user has to assign the value k as an input to the algorithm in advance.
Simultaneously, the specifi c number of clusters restricts the prediction of
what the real k should be. Various initial partitions lead to different number
of clusters, and the results for different composition of clusters can be
distinct in some of the experiments.

Figure 12.3.1: Frame Structure of K-Means Algorithm

Start

Number of
Clusters: K

–

+

Centroid

Distance Objects
to Centroids

Grouping Based on
Minimum Distance

No Object Move
Group?

End

There are extensive related research works on it. The author in [27]
theorized that K-means was a classical heuristic clustering algorithm. Due
to the sensitivity problem of K-means, some modifi ed approaches have
been proposed in the literature. Fast Global K-means [51] (FGK means),
for example, is an incremental approach of clustering that dynamically
adds one cluster centre at a time through a deterministic global search
procedure consisting of D executions of the K-means algorithm with
different suitable initial positions. Zhu et al. presented a new clustering
strategy, which can produce much lower Q(C) value than affinity
propagation (AP) by initializing K-means clustering with cluster centre
produced by AP [45]. In [42], the authors were motivated theoretically and
experimentally by a use of a deterministic divisive hierarchical method
and use of PCA-part (Principal Component Analysis Partitioning) as the
initialization of K-means. In order to overcome the sensitivity problem of
heuristic clustering algorithm, Han et al. proposed CLARANS based on
the random restart local search method [4]. VSH [9] used the iteratively
modifying cluster centre method to deal with initiation problem. More
modifi ed methods addressing the initialization sensitivity problem of
clustering algorithm are referred to [20, 36, 59] .

12.3.2 Hierarchical Clustering

The K-means algorithm has the limitation of choosing the specifi c number of
clusters, and it has the problem of non-determinism. It returns the clusters in
an unstructured set. As a result of such limitations, if we require hierarchy
structure, we need to involve the hierarchical clustering.

Hierarchical clustering constructs a hierarchy of clusters that can
be illustrated in a tree structure as a dendrogram. Each node in the
tree structure, including the root, represents the relationship between
parents and children, so it is able to explore different levels of clustering
granularity [19]. Hierarchical clustering algorithms are either top-down
or bottom-up, the bottom-up algorithms treat each fi le as a separate
cluster in the beginning and then begin to merge, until all cluster clusters
have been merged into a single cluster, such cluster contains all the
fi les.

The bottom-up hierarchical clustering is called hierarchical agglomerative
clustering.

The top-down clustering requires a method for dividing a cluster. It
splits clusters recursively until the individual documents are reached [69]

The advantages of the hierarchical clustering are [5, 19]: It has a high
fl exibility with respect to the level of granularity; it is easy to deal with any

 Social Tagging Systems 259

260 Applied Data Mining

form of similarity metric or the distance; it does not require pre-assignment
of the number of clusters, and therefore has high applicability.

The disadvantages of the hierarchical clustering are summarized as
[70]: The termination judgment conditions and the interpretation of the
hierarchy are complex; if an incorrect assignment exists, most hierarchical
algorithms do not rebuild intermediate clusters; the single pass of analysis
and local decisions are the infl uencing factor of the clusters.

12.3.3 Spectral Clustering

The spectral clustering combines some of the benefits of the two
aforementioned approaches. It refers to a class of techniques which rely on
the eigenvalues of the adjacency similarity matrix; it can partition all of the
elements into disjoint clusters, the elements that have high similarity will
end up in the same cluster. Elements within one cluster have low similarity
with other clusters’ elements. The spectral clustering is based on the graph
partition. It maps the original inherent relationships onto a new spectral
space. The whole items are simultaneously partitioned into disjoint clusters
with minimum cut optimization. Spectral clustering techniques make use of
the spectrum of the similarity matrix of the data to perform dimensionality
reduction for clustering in fewer dimensions [71].

The original formula for the spectral clustering is:

L = I − D−1/2WD−1/2

where W is the corresponding similarity matrix, and D is the diagonal
matrix, Dii = ij

j
S∑ .

