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Prologue 
 
The Search for Intelligent Machines 
For thousands of years, we humans have tried to understand how our own intelligence works 
and replicate it in some kind of machine - thinking machines. 
 
We’ve not been satisfied by mechanical or electronic machines helping us with simple tasks - 
flint sparking fires, pulleys lifting heavy rocks, and calculators doing arithmetic. 
 
Instead, we want to automate more challenging and complex tasks like grouping similar photos, 
recognising diseased cells from healthy ones, and even putting up a decent game of chess. 
These tasks seem to require human intelligence, or at least a more mysterious deeper capability 
of the human mind not found in simple machines like calculators. 
 
Machines with this human-like intelligence is such a seductive and powerful idea that our culture 
is full of fantasies, and fears, about it - the immensely capable but ultimately menacing HAL 
9000 in Stanley Kubrick’s 2001: A Space Odyssey, the crazed action Terminator robots and the 
talking KITT car with a cool personality from the classic Knight Rider TV series.  
 
When Gary Kasparov, the reigning world chess champion and grandmaster, was beaten by the 
IBM Deep Blue computer in 1997 we feared the potential of machine intelligence just as much 
as we celebrated that historic achievement.  
 
So strong is our desire for intelligent machines that some have fallen for the temptation to cheat. 
The infamous mechanical Turk chess machine was merely a hidden person inside a cabinet! 
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A Nature Inspired New Golden Age 
Optimism and ambition for artificial intelligence were flying high when the subject was formalised 
in the 1950s. Initial successes saw computers playing simple games and proving theorems. 
Some were convinced machines with human level intelligence would appear within a decade or 
so. 
 
But artificial intelligence proved hard, and progress stalled. The 1970s saw a devastating 
academic challenge to the ambitions for artificial intelligence, followed by funding cuts and a 
loss of interest. 
 
It seemed machines of cold hard logic, of absolute 1s and 0s, would never be able to achieve 
the nuanced organic, sometimes fuzzy, thought processes of biological brains.  
 
After a period of not much progress an incredibly powerful idea emerged to lift the search for 
machine intelligence out of its rut. Why not try to build artificial brains by copying how real 
biological brains worked? Real brains with neurons instead of logic gates, softer more organic 
reasoning instead of the cold hard, black and white, absolutist traditional algorithms. 
 
Scientist were inspired by the apparent simplicity of a bee or pigeon's brain compared to the 
complex tasks they could do. Brains a fraction of a gram seemed able to do things like steer 
flight and adapt to wind, identify food and predators, and quickly decide whether to fight or 
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escape. Surely computers, now with massive cheap resources, could mimic and improve on 
these brains? A bee has around 950,000 neurons - could today’s computers with gigabytes and 
terabytes of resources outperform bees? 
 
But with traditional approaches to solving problems - these computers with massive storage and 
superfast processors couldn’t achieve what the relatively miniscule brains in birds and bees 
could do. 
 
Neural networks emerged from this drive for biologically inspired intelligent computing - and 
went on to become one of the most powerful and useful methods in the field of artificial 
intelligence. Today, Google’s Deepmind, which achieves fantastic things like learning to play 
video games by itself, and for the first time beating a world master at the incredibly rich game of 
Go, have neural networks at their foundation. Neural networks are already at the heart of 
everyday technology - like automatic car number plate recognition and decoding handwritten 
postcodes on your handwritten letters. 
 
This guide is about neural networks, understanding how they work, and making your own neural 
network that can be trained to recognise human handwritten characters, a task that is very 
difficult with traditional approaches to computing. 
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Introduction 
 
 
Who is this book for? 
This book is for anyone who wants to understand what neural network are. It’s for anyone who 
wants to make and use their own. And it’s for anyone who wants to appreciate the fairly easy 
but exciting mathematical ideas that are at the core of how they work. 

 
This guide is not aimed at experts in mathematics or computer science. You won’t need any 
special knowledge or mathematical ability beyond school maths. 
 
If you can add, multiply, subtract and divide then you can make your own neural network. The 
most difficult thing we’ll use is gradient calculus - but even that concept will be explained so that 
as many readers as possible can understand it.  

 
Interested readers or students may wish to use this guide to go on further exciting excursions 
into artificial intelligence. Once you’ve grasped the basics of neural networks, you can apply the 
core ideas to many varied problems.  

 
Teachers can use this guide as a particularly gentle explanation of neural networks and their 
implementation to enthuse and excite students making their very own learning artificial 
intelligence with only a few lines of programming language code. The code has been tested to 
work with a Raspberry Pi, a small inexpensive computer very popular in schools and with young 
students. 

 
I wish a guide like this had existed when I was a teenager struggling to work out how these 
powerful yet mysterious neural networks worked. I'd seen them in books, films and magazines, 
but at that time I could only find difficult academic texts aimed at people already expert in 
mathematics and its jargon.  
 
All I wanted was for someone to explain it to me in a way that a moderately curious school 
student could understand. That’s what this guide wants to do. 
 
 
What will we do? 
In this book we’ll take a journey to making a neural network that can recognise human 
handwritten numbers.  
 
We’ll start with very simple predicting neurons, and gradually improve on them as we hit their 
limits.  Along the way, we’ll take short stops to learn about the few mathematical concepts that 
are needed to understand how neural networks learn and predict solutions to problems.  

 
- 6 - 



 
We’ll journey through mathematical ideas like functions, simple linear classifiers, iterative 
refinement, matrix multiplication, gradient calculus, optimisation through gradient descent and 
even geometric rotations. But all of these will be explained in a really gentle clear way, and will 
assume absolutely no previous knowledge or expertise beyond simple school mathematics.  
 
Once we’ve successfully made our first neural network, we’ll take idea and run with it in different 
directions. For example, we’ll use image processing to improve our machine learning without 
resorting to additional training data. We’ll even peek inside the mind of a neural network to see if 
it reveals anything insightful - something not many guides show you how to do! 
 
We’ll also learn Python, an easy, useful and popular programming language, as we make our 
own neural network in gradual steps. Again, no previous programming experience will be 
assumed or needed. 
 
 
How will we do it?  
The primary aim of this guide is to open up the concepts behind neural networks to as many 
people as possible. This means we’ll always start an idea somewhere really comfortable and 
familiar. We’ll then take small easy steps, building up from that safe place to get to where we 
have just enough understanding to appreciate something really cool or exciting about the neural 
networks. 
 
To keep things as accessible as possible we’ll resist the temptation to discuss anything that is 
more than strictly required to make your own neural network. There will be interesting context 
and tangents that some readers will appreciate, and if this is you, you’re encouraged to 
research them more widely. 
 
This guide won’t look at all the possible optimisations and refinements to neural networks. There 
are many, but they would be a distraction from the core purpose here - to introduce the 
essential ideas in as easy and uncluttered was as possible.  
 
This guide is intentionally split into three sections: 
 

● In part 1 we’ll gently work through the mathematical ideas at work inside simple neural 
networks. We’ll deliberately not introduce any computer programming to avoid being 
distracted from the core ideas. 

 
● In part 2 we’ll learn just enough Python to implement our own neutral network. We’ll train 

it to recognise human handwritten numbers, and we’ll test its performance.  
 

 
- 7 - 



● In part 3, we’ll go further than is necessary to understand simple neural networks, just to 
have some fun. We’ll try ideas to further improve our neural network’s performance, and 
we’ll also have a look inside a trained network to see if we can understand what it has 
learned, and how it decides on its answers. 

 
And don’t worry, all the software tools we’ll use will be free and open source so you won’t have 
to pay to use them. And you don’t need an expensive computer to make your own neural 
network. All the code in this guide has been tested to work on a very inexpensive £5 / $4 
Raspberry Pi Zero, and there’s a section at the end explaining how to get your Raspberry Pi 
ready. 
 
 
Author’s Note 
I will have failed if I haven’t given you a sense of the true excitement and surprises in 
mathematics and computer science. 
 
I will have failed if I haven’t shown you how school level mathematics and simple computer 
recipes can be incredibly powerful - by making our own artificial intelligence mimicking the 
learning ability of human brains.  
 
I will have failed if I haven’t given you the confidence and desire to explore further the incredibly 
rich field of artificial intelligence.  
 
I welcome feedback to improve this guide. Please get in touch at makeyourownneuralnetwork at 
gmail dot com, or on twitter @myoneuralnet. 

 
You will also find discussions about the topics covered here at 
http://makeyourownneuralnetwork.blogspot.co.uk. There will be an errata of corrections there 
too.  
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Part 1 - How They Work 
 
 

“Take inspiration from all the small things around you.”  
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Easy for Me, Hard for You 
Computers are nothing more than calculators at heart. They are very very fast at doing 
arithmetic.  
 
This is great for doing tasks that match what a calculator does - summing numbers to work out 
sales, applying percentages to work out tax, plotting graphs of existing data. 
 
Even watching catch-up TV or streaming music through your computer doesn’t involve much 
more than the computer executing simple arithmetic instructions again and again. It may 
surprise you but reconstructing a video frame from the ones and zeros that are piped across the 
internet to your computer is done using arithmetic not much more complex than the sums we 
did at school.  
 
Adding up numbers really quickly - thousands, or even millions, a second - may be impressive 
but it isn’t artificial intelligence. A human may find it hard to do large sums very quickly but the 
process of doing it doesn’t require much intelligence at all. It simply requires an ability to follow 
very basic instructions, and this is what the electronics inside a computer does.  
 
Now let’s flips things and turn the tables on computers! 
 
Look at the following images and see if you can recognise what they contain: 
 

 
 
You and I can look at a picture with human faces, a cat, or a tree, and recognise it. In fact we 
can do it rather quickly, and to a very high degree of accuracy. We don’t often get it wrong.  
 
We can process the quite large amount of information that the images contain, and very 
successfully process it to recognise what’s in the image. This kind of task isn’t easy for 
computers - in fact it’s incredibly difficult. 
 

Problem Computer Human 
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Multiply thousands of large 
numbers quickly 

Easy Hard 

Find faces in a photo of a crowd 
of people 

Hard Easy 

 
We suspect image recognition needs human intelligence - something machines lack, however 
complex and powerful we build them, because they’re not human.  
 
But it is exactly these kinds of problems that we want computers to get better at solving - 
because they’re fast and don’t get tired. And it these kinds of hard problems that artificial 
intelligence is all about. 
 
Of course computers will always be made of electronics and so the task of artificial intelligence 
is to find new kinds of recipes, or algorithms, which work in new ways to try to solve these 
kinds of harder problem. Even if not perfectly well, but well enough to give an impression of a 
human like intelligence at work. 
 
 

 
Key Points: 
 

● Some tasks are easy for traditional computers, but hard for humans. For example, 
multiplying millions of pairs of numbers. 

 
● On the other hand, some tasks are hard for traditional computers, but easy for 

humans. For example, recognising faces in a photo of a crowd.  
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A Simple Predicting Machine 
Let’s start super simple and build up from there. 
 
Imagine a basic machine that takes a question, does some “thinking” and pushes out an 
answer. Just like the example above with ourselves taking input through our eyes, using our 
brains to analyse the scene, and coming to the conclusion about what objects are in that scene. 
Here’s what this looks like: 
 

 
 
Computers don’t really think, they’re just glorified calculators remember, so let’s use more 
appropriate words to describe what’s going on: 
 

 
 
A computer takes some input, does some calculation and pops out an output. The following 
illustrates this. An input of “3 x 4” is processed, perhaps by turning multiplication into an easier 
set of additions, and the output answer “12” pops out. 
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“That’s not so impressive!” you might be thinking. That’s ok. We’re using simple and familiar 
examples here to set out concepts which will apply to the more interesting neural networks we 
look at later. 
 
Let’s ramp up the complexity just a tiny notch. 
 