According to the spectral graph theory in [13], the k singular vectors of
the reformed matrix RMUser = D−1/2 SMUserD

−1/2 present a best approximation
to the projection of user-tag vectors on the new spectral space.

Compared to those clustering algorithms above, spectral clustering
algorithm has many fundamental advantages: It is very simple to
implement; it performs well with no local minima, so it could be solved
effi ciently by standard linear algebra methods; it also can keep the shapes
and densities in the cluster invariantly; the performance of obtained result
is better.

The disadvantages of the spectral clustering are summarized as: The
high time complexity and space complexity lead the processing ineffi cient.
In some cases, the clustering processing is unstable.

 Social Tagging Systems 261

Figure 12.3.2: Example of the Spectral Clustering [37]

Figure 12.3.3: Example of the Spectral Clustering [37]

12.3.4 Quality of Clusters and Modularity Method

There are various categories of methods to measure the quality of clusters,
such as ”Compactness”, a measure of similarity of objects within an
individual cluster to the other objects outside the cluster; or the ”Isolation”,
a measure of separation among the objects outside the cluster [54]. In the

262 Applied Data Mining

research, we combine such attributes together, so as to utilize the modularity
method to evaluate the clustering algorithms. It is one of the quantitative
measures for the ”goodness” of the clusters discovered.

The modularity value is computed by the differences between the actual
number of edges within a cluster and the expected number of such edges.
The high value of the modularity shows the good divisions; that means,
the nodes within the same cluster have the concentrated connections but
only sparse connections between different clusters. It helps to evaluate the
quality of the cluster; here ”quality of cluster” consists of two criteria, i.e.,
the number of clusters and the similarity of each cluster [32].

Consider a particular division of a network into k clusters. We can
defi ne a k×k symmetric matrix SM whose element smij is the fraction of all
edges in the network that link vertices in cluster p to vertices in cluster q.
Take two clusters Cp and Cq randomly, the similarity smCpq between them
can be defi ned as

, , 1, 2p p p q

q p

pq
c C c C

pq
pq

c C c C

c
smC p q m

c
�∈ ∈

∈ ∈

= =
∑ ∑

∑ ∑

where cpq is the element in the similarity matrix for the whole objects. When
p=q, the smCpq is the similarity between the elements inside the clusters,
while p q, the smCpq is the similarity between the cluster Cp and the
cluster Cq. So the condition of a high quality cluster is max(pp

p
smC∑) and

min(
,

pq
p q

smc∑), p q, p, q = 1, 2, · · ·m.

Summing over all pairs of vertices in the same group, the modularity,
denoted Q, is given by:

2 2

1 1
[()] Tr || ||

m m

pp pq
q q

Q smc smc SM SM
= =

= − = −∑ ∑
where the value m is the amount of clusters. The trace of this matrix TrSM

1

m

pp
p

smC
=
∑ gives the fraction of edges in the network that connect vertices

in the same cluster, and a good division into clusters should have a high
value of it. If we place all vertices in a single cluster, the value of TrSM
would get the maximal value of 1 because there is no information about
cluster structure at all.

This quantity measures the fraction of the edges in the network that
connect vertices of the same type minus the expected value of the same
quantity in a network with the same cluster divisions. Utilize the value Q to
evaluate the clusters [4]: Values approaching Q=1, which is the maximum,

indicate that the whole network has a strong cluster structure. In practice,
values for such networks typically fall in the range from about 0 to 1. The
higher value of Q, the better quality for the cluster the Cp and Cq is, so that
we can get the optimal number of clusters.

12.3.5 K-Nearest-Neighboring

In KNN algorithm, the object is classifi ed by the neighbors who have been
separated into several groups, and the object is assigned into the class which
has the most common neighbors amongst its k nearest majority infl uence
neighbors. The KNN algorithm is sensitive to the local data structure. The
training data of the algorithm is the neighbors who are taken from a set of
objects with the correct classifi cation. In order to identify neighbors, the
objects are represented in the multidimensional feature space vectors [22].

k is a positive integer, it is typically small. Take an example in Fig. 12.3.4,
if k=1, then the object is simply assigned the class of its nearest neighbor. In
binary (two class) classifi cation problems, it is helpful to choose k to be an
odd number as this avoids diffi culties with tied votes [12, 49].