Imagine a machine that converts kilometres to miles, like the following: 
 

 
 
Now imagine we don’t know the formula for converting between kilometres and miles. All we 
know is the the relationship between the two is linear. That means if we double the number in 
miles, the same distance in kilometres is also doubled. That makes intuitive sense. The universe 
would be a strange place if that wasn’t true! 
 
This linear relationship between kilometres and miles gives us a clue about that mysterious 
calculation - it needs to be of the form “miles = kilometres x c”, where c is a constant. We don’t 
know what this constant c is yet. 
 
The only other clues we have are some examples pairing kilometres with the correct value for 
miles. These are like real world observations used to test scientific theories - they’re examples 
of real world truth. 
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Truth Example Kilometres Miles 

1 0 0 

2 100 62.137 

 
 
What should we do to work out that missing constant c? Let’s just pluck a value at random and 
give it a go! Let’s try c = 0.5 and see what happens. 
 

 
 
Here we have miles = kilometres x c, where kilometres is 100 and c is our current guess at 0.5. 
That gives 50 miles. 
 
Okay. That’s not bad at all given we chose c = 0.5 at random! But we know it’s not exactly right 
because our truth example number 2 tells us the answer should be 62.137. 
 
We’re wrong by 12.137. That’s the error, the difference between our calculated answer and the 
actual truth from our list of examples. That is, 
 

error = truth - calculated 
= 62.137 - 50 

= 12.137 
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So what next? We know we’re wrong, and by how much. Instead of being a reason to despair, 
we use this error to guide a second, better, guess at c.  
 
Look at that error again. We were short by 12.137. Because the formula for converting 
kilometres to miles is linear, miles = kilometres x c, we know that increasing c will increase the 
output.  
 
Let’s nudge c up from 0.5 to 0.6 and see what happens.  
 
With c now set to 0.6, we get miles = kilometres x c = 100 x 0.6 = 60. That’s better than the 
previous answer of 50. We’re clearly making progress! 
 
Now the error is a much smaller 2.137. It might even be an error we’re happy to live with. 
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The important point here is that we used the error to guide how we nudged the value of c. We 
wanted to increase the output from 50 so we increased c a little bit.  
 
Rather than try to use algebra to work out the exact amount c needs to change, let’s continue 
with this approach of refining c. If you’re not convinced, and think it’s easy enough to work out 
the exact answer, remember that many more interesting problems won’t have simple 
mathematical formulae relating the output and input. That’s why we need more sophisticated 
methods - like neural networks. 
 
Let’s do this again. The output of 60 is still too small. Let’s nudge the value of c up again from 
0.6 to 0.7.  
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Oh no! We’ve gone too far and overshot the known correct answer. Our previous error was 
2.137 but now it’s -7.863. The minus sign simply says we overshot rather than undershot, 
remember the error is (correct value - calculated value).  
 
Ok so c = 0.6 was way better than c = 0.7. We could be happy with the small error from c = 0.6 
and end this exercise now. But let’s go on for just a bit longer. Why don’t we nudge c up by just 
a tiny amount, from 0.6 to 0.61. 
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That’s much much better than before. We have an output value of 61 which is only wrong by 
1.137 from the correct 62.137.  
 
So that last effort taught us that we should moderate how much we nudge the value of c. If the 
outputs are getting close to the correct answer - that is, the error is getting smaller - then don’t 
nudge the changeable bit so much. That way we avoid overshooting the right value, like we did 
earlier.  
 
Again without getting too distracted by exact ways of working out c, and to remain focussed on 
this idea of successively refining it, we could suggest that the correction is a fraction of the error. 
That’s intuitively right - a big error means a bigger correction is needed, and a tiny error means 
we need the teeniest of nudges to c. 
 
What we’ve just done, believe it or not, is walked through the very core process of learning in a 
neural network - we’ve trained the machine to get better and better at giving the right answer. 
 
It is worth pausing to reflect on that - we’ve not solved a problem exactly in one step, like we 
often do in school maths or science problems. Instead, we’ve taken a very different approach by 
trying an answer and improving it repeatedly. Some use the term iterative and it means 
repeatedly improving an answer bit by bit. 
 
 
 

 
Key Points: 
 

● All useful computer systems have an input, and an output, with some kind of 
calculation in between. Neural networks are no different. 

 
● When we don’t know exactly how something works we can try to estimate it with a 

model which includes parameters which we can adjust. If we didn’t know how to 
convert kilometres to miles, we might use a linear function as a model, with an 
adjustable gradient.  

 
● A good way of refining these models is to adjust the parameters based on how wrong 

the model is compared to known true examples. 
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Classifying is Not Very Different from Predicting 
We called the above simple machine a predictor, because it takes an input and makes a 
prediction of what the output should be. We refined that prediction by adjusting an internal 
parameter, informed by the error we saw when comparing with a known-true example. 
 
Now look at the following graph showing the measured widths and lengths of garden bugs. 
 

 
 
You can clearly see two groups. The caterpillars are thin and long, and the ladybirds are wide 
and short.  
 
Remember the predictor that tried to work out the correct number of miles given kilometres? 
That predictor had an adjustable linear function at it’s heart. Remember, linear functions give 
straight lines when you plot their output against input. The adjustable parameter c changed the 
slope of that straight line.  
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What happens if we place a straight line over that plot? 
 

 
 
We can’t use the line in the same way we did before - to convert one number (kilometres) into 
another (miles), but perhaps we can use the line to separate different kinds of things.  
 
In the plot above, if the line was dividing the caterpillars from the ladybirds, then it could be used 
to classify an unknown bug based on its measurements. The line above doesn’t do this yet 
because half the caterpillars are on the same side of the dividing line as the ladybirds.  
 
Let’s try a different line, by adjusting the slope again, and see what happens. 
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This time the line is even less useful! It doesn’t separate the two kinds of bugs at all. 
 
Let’s have another go: 
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That’s much better! This line neatly separates caterpillars from ladybirds. We can now use this 
line as a classifier of bugs. 
 
We are assuming that there are no other kinds of bugs that we haven’t seen - but that’s ok for 
now, we’re simply trying to illustrate the idea of a simple classifier.  
 
Imagine next time our computer used a robot arm to pick up a new bug and measured its width 
and height, it could then use the above line to classify it correctly as a caterpillar or a ladybird. 
 
Look at the following plot, you can see the unknown bug is a caterpillar because it lies above 
the line. This classification is simple but pretty powerful already! 
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We’ve seen how a linear function inside our simple predictors can be used to classify previously 
unseen data.  
 
But we’ve skipped over a crucial element. How do we get the right slope? How do we improve a 
line we know isn’t a good divider between the two kinds of bugs? 
 
The answer to that is again at the very heart of how neural networks learn, and we’ll look at this 
next.  
 
 
Training A Simple Classifier 
We want to train our linear classifier to correctly classify bugs as ladybirds or caterpillars. We 
saw above this is simply about refining the slope of the dividing line that separates the two 
groups of points on a plot of big width and height. 
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How do we do this? 
 
Rather than develop some mathematical theory upfront, let’s try to feel our way forward by trying 
to do it. We’ll understand the mathematics better that way. 
 
We do need some examples to learn from. The following table shows two examples, just to 
keep this exercise simple. 
 
 

Example Width Length Bug 

1 3.0 1.0 ladybird 

2 1.0 3.0 caterpillar 

 
 
We have an example of a bug which has width 3.0 and length 1.0, which we know is a ladybird. 
We also have an example of a bug which is longer at 3.0 and thinner at 1.0, which is a 
caterpillar. 
 
This is a set of examples which we know to be the truth. It is these examples which will help 
refine the slope of the classifier function. Examples of truth used to teach a predictor or a 
classifier are called the training data. 
 
Let’s plot these two training data examples. Visualising data is often very helpful to get a better 
understand of it, a feel for it, which isn’t easy to get just by looking at a list or table of numbers. 
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Let’s start with a random dividing line, just to get started somewhere. Looking back at our miles 
to kilometre predictor, we had a linear function whose parameter we adjusted. We can do the 
same here, because the dividing line is a straight line: 
 

y = Ax 
 
We’ve deliberately used the names y and x instead of length and width, because strictly 
speaking, the line is not a predictor here. It doesn’t convert width to length, like we previously 
converted miles to kilometres. Instead, it is a dividing line, a classifier.  
 
You may also notice that this y = Ax is simpler than the fuller form for a straight line y = Ax + B. 
We’ve deliberately kept this garden bug scenario as simple as possible. Having a non-zero B 
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simple means the line doesn’t go through the origin of the graph, which doesn’t add anything 
useful to our scenario. 
 
We saw before that the parameter A controls the slope of the line. The larger A is the larger the 
slope.  
 
Let’s go for A is 0.25 to get started. The dividing line is y = 0.25x. Let’s plot this line on the same 
plot of training data to see what it looks like: 
 

 
 
Well, we can see that the line y = 0.25x isn’t a good classifier already without the need to do 
any calculations. The line doesn’t divide the two types of bug. We can’t say “if the bug is above 
the line then it is a caterpillar” because the ladybird is above the line too. 
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So intuitively we need to move the line up a bit. We’ll resist the temptation to do this by looking 
at the plot and drawing a suitable line. We want to see if we can find a repeatable recipe to do 
this, a series of computer instructions, which computer scientists call an algorithm. 
 
Let’s look at the first training example: the width is 3.0 and length is 1.0 for a ladybird. If we 
tested the y = Ax function with this example where x is 3.0, we’d get 
 

y = (0.25) * (3.0) = 0.75 
 
The function, with the parameter A set to the initial randomly chosen value of 0.25, is 
suggesting that for a bug of width 3.0, the length should be 0.75. We know that’s too small 
because the training data example tells us it must be a length of 1.0. 
 
So we have a difference, an error. Just as before, with the miles to kilometres predictor, we can 
use this error to inform how we adjust the parameter A. 
 
But before we do, let’s think about what y should be again. If y was 1.0 then the line goes right 
through the point where the ladybird sits at (x,y) = (3.0, 1.0). It’s a subtle point but we don’t 
actually want that. We want the line to go above that point. Why? Because we want all the 
ladybird points to be below the line, not on it. The line needs to be a dividing line between 
ladybirds and caterpillars, not a predictor of a bug’s length given its width. 
 
So let’s try to aim for y = 1.1 when x = 3.0. It’s just a small number above 1.0, We could have 
chosen 1.2, or even 1.3, but we don’t want a larger number like 10 or 100 because that would 
make it more likely that the line goes above both ladybirds and caterpillars, resulting in a 
separator that wasn’t useful at all.  
 
So the desired target is 1.1, and the error E is 
 

error = (desired target - actual output) 
Which is,  

E = 1.1 - 0.75 = 0.35 
 
Let’s pause and have a remind ourselves what the error, the desired target and the calculated 
value mean visually. 
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Now, what do we do with this E to guide us to a better refined parameter A? That’s the 
important question. 
 
Let’s take a step back from this task and think again. We want to use the error in y, which we 
call E, to inform the required change in parameter A. To do this we need to know how the two 
are related. How is A related to E? If we can know this, then we can understand how changing 
one affects the other. 
 
Let’s start with the linear function for the classifier: 
 

y = Ax 
 
We know that for initial guesses of A this gives the wrong answer for y, which should be the 
value given by the training data. Let’s call the correct desired value, t for target value. To get 
that value t, we need to adjust A by a small amount. Mathematicians use the delta symbol Δ to 
mean “a small change in”. Let’s write that out: 
 

t = (A + ΔA)x 
 
Let’s picture this to make it easier to understand. You can see the new slope (A + ΔA). 
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Remember the error E was the difference between the desired correct value and the one we 
calculate based on our current guess for A. That is, E was t - y. 
 
Let’s write that out to make it clear: 
 

t - y = (A + ΔA)x - Ax 
 
Expanding out the terms and simplifying: 

 
E = t - y = Ax + (ΔA)x - Ax 

 
E = (ΔA)x 

 
That’s remarkable! The error E is related to ΔA is a very simple way. It’s so simple that I thought 
it must be wrong - but it was indeed correct. Anyway, this simple relationship makes our job 
much easier. 
 