The test sample red triangles should be classifi ed either to the fi rst
class of green circle or to the second class of blue star. If k = 3 it should be
classifi ed to the fi rst class because there are 2 green circles and only 1 blue
star inside the inner circle. If k = 5 it should be classifi ed to second class
since there are 3 stars and only 2 circles inside the outer circle.

Figure 12.3.4: Example of KNN Classifi cation [1]

The advantages of the KNN algorithm are: Such algorithm is easy to
implement; it has a strong applicability, although the prediction accuracy
can be quickly degraded when the number of attributes grows.

The disadvantages of the KNN algorithm are: It needs to compare the
test item with all of the items in the training set, so the time complexity

 Social Tagging Systems 263

264 Applied Data Mining

is higher than the linear classifi er when it makes the predictions; and its
performance depends too much upon the similarity and the k value.

KNN algorithm adaptation methods have been widely used in the tag
classifi cation. Cheng et al. combine the KNN method and logistic regression
to exploit the multiple dependence [11]. Zhang et al. propose ML-KNN, a
lazy method that fi rstly fi nds k neighbors of the test instance, and then gives
the predicted label set by maximizing each labels posterior [57].

In this chapter, we aim on the major problem of most social tagging
systems resulting from the severe diffi culty of ambiguity, redundancy and
less semantic nature of tags. We employ the KNN algorithm to establish the
structure for potential relationship information of the tags neighbors. Then we
combine the KNN graph with the clustering algorithm to fi lter the redundant
tags neighbors for improving the recommendation performance.

12.4 Clustering Algorithms in Tag-Based Recommender
Systems

As tags are of syntactic nature, in a free style and do not refl ect suffi cient
semantics, the problems of redundancy, ambiguity and less semantics of tags
are often incurred in all kinds of social tagging systems [47]. For example,
for one resource, different users will use their own words to describe their
feeling of likeness, such as “favourite, preference, like” or even the plural
form of “favourites”; and another obstacle is that not all users are willing
to annotate the tags, resulting in the severe problem of sparseness.

In order to deal with these difficulties, clustering methods have
been introduced recently into social tagging systems to fi nd meaningful
information conveyed by tag aggregates. In past years, many studies have
been carried out on tags clustering. Gemmell et al [16, 50] demonstrated how
tag clusters serving as coherent topics can aid in the social recommendation
of search and navigation. The aim of tag clustering is to reveal the coherence
of tags from the perspective of how resources are annotated and how users
annotate in the tagging behaviors. Undoubtedly, the tag cluster form is able
to deliver user tagging interest or resource topic information in a more
concise and semantic way. It handles to some extent the problems of tag
sparseness and redundancy, in turn, facilitating the tag-based recommender
systems. Thus this demand mainly motivates the research of tag clustering
in social annotation systems. In general, the tag clustering algorithm could
be described as: (1) Defi ne a similarity measure of tags and construct
a tag similarity matrix; (2) Execute a traditional clustering algorithm
such as K-Means [16, 50], or Hierarchical Agglomerative Clustering on
this similarity matrix to generate the clustering results; (3) abstract the
meaningful information from each cluster and do recommendation [59].

Martin [38] et al. propose to reduce tag space by exploiting clustering
techniques so that the quality of the recommendations and execution time
are improved and memory requirements are decreased. The clustering is
motivated by the fact that many tags in a tag space are semantically similar
thus the tags can be grouped.

Astrain et al. fi rstly combines a syntactic similarity measure based in
a fuzzy automaton with ε-moves and a cosine relatedness measure, and
then design a clustering algorithm for tags to fi nd out the short length tags
[2]. In general, tags lack organizational structure limiting their utility for
navigation. Simpson proposes a hierarchical divisive clustering algorithm
to release these infl uence of the inherent drawback of tag data [4]. In [6], an
approach that monitors users’ activity in a tagging system and dynamically
quantifi es associations among tags is presented and the associations are
then used to create tags clusters. Zhou et al. propose a novel method to
compute the similarity between tag sets and use it as the distance measure
to cluster web documents into groups [58].

In [10], clusters of resources are shown to improve recommendation
by categorizing the resources into topic domains. A framework named
Semantic Tag Clustering Search, which is able to cope with the syntactic
and semantic tag variations, is proposed in [55]. And in [39] topic relevant
partitions are created by clustering resources rather than tags. By clustering
resources, it improves recommendations by distinguishing between
alternative meanings of query. While P. Lehwark et al. use Emergent-Self-
Organizing Maps (ESOM) and U-Map techniques to visualize and cluster
tagged data and discover emergent structures in collections of music [35].
State-of-the-art methods suffi ce for simple search, but they often fail to
handle more complicated or noisy web page structures due to the key
limitations. Miao et al. propose a new method for record extraction that
captures a list of objects in a more robust way based on a holistic analysis of a
web page [41]. In [17], a co-clustering approach is employed, which exploits
joint groups of related tags and social data resources, in which both social
and semantic aspects of tags are considered simultaneously. The common
characteristic of aforementioned tagging clustering algorithm is that they
use K-Means or hierarchical clustering algorithms on tag dataset to fi nd out
the similar tag groups. In [46], however, the authors introduce Folks Engine,
a parametric searching engine for folksonomies allowing specifying any tag
clustering algorithm. In a similar way, Jiang et al., make use of the concept
of ensemble clustering to fi nd out a consensus tag clustering results of a
given topic and propose tag groups with better quality [29]. The effi cient
way which improves tag clustering result is to use the common parts of
several tag clustering results. Approximate Backbone, the intersection of
different solutions of a dataset, is often used to investigate the characteristic

 Social Tagging Systems 265

266 Applied Data Mining

of a dataset [61, 28]. Zong et al. use approximate backbone to deal with the
initialization problem of heuristic clustering algorithm [60].

Alexandros et al. [31] focused on the complexity of social tagging data.
They developed a data-modeling scheme and a tag-aware spectral clustering
procedure. They used tensors to store the multi-graph structures and capture
the personalized aspects of similarity. They present the similarity-based
clustering of tagged items, and capture and exploit the multiple values
of similarity refl ected in the tags assigned to the same item by different
users. Also they extend spectral clustering by capturing multiple values of
similarity between any two items. The authors above focus on calculating
similarity approach to improve the spectral clustering, however, how to
evaluate the quality of clusters is not mentioned.

In this section, we investigate the clustering algorithms used in social
tagging systems. With the help of clustering algorithms, we can obtain the
potential relationship information among the different users and various
resources, and clustering also reduces the dimensionality in calculation. The
clusters can reduce the time complexity in recommendation processing. In a
word, the clustering algorithms help to enhance the tag expression quality
and improve the recommendation in social tagging systems.

12.5 Chapter Summary
In this chapter, we have reviewed the basic concept of data mining and
information retrieval techniques used in recommender systems, such as
clustering and K-Nearest-Neighboring. This chapter has also discussed the
data mining problems existed in the social tagging system, raised some of the
current techniques, and investigated advantages and disadvantages of such
approaches, which provide a guideline for dealing with recommendation
problems and improving the performance of recommendation.

Reference
 [1] A. Ajanki. Example of k-nearest neighbour classifi cation, 2007.
 [2] C. A. e. a. Astrain J. J. and Echarte F. A tag clustering method to deal with syntactic

variations on collaborative social networks, 2009.
 [3] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley,

New York, 1999.
 [4] J. Beel, B. Gipp and J.-O. Stiller. Information retrieval on mind maps—what could it be

good for?, 2009.
 [5] P. Berkhin. Survey of clustering data mining techniques. Technical report, Accrue

Software, 2002.
 [6] V. E. Boratto L. and Carta S. Ratc: A robust automated tag clustering technique, 2009.
 [7] S. P. Borovac and Mislav. Expert vs. novices dimensions of tagging behaviour in an

educational setting. Bilgi Dinyasi, (13 (1)): 1–16, 2012.
 [8] P. M. F. C. F. C. J. van Rijsergen. Information Retrieval.