It’s easy to get lost or distracted by that algebra. Let’s remind ourselves of what we wanted to 
get out of all this, in plain English.  
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We wanted to know how much to adjust A by to improve the slope of the line so it is a better 
classifier, being informed by the error E. To do this we simply re-arrange that last equation to 
put ΔA on it’s own: 
 

ΔA = E / x 
 
That’s it! That’s the magic expression we’ve been looking for. We can use the error E to refine 
the slope A of the classifying line by an amount ΔA. 
 
Let’s do it - let’s update that initial slope.  
 
The error was 0.35 and the x was 3.0. That gives ΔA = E / x as 0.35 / 3.0 = 0.1167. That means 
we need to change the current A = 0.25 by 0.1167. That means the new improved value for A is 
(A + ΔA) which is 0.25 + 0.1167 = 0.3667. As it happens, the calculated value of y with this new 
A is 1.1 as you’d expect - it’s the desired target value. 
 
Phew! We did it! All that work, and we have a method for refining that parameter A, informed by 
the current error.  
 
Let’s press on. 
 
Now we’re done with one training example, let’s learn from the next one. Here we have a known 
true pairing of x = 1.0 and y = 3.0. 
 
Let’s see what happens when we put x = 1.0 into the linear function which is now using the 
updated A = 0.3667. We get y = 0.3667 * 1.0 = 0.3667. That’s not very close to the training 
example with y = 3.0 at all. 
 
Using the same reasoning as before that we want the line to not cross the training data but 
instead be just above or below it, we can set the desired target value at 2.9. This way the 
training example of a caterpillar is just above the line, not on it. The error E is (2.9 - 0.3667) = 
2.5333.  
 
That’s a bigger error than before, but if you think about it, all we’ve had so far for the linear 
function to learn from is a single training example, which clearly biases the line towards that 
single example.  
 
Let’s update the A again, just like we did before. The ΔA is E / x which is 2.5333 / 1.0 = 2.5333. 
That means the even newer A is 0.3667 + 2.5333 = 2.9. That means for x = 1.0 the function 
gives 2.9 as the answer, which is what the desired value was.  
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That’s a fair amount of working out so let’s pause again and visualise what we’ve done. The 
following plot shows the initial line, the line updated after learning from the first training example, 
and the final line after learning from the second training example. 
 

 
 
Wait! What’s happened! Looking at that plot, we don’t seem to have improved the slope in the 
way we had hoped. It hasn’t divided neatly the region between ladybirds and caterpillars. 
 
Well, we got what we asked for. The line updates to give each desired value for y. 
 
What’s wrong with that? Well, if we keep doing this, updating for each training data example, all 
we get is that the final update simply matches the last training example closely. We might as 
well have not bothered with all previous training examples. In effect we are throwing away any 
learning that previous training examples might gives us and just learning from the last one. 
 
How do we fix this? 
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Easy! And this is an important idea in machine learning. We moderate the updates. That is, 
we calm them down a bit. Instead of jumping enthusiastically to each new A, we take a fraction 
of the change ΔA, not all of it. This way we move in the direction that the training example 
suggests, but do so slightly cautiously, keeping some of the previous value which was arrived at 
through potentially many previous training iterations. We saw this idea of moderating our 
refinements before - with the simpler miles to kilometres predictor, where we nudged the 
parameter c as a fraction of the actual error.  
 
This moderation, has another very powerful and useful side effect. When the training data itself 
can’t be trusted to be perfectly true, and contains errors or noise, both of which are normal in 
real world measurements, the moderation can dampen the impact of those errors or noise. It 
smooths them out. 
 
Ok let’s rerun that again, but this time we’ll add a moderation into the update formula: 
 

ΔA = L (E / x ) 
 
The moderating factor is often called a learning rate, and we’ve called it L. Let’s pick L = 0.5 as 
a reasonable fraction just to get started. It simply means we only update half as much as would 
have done without moderation. 
 
Running through that all again, we have an initial A = 0.25. The first training example gives us y 
= 0.25 * 3.0 = 0.75. A desired value of 1.1 gives us an error of 0.35. The ΔA = L (E / x) = 0.5 * 
0.35 / 3.0 = 0.0583. The updated A is 0.25 + 0.0583 = 0.3083. 
 
Trying out this new A on the training example at x = 3.0 gives y = 0.3083 * 3.0 = 0.9250. The 
line now falls on the wrong side of the training example because it is below 1.1 but it’s not a bad 
result if you consider it a first refinement step of many to come. It did move in the right direction 
away from the initial line. 
 
Let’s press on to the second training data example at x = 1.0. Using A = 0.3083 we have y = 
0.3083 * 1.0 = 0.3083. The desired value was 2.9 so the error is (2.9 - 0.3083) = 2.5917.  The 
ΔA = L (E / x) = 0.5 * 2.5917 / 1.0 = 1.2958. The even newer A is now 0.3083 + 1.2958 = 
1.6042. 
 
Let’s visualise again the initial, improved and final line to see if moderating updates leads to a 
better dividing line between ladybird and caterpillar regions. 
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This is really good! 
 
Even with these two simple training examples, and a relatively simple update method using a 
moderating learning rate, we have very rapidly arrived at a good dividing line y = Ax where A is 
1.6042. 
 
Let’s not diminish what we’ve achieved. We’ve achieved an automated method of learning to 
classify from examples that is remarkably effective given the simplicity of the approach. 
 
Brilliant! 
 
 

 
Key Points: 
 

● We can use simple maths to understand the relationship between the output error of a 
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linear classifier and the adjustable slope parameter. That is the same as knowing how 
much to adjust the slope to remove that output error. 

 
● A problem with doing these adjustments naively, is that the model is updated to best 

match the last training example only, discarding all previous training examples. A good 
way to fix this is to moderate the updates with a learning rate so no single training 
example totally dominates the learning. 

 
● Training examples from the real world can be noisy or contain errors. Moderating 

updates in this way helpfully limits the impact of these false examples. 
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Sometimes One Classifier Is Not Enough 
The simple predictors and classifiers we’ve worked with so far - the ones that takes some input, 
do some calculation, and throw out an answer - although pretty effective as we’ve just seen, are 
not enough to solve some of the more interesting problems we hope to apply neural networks 
to. 
 
Here we’ll illustrate the limit of a linear classifier with a simple but stark example. Why do we 
want to do this, and not jump straight to discussing neural networks? The reason is that a key 
design feature of neural networks comes from understanding this limit - so worth spending a 
little time on. 
 
We’ll be moving away from garden bugs and looking at Boolean logic functions. If that sounds 
like mumbo jumbo jargon - don’t worry. George Boole was a mathematician and philosopher, 
and his name is associated with simple functions like AND and OR.  
 
Boolean logic functions are like language or thought functions. If we say “you can have your 
pudding only if you’ve eaten your vegetables AND if you’re still hungry” we’re using the Boolean 
AND function. The Boolean AND is only true if both conditions are true. It’s not true if only one 
of them is true. So if I’m hungry, but haven’t eaten my vegetables, then I can’t have my pudding.  
 
Similarly, if we say “you can play in the park if it’s the weekend OR you’re on annual leave from 
work” we’re using the Boolean OR function. The Boolean OR is true if any, or all, of the 
conditions are true. They don’t all have to be true like the Boolean AND function. So if it’s not 
the weekend, but I have booked annual leave, I can indeed go and play in the park. 
 
If we think back to our first look at functions, we saw them as a machine that took some inputs, 
did some work, and output an answer. Boolean logical functions typically take two inputs and 
output one answer: 
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Computers often represent true as the number 1, and false as the number 0. The following 
table shows the logical AND and OR functions using this more concise notation for all 
combinations of inputs A and B. 
 

Input A Input B Logical AND Logical OR 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 1 

 
You can see quite clearly, that the AND function is only true if both A and B are true. Similarly 
you can see that OR is true whenever any of the inputs A or B is true. 
 
Boolean logic functions are really important in computer science, and in fact the earliest 
electronic computers were built from tiny electrical circuits that performed these logical 
functions. Even arithmetic was done using combinations of circuits which themselves were 
simple Boolean logic functions. 
 
Imagine using a simple linear classifier to learn from training data whether the data was 
governed by a Boolean logic function. That’s a natural and useful thing to do for scientists 
wanting to find causal links or correlations between some observations and others. For 
example, is there more malaria when it rains AND it is hotter than 35 degrees? Is there more 
malaria when either (Boolean OR) of these conditions is true? 
 
Look at the following plot, showing the two inputs A and B to the logical function as coordinates 
on a graph. The plot shows that only when both are true, with value 1, is the output also true, 
shown as green. False outputs are shown red.  
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You can also see a straight line that divides the red from the green regions. That line is a linear 
function that a linear classifier could learn, just as we have done earlier. 
 
We won’t go through the numerical workings out as we did before because they’re not 
fundamentally different in this example.  
 
In fact there are many variations on this dividing line that would work just as well, but the main 
point is that it is indeed possible for a simple linear classifier of the form y = ax+b to learn the 
Boolean AND function. 
 
Now look at the Boolean OR function plotted in a similar way: 
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This time only the (0,0) point is red because it corresponds to both inputs A and B being false. 
All other combinations have at least one A or B as true, and so the output is true. The beauty of 
the diagram is that it makes clear that it is possible for a linear classifier to learn the Boolean OR 
function, too. 
 
There is another Boolean function called XOR, short for eXclusive OR, which only has a true 
output if either one of the inputs A or B is true, but not both. That is, when the inputs are both 
false, or both true, the output is false. The following table summarises this: 
 

Input A Input B Logical XOR 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 
Now look at a plot of the of this function on a grid with the outputs coloured: 
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This is a challenge! We can’t seem to separate the red from the blue regions with only a single 
straight dividing line.  
 
It is, in fact, impossible to have a single straight line that successfully divides the red from the 
green regions for the Boolean XOR. That is, a simple linear classifier can’t learn the Boolean 
XOR if presented with training data that was governed by the XOR function. 
 
We’ve just illustrated a major limitation of the simple linear classifier. A simple linear classifier is 
not useful if the underlying problem is not separable by a straight line.  
 
We want neural networks to be useful for the many many tasks where the underlying problem is 
not linearly separable - where a single straight line doesn’t help.  
 
So we need a fix. 
 
Luckily the fix is easy. In fact the diagram below which has two straight lines to separate out the 
different regions suggests the fix - we use multiple classifiers working together. That’s an idea 
central to neural networks. You can imagine already that many linear lines can start to separate 
off even unusually shaped regions for classification. 
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Before we dive into building neural networks made of many classifiers working together, let’s go 
back to nature and look at the animal brains that inspired the neural network approach.  
 
 

 
Key Points: 
 

● A simple linear classifier can’t separate data where that data itself isn’t governed by a 
single linear process. For example, data governed by the logical XOR operator 
illustrates this. 

 
● However the solution is easy, you just use multiple linear classifiers to divide up data 

that can’t be separated by a single straight dividing line.  
 
 

 
 
 
Neurons, Nature’s Computing Machines 
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We said earlier that animal brains puzzled scientists, because even small ones like a pigeon 
brain were vastly more capable than digital computers with huge numbers of electronic 
computing elements, huge storage space, and all running at frequencies much faster than 
fleshy squishy natural brains. 
 
Attention turned to the architectural differences. Traditional computers processed data very 
much sequentially, and in pretty exact concrete terms. There is no fuzziness or ambiguity about 
their cold hard calculations. Animal brains, on the other hand, although apparently running at 
much slower rhythms, seemed to process signals in parallel, and fuzziness was a feature of 
their computation. 
 
Let’s look at the basic unit of a biological brain - the neuron:  
 

 
 
Neurons, although there are various forms of them, all transmit an electrical signal from one end 
to the other, from the dendrites along the axons to the terminals. These signals are then passed 
from one neuron to another. This is how your body senses light, sound, touch pressure, heat 
and so on. Signals from specialised sensory neurons are transmitted along your nervous 
system to your brain, which itself is mostly made of neurons too.  
 
The following is a sketch of neurons in a pigeon’s brain, made by a Spanish neuroscientist in 
1889. You can see the key parts - the dendrites and the terminals.  
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How many neurons do we need to perform interesting, more complex, tasks?  
 
Well, the very capable human brain has about 100 billion neurons! A fruit fly has about 100,000 
neurons and is capable of flying, feeding, evading danger, finding food, and many more fairly 
complex tasks. This number, 100,000 neurons, is well within the realm of modern computers to 
try to replicate. A nematode worm has just 302 neurons, which is positively miniscule compared 
to today’s digital computer resources! But that worm is able to do some fairly useful tasks that 
traditional computer programs of much larger size would struggle to do. 
 
So what’s the secret? Why are biological brains so capable given that they are much slower and 
consist of relatively few computing elements when compared to modern computers? The 
complete functioning of brains, consciousness for example, is still a mystery, but enough is 
known about neurons to suggest different ways of doing computation, that is, different ways to 
solve problems. 
 
So let’s look at how a neuron works. It takes an electric input, and pops out another electrical 
signal. This looks exactly like the classifying or predicting machines we looked at earlier, which 
took an input, did some processing, and popped out an output.  
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So could we represent neurons as linear functions, just like we did before? Good idea, but no. A 
biological neuron doesn’t produce an output that is simply a simple linear function of the input. 
That is, its output does not take the form output = (constant * input) + (maybe another constant).  
 
Observations suggest that neurons don’t react readily, but instead suppress the input until it has 
grown so large that it triggers an output. You can think of this as a threshold that must be 
reached before any output is produced. It’s like water in a cup - the water doesn’t spill over until 
it has first filled the cup. Intuitively this makes sense - the neurons don’t want to be passing on 
tiny noise signals, only emphatically strong intentional signals. The following illustrates this idea 
of only producing an output signal if the input is sufficiently dialed up to pass a threshold. 
 

 
 
A function that takes the input signal and generates an output signal, but takes into account 
some kind of threshold is called an activation function. Mathematically, there are many such 
activation functions that could achieve this effect. A simple step function could do this:  
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You can see for low input values, the output is zero. However once the threshold input is 
reached, output jumps up. An artificial neuron behaving like this would be like a real biological 
neuron. The term used by scientists actually describes this well, they say that neurons fire when 
the input reaches the threshold. 
 
We can improve on the step function. The S-shaped function shown below is called the 
sigmoid function. It is smoother than the cold hard step function, and this makes it more 
natural and realistic. Nature rarely has cold hard edges! 
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This smooth S-shaped sigmoid function is what we’ll be continue to use for making our own 
neural network. Artificial intelligence researchers will also use other, similar looking functions, 
but the sigmoid is simple and actually very common too, so we’re in good company.  
 
The sigmoid function, sometimes also called the logistic function, is 
 

 
 
That expression isn’t as scary as it first looks. The letter e is a mathematical constant 2.71828… 
It’s a very interesting number that pops up in all sorts of areas of mathematics and physics, and 
the reason I’ve used the dots … is because the decimal digits keep going on forever. Numbers 
like that have a fancy name, transcendental numbers. That’s all very well and fun, but for our 
purposes you can just think of it as 2.71828. The input x is negated and e is raised to the power 
of that -x. The result is added to 1, so we have 1+e-x. Finally the inverse is taken of the whole 
thing, that is 1 is divided by 1+e-x. That is what the mildly scary looking function above does to 
the input x to give us the output value y. So not so scary after all! 
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Just out of interest, when x is zero, e-x is 1 because anything raised to a power of zero is 1. So y 
becomes 1 / (1 +1 ) or simply 1/2, a half. So the basic sigmoid cuts the y-axis at y = 1/2. 
 
There is another, very powerful reason for choosing this sigmoid function over the many many 
other S-shaped functions we could have used for a neuron’s output. The reason is that this 
sigmoid function is much easier to do calculations with than other S-shaped functions, and we’ll 
see why in practice later.  
 
Let’s get back to neurons, and consider how we might model an artificial neuron.  
 
The first thing to realise is that real biological neurons take many inputs, not just one. We saw 
this when we had two inputs to the Boolean logic machine, so the idea of having more than one 
input is not new or unusual. 
 
What do we do with all these inputs? We simply combine them by adding them up, and the 
resultant sum is the input to the sigmoid function which controls the output. This reflects how 
real neurons work. The following diagram illustrates this idea of combining inputs and then 
applying the threshold to the combined sum: 
 

 
 
If the combined signal is not large enough then the effect of the sigmoid threshold function is to 
suppress the output signal. If the sum x if large enough the effect of the sigmoid is to fire the 
neuron. Interestingly, if only one of the several inputs is large and the rest small, this may be 
enough to fire the neuron. What’s more, the neuron can fire if some of the inputs are individually 
almost, but not quite, large enough because when combined the signal is large enough to 
overcome the threshold. In an intuitive way, this gives you a sense of the more sophisticated, 
and in a sense fuzzy, calculations that such neurons can do. 
 
The electrical signals are collected by the dendrites and these combine to form a stronger 
electrical signal. If the signal is strong enough to pass the threshold, the neuron fires a signal 
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down the axon towards the terminals to pass onto the next neuron’s dendrites. The following 
diagram shows several neurons connected in this way: 
 

 
 
The thing to notice is that each neuron takes input from many before it, and also provides 
signals to many more, if it happens to be firing.  
 
One way to replicate this from nature to an artificial model is to have layers of neurons, with 
each connected to every other one in the preceding and subsequent layer. The following 
diagram illustrates this idea: 
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You can see the three layers, each with three artificial neurons, or nodes. You can also see 
each node connected to every other node in the preceding and next layers. 
 
That’s great! But what part of this cool looking architecture does the learning? What do we 
adjust in response to training examples? Is there a parameter that we can refine like the slope 
of the linear classifiers we looked at earlier? 
 
The most obvious thing is to adjust the strength of the connections between nodes. Within a 
node, we could have adjusted the summation of the inputs, or we could have adjusted the 
shape of the sigmoid threshold function, but that’s more complicated than simply adjusting the 
strength of the connections between the nodes.  
 
If the simpler approach works, let’s stick with it! The following diagram again shows the 
connected nodes, but this time a weight is shown associated with each connection. A low 
weight will de-emphasise a signal, and a high weight will amplify it.  
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It’s worth explaining the funny little numbers next to the weight symbols. The weight w2,3 is 
simply the weight associated with the signal that passed between node 2 in a layer to node 3 in 
the next layer. So w1,2 is the weight that diminishes or amplifies the signal between node 1 and 
node 2 in the next layer. To illustrate the idea, the following diagram shows these two 
connections between the first and second layer highlighted. 
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You might reasonably challenge this design and ask yourself why each node should connect to 
every other node in the previous and next layer. They don’t have to and you could connect them 
in all sorts of creative ways. We don’t because the uniformity of this full connectivity is actually 
easier to encode as computer instructions, and because there shouldn’t be any big harm in 
having a few more connections than the absolute minimum that might be needed for solving a 
specific task. The learning process will de-emphasise those few extra connections if they aren’t 
actually needed. 
 
What do we mean by this? It means that as the network learns to improve its outputs by refining 
the link weights inside the network, some weights become zero or close to zero. Zero, or almost 
zero, weights means those links don’t contribute to the network because signals don’t pass. A 
zero weight means the signals are multiplied by zero, which results in zero, so the link is 
effectively broken. 
 
 

 
Key Points: 
 

● Biological brains seem to perform sophisticated tasks like flight, finding food, learning 
language, and evading predators, despite appearing to have much less storage, and 
running much slower, than modern computers.  
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● Biological brains are also incredibly resilient to damage and imperfect signals 
compared to traditional computer systems. 

 
● Biological brains, made of connected neurons, are the inspiration for artificial neural 

networks.  
 
 

 
 
 
Following Signals Through A Neural Network 
That picture of 3 layers of neurons, with each neuron connect to every other in the next and 
previous layers, looks pretty amazing.  
 
But the idea of calculating how signals progress from the inputs through the layers to become 
the outputs seems a little daunting and, well, too much like hard work! 
 
I’ll agree that it is hard work, but it is also important to illustrate it working so we always know 
what is really happening inside a neural network, even if we later use a computer to do all the 
work for us. So we’ll try doing the workings out with a smaller neural network with only 2 layers, 
each with 2 neurons, as shown below: 
 

 
 
Let’s imagine the two inputs are 1.0 and 0.5. The following shows these inputs entering this 
smaller neural network. 
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Just as before, each node turns the sum of the inputs into an output using an activation function. 
We’ll also use the sigmoid function  that we saw before, where x is the sum of y =  1

(1 + e )−x  

incoming signals to a neuron, and y is the output of that neuron.  
 
What about the weights? That’s a very good question - what value should they start with? Let’s 
go with some random weights: 
 

● w1,1 = 0.9 
● w1,2 = 0.2 
● w2,1 = 0.3 
● w2,2 = 0.8 

 
Random starting values aren’t such a bad idea, and it is what we did when we chose an initial 
slope value for the simple linear classifiers earlier on. The random value got improved with each 
example that the classifier learned from. The same should be true for neural networks link 
weights. 
 
There are only four weights in this small neural network, as that’s all the combinations for 
connecting the 2 nodes in each layer.  The following diagram shows all these numbers now 
marked. 
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Let’s start calculating! 
 
The first layer of nodes is the input layer, and it doesn’t do anything other than represent the 
input signals. That is, the input nodes don’t apply an activation function to the input. There is not 
really a fantastic reason for this other than that’s how history took its course. The first layer of 
neural networks is the input layer and all that layer does is represent the inputs - that’s it.  
 
The first input layer 1 was easy - no calculations to be done there.  
 
Next is the second layer where we do need to do some calculations. For each node in this layer 
we need to work out the combined input. Remember that sigmoid function, ? Well, y =  1

(1 + e )−x  

the x in that function is the combined input into a node. That combination was the raw outputs 
from the connected nodes in the previous layer, but moderated by the link weights. The 
following diagram is like the one we saw previously but now includes the need to moderate the 
incoming signals with the link weights. 
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So let’s first focus on node 1 in the layer 2. Both nodes in the first input layer are connected to it. 
Those input nodes have raw values of 1.0 and 0.5. The link from the first node has a weight of 
0.9 associated with it. The link from the second has a weight of 0.3. So the combined 
moderated input is: 
 
x = (output from first node * link weight) + (output from second node 

* link weight) 
 

x = (1.0 * 0.9) + (0.5 * 0.3) 
 

x = 0.9 + 0.15 
 

x = 1.05 
 
If we didn’t moderate the signal, we’d have a very simple addition of the signals 1.0 + 0.5, but 
we don’t want that. It is the weights that do the learning in a neural networks as they are 
iteratively refined to give better and better results.  
 
So, we’ve now got x = 1.05 for the combined moderated input into the first node of the second 
layer. We can now, finally, calculate that node’s output using the activation function   y =  1

(1 + e )−x  

. Feel free to use a calculator to do this. The answer is y = 1 / (1 + 0.3499) = 1 / 1.3499. So y = 
0.7408. 
 
That’s great work! We now have an actual output from one of the network’s two output nodes.  
 
Let’s do the calculation again with the remaining node which is node 2 in the second layer. The 
combined moderated input x is: 
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x = (output from first node * link weight) + (output from second node 

* link weight) 
 

x = (1.0 * 0.2) + (0.5 * 0.8) 
 

x = 0.2 + 0.4 
 

x = 0.6 
 
So now we have x, we can calculate the node’s output using the sigmoid activation function y = 
1/(1 + 0.5488) = 1/(1.5488). So y = 0.6457. 
 