 [9] J. G. Cao F. Y. and Liang J. Y. An initialization method for the k-means algorithm using
neighborhood model. Computers and Mathematics with applications, 58(3) (pp. 474–483),
2009.

 [10] D. S. Chen, H. Bringing order to the web: Automatically categorizing search results,
2000.

 [11] W. Cheng and E. Hullermeier. Combining instance-based learning and logistic regression
for multilabel classifi cation. Machine Learning, 76 (Number 2-3): 211, p. 225, 2009.

 [12] B. V. Dasarathy. Nearest Neighbor (NN) Norms: NN Pattern Classifi cation Techniques.
1991.

 [13] I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph
partitioning, 2001.

 [14] J. Foote. An overview of audio information retrieval. Multimedia Systems, 1999.
 [15] A. G. Adomavicius, Tuzhilin. Toward the next generation of recommender systems:

A survey and possible extensions. IEEE Transactions on Knowledge & Data Engineering,
17(6): 734–749, 2005.

 [16] J. Gemmell, A. Shepitsen, M. Mobasher and R. Burke. Personalization in folksonomies
based on tag clustering, July 2008.

 [17] K. V. V. A. K. Y. Giannakidou, E. Co-clustering tags and social data sources, 2008.
 [18] A. A. Goodrum. Image information retrieval: An overview of current research. Informing

Science, 3(2), 2000.
 [19] L. L. Guandong Xu and Yanchun Zhang. Web mining and social networking: techniques

and applications. Web information systems engineering and Internet technologies. New
York: Springer 2011.

 [20] M. K. Hariz, S. B. and Elouedi Z. Selection initial modes for belief k-modes method.
international journal of applied science. Engineering and Tchnology, 20084(4): 233–242,
2008.

 [21] H. S. Harry Halpin and Valentin Robu. The complex dynamics of collaborative tagging,
2007.

 [22] A. R. E. Hector Franco-Lopez and M. E. Bauer. Estimation and mapping of forest stand
density, volume, and cover type using the k-nearest neighbors method. Remote Sensing
of Environment, pp. 251–274, September 2001.

 [23] J. L. Herlocker, J. A. Konstan, L. G. Terveen and J. T. Riedl. Evaluating collaborative
fi ltering recommender systems. ACM Trans, Inf. Syst. 22 (1), January 2004.

 [24] L. T. Hill and Will. Beyond recommender systems: Helping people help each other. HCI
in the New Millennium, Addison-Wesley pp. 487–509, 2001.

 [25] A. Hotho, R. Jschke, C. Schmitz and G. Stumme. Folkrank: A ranking algorithm for
folksonomies. In Proc. FGIR 2006, 2006.

 [26] A. Hotho, R. Jschke, C. Schmitz and G. Stumme. Information retrieval in folksonomies:
Search and ranking, June 2006.

 [27] A. Jain and R. Dubes. Algorithms for clustering data. Prentice-Hall, Inc., NJ, USA, 1988.
 [28] C. G. L. Jiang H. and Zhang X. C. Exclusive overall optimal solution of graph bipartition

problem and backbone compute complexity. Chinese Science Bulletin, 52(17): 2077–2081,
2007.

 [29] X. K. e. a. Jiang Y.X. and Tang C.J. Core-tag clustering for web2.0 based on multi-similarity
measurements. In The Joint International Conference on Asia-Pacifi c Web Conference (APWeb)
and Web-Age Information Management (WAIM), pp. 222–233.

 [30] M. I. Jordan and C. M. Bishop. “Neural Networks”. In Allen B. Tucker. Computer Science
Handbook, Second Edition (Section VII: Intelligent Systems). 2004.

 [31] M. S. I. Karydis, A. Nanopoulos, H. -H. Gabriel and Myra. Tag-aware spectral clustering
of music items, 2009.