The following diagram shows the network’s outputs we’ve just calculated: 
 

 
 
That was a fair bit of work just to get two outputs from a very simplified network. I wouldn’t want 
to do the calculations for a larger network by hand at all! Luckily computers are perfect for doing 
lots of calculations quickly and without getting bored. 
 
Even so, I don’t want to write out computer instructions for doing the calculation for a network 
with more than 2 layers, and with maybe 4, 8 or even 100s of nodes in each layer. Even writing 
out the instructions would get boring and I’d very likely make mistakes writing all those 
instructions for all those nodes and all those layers, never mind actually doing the calculations. 
 
Luckily mathematics helps us be extremely concise in writing down the calculations needed to 
work out the output from a neural network, even one with many more layers and nodes. This 
conciseness is not just good for us human readers, but also great for computers too because 
the instructions are much shorter and the execution is much more efficient too. 
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This concise approach uses matrices, which we’ll look at next. 
 
 
Matrix Multiplication is Useful .. Honest! 
Matrices have a terrible reputation. They evoke memories of teeth-grindingly boring laborious 
and apparently pointless hours spent at school doing matrix multiplication.  
 
Previously we manually did the calculations for a 2-layer network with just 2 nodes in each 
layer. That was enough work, but imagine doing the same for a network with 5 layers and 100 
nodes in each? Just writing out all the necessary calculations would be a huge task … all those 
combinations of combining signals, multiplied by the right weights, applying the sigmoid 
activation function, for each node, for each layer … argh! 
 
So how can matrices help? Well, they help us in two ways. First, they allow us to compress 
writing all those calculations into a very simple short form. That’s great for us humans, because 
we don’t like doing a lot of work because it’s boring, and we’re prone to errors anyway. The 
second benefit is that many computer programming languages understand working with 
matrices, and because the real work is repetitive, they can recognise that and do it very quickly 
and efficiently.  
 
In short, matrices allow us to express the work we need to do concisely and easily, and 
computers can get the calculations done quickly and efficiently.  
 
Now we know why we’re going to look at matrices, despite perhaps a painful experience with 
them at school, let’s make a start and demystify them.  
 
A matrix is just a table, a rectangular grid, of numbers. That’s it. There’s nothing much more 
complex about a matrix than that.  
 
If you’ve used spreadsheets, you’re already comfortable with working with numbers arranged in 
a grid. Some would call it a table. We can call it a matrix too. The following shows a 
spreadsheet with a table of numbers.  
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That’s all a matrix is - a table or a grid of numbers - just like the following example of a matrix of 
size “2 by 3”.

 

It is convention to use rows first then columns, so this isn’t a “3 by 2” matrix, it is a “2 by 3” 
matrix.

Also, some people use square brackets around matrices, and others use round brackets like we 
have.

Actually, they don’t have to be numbers, they could be quantities which we give a name to, but
may not have assigned an actual numerical value to. So the following is a matrix, where each
element is a variable which has a meaning and could have a numerical value, but we just 
haven’t said what it is yet. 

- 57 -



Now, matrices become useful to us when we look at how they are multiplied. You may 
remember how to do this from school, but if not we’ll look at it again. 
 
Here’s an example of two simple matrices multiplied together.  
 

 
 
You can see that we don’t simply multiply the corresponding elements. The top left of the 
answer isn’t 1*5, and the bottom right isn’t 4*8.  
 
Instead, matrices are multiplied using different rules. You may be able to work them out by 
looking at the above example. If not, have a look at the following which highlights how the top 
left element of the answer is worked out. 
 

 
 
You can see the top left element is worked out by following the top row of the first matrix, and 
the left column of the second matrix. As you follow these rows and columns, you multiply the 
elements you encounter and keep a running total. So to work out the top left element of the 
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answer we start to move along the top row of the first array where we find the number 1, and as 
we start to move down the left column of the second matrix we find the number 5. We multiply 1 
and 5 and keep the answer, which is 5, with us. We continue moving along the row and down 
the column to find the numbers 2 and 7. Multiplying 2 and 7 gives us 14, which we keep too. 
We’ve reached the end of the rows and columns so we add up all the numbers we kept aside, 
which is 5 + 14, to give us 19. That’s the top left element of the result matrix. 
 
That’s a lot of words, but it is easier to see it in action. Have a go yourself. The following 
explains how the bottom right element is worked out. 
 

 
 
You can see again, that following the corresponding row and column of the element we’re trying 
to calculate (the second row and second column, in this example) we have (3*6) and (4*8) 
which is 18 + 32 = 50.  
 
For completeness, the bottom left is calculated as (3*5) + (4*7) = 15 + 28 = 43. Similarly, the top 
right is calculated as (1*6) + (2*8) = 6 + 16 = 22.  
 
The following illustrates the rule using variables, rather than numbers. 
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This is just another way of explaining the approach we take to multiplying matrices. By using 
letters, which could be any number, we’ve made even clearer the generic approach to 
multiplying matrices. It’s a generic approach because it could be applied to matrices of different 
sizes too.  
 
When we said it works for matrices of different sizes, there is an important limit. You can’t just 
multiply any two matrices, they need to be compatible. You may have seen this already as you 
followed the rows across the first matrix, and the columns down the second. If the number of 
elements in the rows don’t match the number of elements in the columns then the method 
doesn’t work. So you can’t multiply a “2 by 2” matrix by a “5 by 5” matrix. Try it - you’ll see why it 
doesn’t work. To multiply matrices the number of columns in the first must be equal to the 
number of rows in the second. 
 
In some guides, you’ll see this kind of matrix multiplication called a dot product or an inner 
product. There are actually different kinds of multiplication possible for matrices, such as a 
cross product, but the dot product is the one we want here. 
 
Why have we gone down what looks like a rabbit hole of dreaded matrix multiplication and 
distasteful algebra? There is a very good reason .. hang in there! 
 
Look what happens if we replace the letters with words that are more meaningful to our neural 
networks. The second matrix is a two by one matrix, but the multiplication approach is the same.  
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Magic! 
 
The first matrix contains the weights between nodes of two layers. The second matrix contains 
the signals of the first input layer. The answer we get by multiplying these two matrices is the 
combined moderated signal into the nodes of the second layer. Look carefully, and you’ll see 
this. The first node has the first input_1 moderated by the weight w1,1 added to the second 
input_2 moderated by the weight w2,1. These are the values of x before the sigmoid activation 
function is applied.  
 
The following diagram shows this even more clearly. 
 

 
 
This is really very useful! 
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Why? Because we can express all the calculations that go into working out the combined 
moderated signal, x, into each node of the second layer using matrix multiplication. And this can 
be expressed as concisely as: 
 

X = W·I 
 
That is, W is the matrix of weights, I is the matrix of inputs, and X is the resultant matrix of 
combined moderated signals into layer 2. Matrices are often written in bold to show that they 
are in fact matrices and don’t just represent single numbers.  
 
We now don’t need to care so much about how many nodes there are in each layer. If we have 
more nodes, the matrices will just be bigger. But we don’t need to write anything longer or 
larger. We can simply write W.I even if I has 2 elements or 200 elements! 
 
Now, if a computer programming language can understand matrix notation, it can do all the hard 
work of many calculations to work out the X = W.I, without us having to give it all the individual 
instructions for each node in each layer. 
 
This is fantastic! A little bit of effort to understand matrix multiplication has given us a powerful 
tool for implementing neural networks without lots of effort from us. 
 
What about the activation function? That’s easy and doesn’t need matrix multiplication. All we 
need to do is apply the sigmoid function   to each individual element of the matrix X. y =  1

(1 + e )−x   

 
This sounds too simple, but it is correct because we’re not combining signals from different 
nodes here, we’ve already done that and the answers are in X. As we saw earlier, the activation 
function simply applies a threshold and squishes the response to be more like that seen in 
biological neurons. So the final output from the second layer is: 
 

O = sigmoid (X) 
 
That O written in bold is a matrix, which contains all the outputs from the final layer of the neural 
network. 
 
The expression X = W·I applies to the calculations between one layer and the next. If we have 3 
layers, for example, we simply do the matrix multiplication again, using the outputs of the 
second layer as inputs to the third layer but of course combined and moderated using more 
weights.  
 
Enough theory - let’s see how it works with a real example, but this time we’ll use a slightly 
larger neural network of 3 layers, each with 3 nodes.  
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Key Points: 
 

● The many calculations needed to feed a signal forward through a neural network can 
be expressed as matrix multiplication. 

 
● Expressing it as matrix multiplication makes it much more concise for us to write, no 

matter the size of neural network. 
 

● More importantly, some computer programming languages understand matrix 
calculations, and recognise that the underlying calculations are very similar. This 
allows them to do these calculations more efficiently and quickly. 

 
 

 
 
A Three Layer Example with Matrix Multiplication 
We haven’t worked through feeding signals through a neural network using matrices to do the 
calculations. We also haven’t worked through an example with more than 2 layers, which is 
interesting because we need to see how we treat the outputs of the middle layer as inputs to the 
final third layer.  
 
The following diagram shows an example neural network with 3 layers, each with 3 nodes. To 
keep the diagram clear, not all the weights are marked.  
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We’ll introduce some of the commonly used terminology here too. The first layer is the input 
layer, as we know. The final layer is the output layer, as we also know. The middle layer is 
called the hidden layer. That sounds mysterious and dark, but sadly there isn’t a mysterious 
dark reason for it. The name just stuck because the outputs of the middle layer are not 
necessarily made apparent as outputs, so are “hidden”. Yes, that’s a bit lame, but there really 
isn’t a better reason for the name.  
 
Let’s work through that example network, illustrated in that diagram. We can see the three 
inputs are 0.9, 0.1 and 0.8. So the input matrix I is: 
 

 
 
That was easy.  That’s the first input layer done, because that’s all the input layer does - it 
merely represents the input. 
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Next is the middle hidden layer. Here we need to work out the combined (and moderated) 
signals to each node in this middle layer. Remember each node in this middle hidden layer is 
connected to by every node in the input layer, so it gets some portion of each input signal. We 
don’t want to go through the many calculations like we did earlier, we want to try this matrix 
method. 
 
As we just saw, the combined and moderated inputs into this middle layer are X = W.I where I is 
the matrix of input signals, and W is the matrix of weights. We have I but what is W? Well the 
diagram shows some of the (made up) weights for this example but not all of them. The 
following shows all of them, again made up randomly. There’s nothing particularly special about 
them in this example.  
 

 
 
You can see the weight between the first input node and the first node of the middle hidden 
layer is w1,1 = 0.9, just as in the network diagram above. Similarly you can see the weight for the 
link between the second node of the input and the second node of the hidden layer is w2,2 = 0.8, 
as shown in the diagram. The diagram doesn’t show the link between the third input node and 
the first hidden layer node, which we made up as w3,1 = 0.1. 
 
But wait - why have we written “input_hidden” next to that W? It’s because Winput_hidden are the 
weights between the input and hidden layers. We need another matrix of weights for the links 
between the hidden and output layers, and we can call it Whidden_output.  
 
The following shows this second matrix Whidden_output with the weights filled in as before. Again 
you should be able to see, for example, the link between the third hidden node and the third 
output node as w3,3 = 0.9. 
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Great, we’ve got the weight matrices sorted. 
 
Let’s get on with working out the combined moderated input into the hidden layer. We should 
also give it a descriptive name so we know it refers to the combined input to the middle layer 
and not the final layer. Let’s call it Xhidden. 
 

Xhidden = Winput_hidden · I 
 
We’re not going to do the entire matrix multiplication here, because that was the whole point of 
using matrices. We want computers to do the laborious number crunching. The answer is 
worked out as shown below. 
 

 
 
I used a computer to work this out, and we’ll learn to do this together using the Python 
programming language in part 2 of this guide. We won’t do it now as we don’t want to get 
distracted by computer software just yet. 
 
So we have the combined moderated inputs into the middle hidden layer, and they are 1.16, 
0.42 and 0.62. And we used matrices to do the hard work for us. That’s an achievement to be 
proud of! 
 
Let’s visualise these combined moderated inputs into the second hidden layer.  
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So far so good, but there’s more to do. You’ll remember those nodes apply a sigmoid activation 
function to make the response to the signal more like those found in nature. So let’s do that: 
 

Ohidden = sigmoid( Xhidden ) 
 
The sigmoid function is applied to each element in Xhidden to produce the matrix which has the 
output of the middle hidden layer. 
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Let’s just check the first element to be sure. The sigmoid function is , so when x = y =  1
(1 + e )−x  

1.16, e-1.16 is 0.3135. That means y = 1/(1+ 0.3135) = 0.761.  
 
You can also see that all the values are between 0 and 1, because this sigmoid doesn’t produce 
values outside that range. Look back at the graph of the logistic function to see this visually. 
 
Phew! Let’s pause again and see what we’ve done. We’ve worked out the signal as it passes 
through the middle layer. That is, the outputs from the middle layer. Which, just to be super 
clear, are the combined inputs into the middle layer which then have the activation function 
applied. Let’s update the diagram with this new information. 
 

 
 
If this was a two layer neural network, we’d stop now as these are the outputs from the second 
layer. We won’t stop because we have another third layer.  
 
How do we work out the signal through the third layer? It’s the same approach as the second 
layer, there isn’t any real difference. We still have incoming signals into the third layer, just as 
we did coming into the second layer. We still have links with weights to moderate those signals. 
And we still have an activation function to make the response behave like those we see in 
nature. So the thing to remember is, no matter how many layers we have, we can treat each 
layer like any other - with incoming signals which we combine, link weights to moderate those 
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incoming signals, and an activation function to produce the output from that layer. We don’t care 
whether we’re working on the 3rd or 53rd or even the 103rd layer - the approach is the same. 
 
So let’s crack on and calculate the combined moderated input into this final layer X = W.I just as 
we did before.  
 
The inputs into this layer are the outputs from the second layer we just worked out Ohidden. And 
the weights are those for the links between the second and third layers Whidden_output, not those 
we just used between the first and second. So we have: 
 

Xoutput = Whidden_output · Ohidden 

 
So working this out just in the same way gives the following result for the combined moderated 
inputs into the final output layer. 
 

 
 
The updated diagram now shows our progress feeding forward the signal from the initial input 
right through to the combined inputs to the final layer. 
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All that remains is to apply the sigmoid activation function, which is easy. 
 

 
 
That’s it! We have the final outputs from the neural network. Let’s show this on the diagram too. 
 

 
- 70 - 



 
 
So the final output of the example neural network with three layers is 0.726, 0.708 and 0.778.  
 
We’ve successfully followed the signal from it’s initial entry into the neural network, through the 
layers, and out of the final output layer. 
 
What now? 
 
The next step is to use the output from the neural network and compare it with the training 
example to work out an error. We need to use that error to refine the neural network itself so 
that it improves its outputs.  
 
This is probably the most difficult thing to understand, so we’ll take it gently and illustrate the 
ideas as we go.  
 
 
Learning Weights From More Than One Node 
Previously we refined a simple linear classifier by adjusting the slope parameter of the node’s 
linear function. We used the error, the difference between what the node produced as an 
answer and what we know the answer should be, to guide that refinement. That turned out to be 
quite easy because the relationship between the error and the necessary slope adjustment was 
very simple to work out.  
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How do we update link weights when more than one node contributes to an output and its error? 
The following illustrates this problem. 
 

 
 
Things were much simpler when we just had one node feeding into an output node. If we have 
two nodes, how do we use that output error? 
 
It doesn’t make sense to use all the error to update only one weight, because that ignores the 
other link and its weight. That error was there because more than one link contributed to it.  
 
There is a tiny chance that only one link of many was responsible for the error, but that chance 
is extremely miniscule. If we did change a weight that was already “correct”, making it worse, it 
would get improved during the next iterations so all is not lost. 
 
One idea is to split the error equally amongst all contributing nodes, as shown next.  
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Another idea is to split the error but not to do it equally. Instead we give more of the error to 
those contributing connections which had greater link weights. Why? Because they contributed 
more to the error. The following diagram illustrates this idea. 
 

 
 
Here there are two nodes contributing a signal to the output node. The link weights are 3.0 and 
1.0. If we split the error in a way that is proportionate to these weights, we can see that ¾ of the 
output error should be used to update the first larger weight, and that ¼ of the error for the 
second smaller weight.  
 
We can extend this same idea to many more nodes. If we had 100 nodes connected to an 
output node, we’d split the error across the 100 connections to that output node in proportion 
to each link’s contribution to the error, indicated by the size of the link’s weight. 
 
You can see that we’re using the weights in two ways. Firstly we use the weights to propagate 
signals forward from the input to the output layers in a neural network. We worked on this 
extensively before. Secondly we use the weights to propagate the error backwards from the 
output back into the network. You won’t be surprised why the method is called 
backpropagation. 
 
If the output layer had 2 nodes, we’d do the same for the second output node. That second 
output node will have its own error, which is similarly split across the connecting links. Let’s look 
at this next. 
 
 
Backpropagating Errors From More Output Nodes 
The following diagram shows a simple network with 2 input nodes, but now with 2 output nodes. 
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Both output nodes can have an error - in fact that’s extremely likely when we haven’t trained the 
network. You can see that both of these errors needs to inform the refinement of the internal link 
weights in the network. We can use the same approach as before, where we split an output 
node’s error amongst the contributing links, in a way that’s proportionate to their weights.  
 
The fact that we have more than one output node doesn’t really change anything. We simply 
repeat for the second output node what we already did for the first one. Why is this so simple? It 
is simple because the links into an output node don’t depend on the links into another output 
node. There is no dependence between these two sets of links. 
 
Looking at that diagram again, we’ve labelled the error at the first output node as e1. Remember 
this is the difference between the desired output provided by the training data t1 and the actual 
output o1. That is, e1 = ( t1 - o1 ). The error at the second output node is labelled e2. 
 
You can see from the diagram that the error e1 is split in proportion to the connected links, which 
have weights w11 and w21. Similarly, e2 would be split in proportionate to weights w21 and w22.  
 
Let’s write out what these splits are, so we’re not in any doubt. The error e1 is used to inform the 
refinement of both weights w11 and w21. It is split so that the fraction of e1 used to update w11 is 
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Similarly the fraction of e1 used to refine w21 is  
 

 
 
These fractions might look a bit puzzling, so let’s illustrate what they do. Behind all these 
symbols is the every simple idea the the error e1 is split to give more to the weight that is larger, 
and less to the weight that is smaller.  
 
If w11 is twice as large as w21, say w11=6 and w21=3, then the fraction of e1 used to update w11 is 
6/(6+3) = 6/9 = 2/3. That should leave 1/3 of e1 for the other smaller weight w21 which we can 
confirm using the expression 3/(6+3) = 3/9 which is indeed 1/3. 
 
If the weights were equal, the fractions will both be half, as you’d expect. Let’s see this just to be 
sure. Let’s say w11=4 and w21=4, then the fraction is 4/(4+4) = 4/8 = 1/2 for both cases.  
 
Before we go further, let’s pause and take a step back and see what we’ve done from a 
distance. We knew we needed to use the error to guide the refinement of some parameter 
inside the network, in this case the link weights. We’ve just seen how to do that for the link 
weights which moderate signals into the final output layer of a neural network. We’ve also seen 
that there isn’t a complication when there is more than one output node, we just do the same 
thing for each output node. Great! 
 
The next question to ask is what happens when we have more than 2 layers? How do we 
update the link weights in the layers further back from the final output layer? 
 
 
Backpropagating Errors To More Layers 
The following diagram shows a simple neural network with 3 layers, an input layer, a hidden 
layer and the final output layer.  
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Working back from the final output layer at the right hand side, we can see that we use the 
errors in that output layer to guide the refinement of the link weights feeding into the final layer. 
We’ve labelled the output errors more generically as eoutput and the weights of the links between 
the hidden and output layer as who. We worked out the specific errors associated with each link 
by splitting the weights in proportion to the size of the weights themselves. 
 
By showing this visually, we can see what we need to do for the new additional layer. We simply 
take those errors associated with the output of the hidden layer nodes ehidden, and split those 
again proportionately across the preceding links between the input and hidden layers wih. The 
next diagram shows this logic. 
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If we had even more layers, we’d repeatedly apply this same idea to each layer working 
backwards from the final output layer. The flow of error information makes intuitive sense. You 
can see again why this is called error backpropagation.  
 
If we first used the error in the output of the output layer nodes eoutput, what error do we use for 
the hidden layer nodes ehidden? This is a good question to ask because a node in the middle 
hidden layer doesn’t have an obvious error. We know from feeding forward the input signals 
that, yes, each node in the hidden layer does indeed have a single output. You’ll remember that 
was the activation function applied to the weighted sum on the inputs to that node. But how do 
we work out the error? 
 
We don’t have the target or desired outputs for the hidden nodes. We only have the target 
values for the final output layer nodes, and these come from the training examples. Let’s look at 
that diagram above again for inspiration! That first node in the hidden layer has two links 
emerging from it to connect it to the two output layer nodes. We know we can split the output 
error along each of these links, just as we did before. That means we have some kind of error 
for each of the two links that emerge from this middle layer node. We could recombine these 
two link errors to form the error for this node as a second best approach because we don’t 
actually have a target value for the middle layer node. The following shows this idea visually. 
 

 
 
You can see more clearly what’s happening, but let’s go through it again just to be sure. We 
need an error for the hidden layer nodes so we can use it to update the weights in the preceding 
layer.  We call these ehidden. But we don’t have an obvious answer to what they actually are. We 
can’t say the error is the difference between the desired target output from those nodes and the 
actual outputs, because our training data examples only give us targets for the very final output 
nodes.  
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The training data examples only tell us what the outputs from the very final nodes should be. 
They don’t tell us what the outputs from nodes in any other layer should be. This is the core of 
the puzzle. 
 
We could recombine the split errors for the links using the error backpropagation we just saw 
earlier. So the error in the first hidden node is the sum of the split errors in all the links 
connecting forward from same node. In the diagram above, we have a fraction of the output 
error eoutput,1 on the link with weight w11 and also a fraction of the output error eoutput,2 from the 
second output node on the link with weight w12. 
 
So let’s write this down. 
 

 
 
It helps to see all this theory in action, so the following illustrates the propagation of errors back 
into a simple 3 layer network with actual numbers. 
 

 
 
Let’s follow one error back. You can see the error 0.5 at the second output layer node being 
split proportionately into 0.1 and 0.4 across the two connected links which have weights 1.0 and 
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4.0. You can also see that the recombined error at the second hidden layer node is the sum of 
the connected split errors, which here are 0.9 and 0.4, to give 1.3.  
 
The next diagram shows the same idea applied to the preceding layer, working further back.  
 

 
 

 
Key Points: 
 

● Neural networks learn by refining their link weights. This is guided by the error - the 
difference between the right answer given by the training data and their actual output. 

 
● The error at the output nodes is simply the difference between the desired and actual 

output. 
 

● However the error associated with internal nodes is not obvious. One approach is to 
split the output layer errors in proportion to the size of the connected link weights, 
and then recombine these bits at each internal node. 

 
 

 
 
Backpropagating Errors with Matrix Multiplication 
Can we use matrix multiplication to simplify all that laborious calculation? It helped earlier when 
we were doing loads of calculations to feed forward the input signals. 
 