 [32] I. King and R. Baeza-Yates. Weaving Services and People on the World Wide Web. Springer,
2009.

 [33] F. Lancaster. Information Retrieval Systems: Characteristics, Testing and Evaluation. Wiley,
New York, 1968.

 Social Tagging Systems 267

268 Applied Data Mining

 [34] A. H. Lashkari, F. Mahdavi and V. Ghomi. A boolean model in information retrieval for
search engines, 2009.

 [35] R. S. U. A. Lehwark, P. Visualization and clustering of tagged music data. data analysis.
Machine Learning and Applications, pp. 673–680, 2008.

 [36] L. F. e. a. Lei X. F., Xie K. Q. An effi cient clustering algorithm based on local optimality
of k-means. Journal of Software, 19(7): 1683–1692, 2008.

 [37] U. V. Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4), 2007.
 [38] P. D. Martin Leginus and V. Zemaitis. Improving tensor based recommenders with

clustering. In: The 20th International Conference on User Modeling, Adaptation, and
Personalization (UMAP’12), pp. 151–163. Springer-Verlag Berlin, Heidelberg.

 [39] E. A. Matteo N. R., Peroni S. and Tamburini F. A parametric architecture for tags clustering
in folksonomic search engines, 2009.

 [40] G. H. Max Chevalier, Antonina Dattolo and E. Pitassi. Information retrieval and
folksonomies together for recommender systems. Systems E-Commerce and Web
Technologies, volume 85 of Lecture Notes: Chapter 15, pp. 172–183.

 [41] T. J. H. W. S. A. M. L. Miao, G. Extracting data records from the web using tag path
clustering. In Proceedings of the 18th International Conference on World Wide Web, pp.
981–990. ACM.

 [42] H. F. Michael J. B. Technical comments comment on ”Clustering by passing messages
between data points”. Science, 319: 726c–727c, 2008.

 [43] P. Mika. Ontologies are us: A unifi ed model of social networks and semantics. In Y. Gil,
E. Motta, V. R. Benjamins and M. A. Musen, editors, ISWC 2005, volume 3729 of LNCS,
Berlin Heidelberg. Springer-Verlag., pp. 522–536, 2005.

 [44] M. Montaner, B. Lopez and J. L. de la Rosa. A taxonomy of recommender agents on the
internet. Artifi cial Intelligence Review, 19(4): 285?30, 2003.

 [45] H. W. Ng T. and Raymond J. Clarans: A method for clustering objects for spatial data
mining. IEEE Transactions on Knowldge and Data Engineering, 14(9): 1003–1026, 2002.

 [46] F. T. e. a. Nicola R. D. and Silvio P. Of mice and terms: Clustering algorithms on ambi-
guous terms in folksonomies. In The 2010 ACM symposium on Applied Computing SAC10,
pp. 844–848.

 [47] B. F. P. D. Z. W. M. L. Rong Pan, Guandong Xu. Improving recommendations by the
clustering of tag neighbours. Journal of Convergence, Section C, 3(1), 2012.

 [48] S. Sen, S. K. Lam, A. M. Rashid, D. Cosley, D. Frankowski, J. Osterhouse, F. M. Harper
and J. Riedl. tagging, communities, vocabulary, evolution, November 2006.

 [49] D. Shakhnarovish and Indyk. Nearest-neighbor methods in learning and vision. The
MIT Press, 2005.

 [50] A. Shepitsen, J. Gemmell, B. Mobasher and R. Burke. Personalized recommendation
in social tagging systems using hierarchical clustering. In RecSys?008: Proceedings of the
2008 ACM conference on Recommender systems, pp. 259–266, 2008.

 [51] D. J. Su T. A deterministic method for initializing k-menas clustering, 2004.
 [52] B. K. Teknomo. K-means clustering tutorial.
 [53] K. Thearling. An introduction to data mining: Discovering hidden value in your data

warehouse.
 [54] R. D. Validity and A. K. Jain. Studies in clustering methodologies. Pattern Recognition,

pp. 235–254, 1979.
 [55] V. D. H. F. F. F. Van Dam, J. Searching and browsing tagspaces using the semantic

tag clustering search framework. In: S. Computing(ICSC), editor, 2010 IEEE Fourth
International Conference, pp. 436–439. IEEE.