To see if error backpropagation can be made more concise using matrix multiplication, let’s 
write out the steps using symbols. By the way, this is called trying to vectorise the process. 
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Being able to express a lot of calculations in matrix form makes it more concise for us to write 
down, and also allows computers to do all that work much more efficiently because they take 
advantage of the repetitive similarities in the calculations that need to be done. 
 
The starting point is the errors that emerge from the neural network at the final output layer. 
Here we only have two nodes in the output layer, so these are e1 and e2. 
 

 
 
Next we want to construct the matrix for the hidden layer errors. That might sound hard so let’s 
do it bit by bit. The first bit is the first node in the hidden layer. If you look at the diagrams above 
again you can see that the first hidden node’s error has two paths contributing to it from the 
output layer. Along these paths come the error signals e1 * w11 / (w11 + w21) and e2 * w12 / (w12 + 
w22). Now look at the second hidden layer node and we can again see two paths contributing to 
its error, e1 * w21 / (w21 + w11) and e2 * w22 / (w22 + w12). We’ve already seen how these 
expressions are worked out earlier.  
 
So we have the following matrix for the hidden layer. It’s a bit more complex than I’d like. 
 

 
 
It would be great if this could be rewritten as a very simple multiplication of matrices we already 
have available to us. These are the weight, forward signal and output error matrices. Remember 
the benefits are huge if we can do this.  
 
Sadly we can’t easily turn this into a super simple matrix multiplication like we could with the 
feeding forward of signals we did earlier. Those fractions in that big busy matrix above are hard 
to untangle! It would have been helpful if we could neatly split that busy matrix into a simple 
combination of the available matrices.  
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What can we do? We still really really want those benefits of using matrix multiplications to do 
the calculations efficiently. 
 
Time to get a bit naughty! 
 
Have a look again at that expression above. You can see that the most important thing is the 
multiplication of the output errors en with the linked weights wij.The larger the weight, the more 
of the output error is carried back to the hidden layer. That’s the important bit. The bottom of 
those fractions are a kind of normalising factor. If we ignored that factor, we’d only lose the 
scaling of the errors being fed back. That is, e1 * w11 / (w11 + w21) would become the much 
simpler e1 * w11.  
 
If we did that, then the matrix multiplication is easy to spot. Here it is: 
 

 
 
That weight matrix is like the one we constructed before but has been flipped along a diagonal 
line so that the top right is now at the bottom left, and the bottom left is at the top right. This is 
called transposing a matrix, and is written as wT. 
 
Here are two examples of a transposing matrix of numbers, so we can see clearly what 
happens. You can see this works even when the matrix has a different number of rows from 
columns. 
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So we have what we wanted, a matrix approach to propagating the errors back: 
 

 
 
This is great but did we do the right thing cutting out that normalising factor? It turns out that this 
simpler feedback of the error signals works just as well as the more sophisticated one we 
worked out earlier. This book’s blog has a post showing the results of several different ways of 
back propagating the the error. If our simpler way works really well, we’ll keep it!  
 
If we want to think about this more, we can see that even if overly large or small errors are fed 
back, the network will correct itself during the next iterations of learning. The important thing is 
that the errors being fed back respect the strength of the link weights, because that is the best 
indication we have of sharing the blame for the error.  
 
We’ve done a lot of work, a huge amount! 
 
 

 
Key Points: 
 

● Backpropagating the error can be expressed as a matrix multiplication. 
 

● This allows us to express it concisely, irrespective of network size, and also allows 
computer languages that understand matrix calculations to do the work more 
efficiently and quickly. 

 
● This means both feeding signals forward and error backpropagation can be made 

efficient using matrix calculations. 
 
 

 
 
Take a well deserved break, because the next and final theory section is really very cool but 
does require a fresh brain.  
 
 
How Do We Actually Update Weights? 
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We’ve not yet attacked the very central question of updating the link weights in a neural 
network. We’ve been working to get to this point, and we’re almost there. We have just one 
more key idea to understand before we can unlock this secret. 
 
So far, we’ve got the errors propagated back to each layer of the network. Why did we do this? 
Because the error is used to guide how we adjust the link weights to improve the overall answer 
given by the neural network. This is basically what we were doing way back with the linear 
classifier at the start of this guide. 
 
But these nodes aren’t simple linear classifiers. These slightly more sophisticated nodes sum 
the weighted signals into the node and apply the sigmoid threshold function. So how do we 
actually update the weights for links that connect these more sophisticated nodes? Why can’t 
we use some fancy algebra to directly work out what the weights should be? 
 
We can’t do fancy algebra to work out the weights directly because the maths is too hard. There 
are just too many combinations of weights, and too many functions of functions of functions ... 
being combined when we feed forward the signal through the network. Think about even a small 
neural network with 3 layers and 3 neurons in each layer, like we had above. How would you 
tweak a weight for a link between the first input node and the second hidden node so that the 
third output node increased its output by, say, 0.5? Even if we did get lucky, the effect could be 
ruined by tweaking another weight to improve a different output node. You can see this isn’t 
trivial at all. 
 
To see how untrivial, just look at the following horrible expression showing an output node’s 
output as a function of the inputs and the link weights for a simple 3 layer neural network with 3 
nodes in each layer. The input at node i is xi, the weights for links connecting input node i to 
hidden node j is wi,j, similarly the output of hidden node j is xj, and the weights for links 
connecting hidden node j to output node k is wj,k. That funny symbol ∑a

b means sum the 
subsequent expression for all values between a and b. 
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Yikes! Let’s not untangle that. 
 
Instead of trying to be too clever, we could just simply try random combinations of weights until 
we find a good one? 
 
That’s not always such a crazy idea when we’re stuck with a hard problem. The approach is 
called a brute force method. Some people use brute force methods to try to crack passwords, 
and it can work if your password is an English word and not too long, because there aren’t too 
many for a fast home computer to work through. Now, imagine that each weight could have 
1000 possibilities between -1 and +1, like 0.501, -0.203 and 0.999 for example. Then for a 3 
layer neural network with 3 nodes in each layer, there are 18 weights, so we have 18,000 
possibilities to test. If we have a more typical neural network with 500 nodes in each layer, we 
have 500 million weight possibilities to test. If each set of combinations took 1 second to 
calculate, this would take us 16 years to update the weights after just one training example! A 
thousand training examples, and we’d be at 16,000 years! 
 
You can see that the brute force approach isn’t practical at all. In fact it gets worse very quickly 
as we add network layers, nodes or possibilities for weight values.  
 
This puzzle resisted mathematicians for years, and was only really solved in a practical way as 
late as the 1960s-70s. There are different views on who did it first or made the key breakthrough 
but the important point is that this late discovery led to the explosion of modern neural networks 
which can carry out some very impressive tasks.  
 
So how do we solve such an apparently hard problem? Believe it or not, you’ve already got the 
tools to do it yourself. We’ve covered all of them earlier. So let’s get on with it. 
 
The first thing we must do is embrace pessimism. 
 
The mathematical expressions showing how all the weights result in a neural network’s output 
are too complex to easily untangle. The weight combinations are too many to test one by one to 
find the best. 
 
There are even more reasons to be pessimistic. The training data might not be sufficient to 
properly teach a network. The training data might have errors so our assumption that it is the 
perfect truth, something to learn from, is then flawed. The network itself might not have enough 
layers or nodes to model the right solution to the problem.  
 
What this means is we must take an approach that is realistic, and recognises these limitations. 
If we do that, we might find an approach which isn’t mathematically perfect but does actually 
give us better results because it doesn’t make false idealistic assumptions.  
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Let’s illustrate what we mean by this. Imagine a very complex landscape with peaks and 
troughs, and hills with treacherous bumps and gaps. It’s dark and you can’t see anything. You 
know you’re on the side of a hill and you need to get to the bottom. You don’t have an accurate 
map of the entire landscape. You do have a torch. What do you do? You’ll probably use the 
torch to look at the area close to your feet. You can’t use it to see much further anyway, and 
certainly not the entire landscape. You can see which bit of earth seems to be going downhill 
and take small steps in that direction. In this way, you slowly work your way down the hill, step 
by step, without having a full map and without having worked out a journey beforehand.  
 

 
 
The mathematical version of this approach is called gradient descent, and you can see why. 
After you’ve taken a step, you look again at the surrounding area to see which direction takes 
you closer to your objective, and then you step again in that direction. You keep doing this until 
you’re happy you’ve arrived at the bottom. The gradient refers to the slope of the ground. You 
step in the direction where the slope is steepest downwards  
 
Now imagine that complex landscape is a mathematical function. What this gradient descent 
method gives us is an ability to find the minimum without actually having to understand that 
complex function enough to work it out mathematically. If a function is so difficult that we can’t 
easily find the minimum using algebra, we can use this method instead. Sure it might not give 
us the exact answer because we’re using steps to approach an answer, improving our position 
bit by bit. But that is better than not having an answer at all. Anyway, we can keep refining the 
answer with ever smaller steps towards the actual minimum, until we’re happy with the accuracy 
we’ve achieved.  
 
What’s the link between this really cool gradient descent method and neural networks? Well, if 
the complex difficult function is the error of the network, then going downhill to find the minimum 
means we’re minimising the error. We’re improving the network’s output. That’s what we want!  
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Let’s look at this gradient descent idea with a super simple example so we can understand it 
properly.  
 
The following graph shows a simple function y = (x-1)2 + 1. If this was a function where y was 
the error, we would want to find the x which minimises it. For a moment, pretend this wasn’t an 
easy function but instead a complex difficult one.  

 
 
To do gradient descent we have to start somewhere. The graph shows our randomly chosen 
starting point. Like the hill climber, we look around the place we’re standing and see which 
direction is downwards. The slope is marked on the graph and in this case is a negative 
gradient. We want to follow the downward direction so we move along x to the right. That is, we 
increase x a little. That’s our hill climber’s first step. You can see that we’ve improved our 
position and moved closer to the actual minimum.  
 
Let’s imagine we started somewhere else, as shown in the next graph. 
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This time, the slope beneath our feet is positive, so we move to the left. That is, we decrease x 
a little. Again you can see we’ve improved our position by moving closer to the actual true 
minimum. We can keep doing this until our improvements are so small that we can be satisfied 
that we’ve arrived at the minimum.  
 
A necessary refinement is to change the size of the steps we take to avoid overshooting the 
minimum and forever bouncing around it. You can imagine that if we’ve arrived 0.5 metres from 
the true minimum but can only take 2 metre steps then we’re going to keep missing the 
minimum as every step we take in the direction of the minimum will overshoot. If we moderate 
the step size so it is proportionate to the size of the gradient then when we are close we’ll take 
smaller steps. This assumes that as we get closer to a minimum the slope does indeed get 
shallower. That’s not a bad assumption at all for most smooth continuous functions. It wouldn’t 
be a good assumption for crazy zig-zaggy functions with jumps and gaps, which 
mathematicians call discontinuities. 
 
The following illustrates this idea of moderating step size as the function gradient gets smaller, 
which is a good indicator of how close we are to a minimum. 
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By the way, did you notice that we increase x in the opposite direction to the gradient? A 
positive gradient means we reduce x. A negative gradient means we increase x. The graphs 
make this clear, but it is easy to forget and get it the wrong way around. 
 
When we did this gradient descent, we didn’t work out the true minimum using algebra because 
we pretended the function y = (x-1)2 + 1 was too complex and difficult. Even if we couldn’t work 
out the slope exactly using mathematical precision, we could estimate it, and you can see this 
would still work quite well in moving us in the correct general direction. 
 
This method really shines when we have functions of many parameters. So not just y depending 
on x, but maybe y depending on a, b, c, d, e and f. Remember the output function, and 
therefore the error function, of a neural network depends on many many weight parameters. 
Often hundreds of the them! 
 