 [56] wiki/Recommender system. http://en.wikipedia.org/wiki/recommender system.
 [57] M. -L. Zhang and Z. -H. Zhou. Ml-knn: A lazy learning approach to multi-label learning.

Pattern Recognition, 40(7): 2038–2048, 2007.
 [58] Q. L. e. a. Zhou J. L., Nie X.J. Web clustering based on tag set similarity. Journal of

Computers, 6(1): 59–66, 2011.

http://en.wikipedia.org/wiki/recommender_system

 [59] Y. Zong, G. Xu, P. Jin, Y. Zhang, E. Chen and R. Pan. APPECT: An Approximate Backbone-
Based Clustering Algorithm for Tags Advanced Data Mining and Applications, volume 7120
of Lecture Notes in Computer Science, pp. 175–189. Springer Berlin/Heidelberg, 2011.

 [60] L. M. C. Zong Y. and Jiang H. Approximate backbone guided reduction clustering
algorithm. Journal of electronics and information technology, 31(2)(2953–2957), 2009.

 [61] C. G. Zou P. and ZHou Z. H. Approximate backbone guided fast ant algorithm to qap.
Journal of Software, 16(10): 1691–1698, 2005.

 [62] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative fi ltering techniques.
Advances in Artifi cial Intelligence, Volume 2009, January 2009.

 [63] Yehuda Koren. Factor in the neighbors: Scalable and accurate collaborative fi ltering.
ACM Transactions on Knowledge Discovery from Data (TKDD), Volume 4, Issue 1, January
2010.

 [64] Zhu, T., Greiner, R. and Haubl, G. A fuzzy hybrid collaborative fi ltering technique for
web personalization. WWW2003, May, 2003, Budapest, Hungary.

 [65] Claypool, M., Gokhale, A. and Miranda, T. Combining content-based and collaborative
fi lters in an online newspaper. ACM SIGIR Workshop on Recommender Systems.

 [66] Dasari Siva Krishna and K. Rajani Devi. Improving Accumulated Recommendation
System A Comparative Study of Diversity Using Pagerank Algorithm Technique.
International Journal of Advanced Science and Technology.

 [67] Sergey Brin, Lawrence Page. The anatomy of a large-scale hypertextual web search
engine. Computer Networks. Vol. 30, Issue 1-7, April 1, 1998.

 [68] Kubatz, M., Gedikli, F., Jannach and D. LocalRank—Neighborhood-based, fast
computation of tag recommendations. 12th International Conference on Electronic Commerce
and Web Technologies - EC-Web 2011.

 [69] Christopher D. Manning, Prabhakar Raghavan, Hinrich Schutze. Introduction to
Information Retrieval. Cambridge University Press.

 [70] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, S. Dmitrovsky, E. Lander and
T. R. Golub. Interpreting patterns of gene expression with self-organizing maps: methods
and application to hematopoietic differentiation. National Academy of Sciences.

 [71] Ulrike Von Luxburg. A Tutorial on Spectral Clustering. Statistics and Computing.

 Social Tagging Systems 269

This page intentionally left blankThis page intentionally left blank

	Front Cover
	Preface
	Contents
	Part I: Fundamentals
	Chapter 1: Introduction
	Chapter 2: Mathematical Foundations
	Chapter 3: Data Preparation
	Chapter 4: Clustering Analysis
	Chapter 5: Classification
	Chapter 6: Frequent Pattern Mining

	Part II: Advanced Data Mining
	Chapter 7: Advanced Clustering Analysis
	Chapter 8: Multi-Label Classification
	Chapter 9: Privacy Preserving in Data Mining

	Part III: Emerging Applications
	Chapter 10: Data Stream
	Chapter 11: Recommendation Systems
	Chapter 12: Social Tagging Systems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