The following again illustrates gradient descent but with a slightly more complex function that 
depends on 2 parameters. This can be represented in 3 dimensions with the height representing 
the value of the function. 
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You may be looking at that 3-dimensional surface and wondering whether gradient descent 
ends up in that other valley also shown at the right. In fact, thinking more generally, doesn’t 
gradient descent sometimes get stuck in the wrong valley, because some complex functions will 
have many valleys? What’s the wrong valley? It’s a valley which isn’t the lowest. The answer to 
this is yes, that can happen.  
 
To avoid ending up in the wrong valley, or function minimum, we train neural networks several 
times starting from different points on the hill to ensure we don’t always ending up in the wrong 
valley. Different starting points means choosing different starting parameters, and in the case of 
neural networks this means choosing different starting link weights. 
 
The following illustrates three different goes at gradient descent, with one of them ending up 
trapped in the wrong valley.  
 

 
 
Let’s pause and collect our thoughts. 
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Key Points: 
 

● Gradient descent is a really good way of working out the minimum of a function, and 
it really works well when that function is so complex and difficult that we couldn’t easily 
work it out mathematically using algebra.  

 
● What’s more, the method still works well when there are many parameters, something 

that causes other methods to fail or become impractical.  
 

● This method is also resilient to imperfections in the data, we don’t go wildly wrong if 
the function isn’t quite perfectly described or we accidentally take a wrong step 
occasionally.  

 
 

 
 
The output of a neural network is a complex difficult function with many parameters, the link 
weights, which influence its output. So we can use gradient descent to work out the right 
weights? Yes, as long as we pick the right error function. 
 
The output function of a neural network itself isn’t an error function. But we know we can turn it 
into one easily, because the error is the difference between the target training values and the 
actual output values.  
 
There’s something to watch out for here. Look at the following table of training and actual values 
for three output nodes, together with candidates for an error function. 
 
 

Network 
Output 

Target 
Output 

Error 
 

(target - actual) 

Error 
 

|target - actual| 

Error 
 

(target - actual)2 

0.4 0.5 0.1 0.1 0.01 

0.8 0.7 -0.1 0.1 0.01 

1.0 1.0 0 0 0 

Sum 0 0.2 0.02 
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The first candidate for an error function is simply the (target - actual). That seems reasonable 
enough, right? Well if you look at the sum over the nodes to get an overall figure for how well 
the network is trained, you’ll see the sum is zero!  
 
What happened? Clearly the network isn’t perfectly trained because the first two node outputs 
are different to the target values. The sum of zero suggests there is no error. This happens 
because the positive and negative errors cancel each other out. Even if they didn’t cancel out 
completely, you can see this is a bad measure of error. 
 
Let’s correct this by taking the absolute value of the difference. That means ignoring the sign, 
and is written |target - actual|. That could work, because nothing can ever cancel out. The 
reason this isn’t popular is because the slope isn’t continuous near the minimum and this makes 
gradient descent not work so well, because we can bounce around the V-shaped valley that this 
error function has. The slope doesn’t get smaller closer to the minimum, so our steps don’t get 
smaller, which means they risk overshooting. 
 
The third option is to take the square of the difference (target - actual)2. There are several 
reasons why we prefer this third one over the second one, including the following: 
 

● The algebra needed to work out the slope for gradient descent is easy enough with this 
squared error.  

 
● The error function is smooth and continuous making gradient descent work well - there 

are no gaps or abrupt jumps. 
 

● The gradient gets smaller nearer the minimum, meaning the risk of overshooting the 
objective gets smaller if we use it to moderate the step sizes. 

 
Is there a fourth option? Yes, you can construct all kind of complicated and interesting cost 
functions. Some don’t work well at all, some work well for particular kinds of problems, and 
some do work but aren’t worth the extra complexity. 
 
Right, we’re on the final lap now! 
 
To do gradient descent, we now need to work out the slope of the error function with respect to 
the weights. This requires calculus. You may already be familiar with calculus, but if you’re not, 
or just need a reminder, the Appendix contains a gentle introduction. Calculus is simply a 
mathematically precise way of working out how something changes when something else does. 
For example, how the length of a spring changes as the force used to stretch it changes. Here 
we’re interested in how the error function depends on the link weights inside a neural network. 
Another way of asking this is - “how sensitive is the error is to changes in the link weights?” 
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Let’s start with a picture because that always helps keep us grounded in what we’re trying to 
achieve. 
 

 
 
The graph is just like the one we saw before to emphasise that we’re not doing anything 
different. This time the function we’re trying to minimise is the neural network’s error. The 
parameter we’re trying to refine is a network link weight. In this simple example we’ve only 
shown one weight, but we know neural networks will have many more. 
 
The next diagram shows two link weights, and this time the error function is a 3 dimensional 
surface which varies as the two link weights vary. You can see we’re trying to minimise the error 
which is now more like a mountainous landscape with a valley. 
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It’s harder to visualise that error surface as a function of many more parameters, but the idea to 
use gradient descent to find the minimum is still the same. 
 
Let’s write out mathematically what we want. 
 

 
 
That is, how does the error E change as the weight wjk changes. That’s the slope of the error 
function that we want to descend towards the minimum.  
 
Before we unpack that expression, let’s focus for the moment only on the link weights between 
the hidden and the final output layers. The following diagram shows this area of interest 
highlighted. We’ll come back to the link weights between the input and hidden layers later. 
 

 
 
We’ll keep referring back to this diagram to make sure we don’t forget what each symbol really 
means as we do the calculus. Don’t be put off by it, the steps aren’t difficult and will be 
explained, and all of the concepts needed have already been covered earlier. 
 
First, let’s expand that error function, which is the sum of the differences between the target and 
actual values squared, and where that sum is over all the n output nodes. 
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All we’ve done here is write out what the error function E actually is.  
 
We can simplify this straight away by noticing that the output at a node n, which is on, only 
depends on the links that connect to it. That means for a node k, the output ok only depends on 
weights wjk, because those weights are for links into node k.  
 
Another way of looking at this is that the output of a node k does not depend on weights wjb, 
where b does not equal k, because there is no link connecting them. The weight wjb is for a link 
connecting to output node b not k. 
 
This means we can remove all the on from that sum except the one that the weight wjk links to, 
that is ok. This removes that pesky sum totally! A nice trick worth keeping in your back pocket. 
 
If you’ve had your coffee, you may have realised this means the error function didn’t need to 
sum over all the output nodes in the first place. We’ve seen the reason is that the output of a 
node only depends on the connected links and hence their weights. This is often glossed over in 
many texts which simply state the error function without explaining it. 
 
Anyway, we have a simpler expression. 
 

 
 
Now, we’ll do a bit of calculus. Remember, you can refer to the Appendix if you’re unfamiliar 
with differentiation.  
 
That tk part is a constant, and so doesn’t vary as wjk varies. That is tk isn’t a function of wjk. If 
you think about it, it would be really strange of the truth examples which provide the target 
values did change depending on the weights! That leaves the ok part which we know does 
depend on wjk because the weights are used to feed forward the signal to become the outputs 
ok.  
 
We’ll use the chain rule to break apart this differentiation task into more manageable pieces. 
Again refer to the Appendix for an introduction to the chain rule.  
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Now we can attack each simpler bit in turn. The first bit is easy as we’re taking a simple 
derivative of a squared function. This gives us the following. 
 

 
 
The second bit needs a bit more thought but not too much. That ok is the output of the node k 
which, if you remember, is the sigmoid function applied to the weighted sum of the connected 
incoming signals. So let’s write that out to make it clear. 
 

 
 
That oj is the output from the previous hidden layer node, not the output from the final layer ok. 
 
How do we differentiate the sigmoid function? We could do it the long hard way, using the 
fundamental ideas in the Appendix, but others have already done that work. We can just use the 
well known answer, just like mathematicians all over the world do every day.  
 

 
 
Some functions turn into horrible expressions when you differentiate them. This sigmoid has a 
nice simple and easy to use result. It’s one of the reasons the sigmoid is popular for activation 
functions in neural networks. 
 
So let’s apply this cool result to get the following. 
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What’s that extra last bit? It’s the chain rule again applied to the sigmoid derivative because the 
expression inside the sigmoid() function also needs to be differentiated with respect to wjk. That 
too is easy and the answer is simply oj. 
 
Before we write down the final answer, let’s get rid of that 2 at the front. We can do that because 
we’re only interested in the direction of the slope of the error function so we can descend it. It 
doesn’t matter if there is a constant factor of 2, 3 or even 100 in front of that expression, as long 
we’re consistent about which one we stick to. So let’s get rid of it to keep things simple. 
 
Here’s the final answer we’ve been working towards, the one that describes the slope of the 
error function so we can adjust the weight wjk. 
 

 
 
Phew! We did it! 
 
That’s the magic expression we’ve been looking for. The key to training neural networks. 
 
It’s worth a second look, and the colour coding helps show each part. The first part is simply the 
(target - actual) error we know so well. The sum expression inside the sigmoids is simply the 
signal into the final layer node, we could have called it ik to make is look simpler. It’s just the 
signal into a node before the activation squashing function is applied. That last part is the output 
from the previous hidden layer node j. It is worth viewing these expressions in these terms 
because you get a feel for what physically is involved in that slope, and ultimately the refinement 
of the weights. 
 
That’s a fantastic result and we should be really pleased with ourselves. Many people find 
getting to this point really hard. 
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One almost final bit of work to do. That expression we slaved over is for refining the weights 
between the hidden and output layers. We now need to finish the job and find a similar error 
slope for the weights between the input and hidden layers. 
 
We could do loads of algebra again but we don’t have to. We simply use that physical 
interpretation we just did and rebuild an expression for the new set of weights we’re interested 
in. So this time,  
 

● The first part which was the (target - actual) error now becomes the recombined 
back-propagated error out of the hidden nodes, just as we saw above. Let’s call that ej. 

 
● The sigmoid parts can stay the same, but the sum expressions inside refer to the 

preceding layers, so the sum is over all the inputs moderated by the weights into a 
hidden node j. We could call this ij.  

 
● The last part is now the output of the first layer of nodes oi, which happen to be the input 

signals.  
 
This nifty way of avoiding lots of work, is simply taking advantage of the symmetry in the 
problem to construct a new expression. We say it’s simple but it is a very powerful technique, 
wielded by some of the most big-brained mathematicians and scientists. You can certainly 
impress your mates with this! 
 
So the second part of the final answer we’ve been striving towards is as follows, the slope of the 
error function for the weights between the input and hidden layers. 
 

 
 
We’ve now got all these crucial magic expressions for the slope, we can use them to update the 
weights after each training example as follows. 
 
Remember the weights are changed in a direction opposite to the gradient, as we saw clearly in 
the diagrams earlier. We also moderate the change by using a learning factor, which we can 
tune for a particular problem. We saw this too when we developed linear classifiers as a way to 
avoid being pulled too far wrong by bad training examples, but also to ensure the weights don’t 
bounce around a minimum by constantly overshooting it. Let’s say this in mathematical form. 

 
- 97 - 



 

 
 
The updated weight wjk is the old weight adjusted by the negative of the error slope we just 
worked out. It’s negative because we want to increase the weight if we have a positive slope, 
and decrease it if we have a negative slope, as we saw earlier. The symbol alpha , is a factor 
which moderates the strength of these changes to make sure we don’t overshoot. It’s often 
called a learning rate. 
 
This expression applies to the weights between the input and hidden layers too, not just to those 
between the hidden and output layers. The difference will be the error gradient, for which we 
have the two expressions above. 
 
Before we can leave this, we need to see what these calculations look like if we try to do them 
as matrix multiplications. To help us, we’ll do what we did before, which is to write out what each 
element of the weight change matrix should be.  
 

 
 
I’ve left out the learning rate  as that’s just a constant and doesn’t really change how we 
organise our matrix multiplication. 
 
The matrix of weight changes contains values which will adjust the weight wj,k linking node j in 
one layer with the node k in the next. You can see that first bit of the expression uses values 
from the next layer (node k), and the last bit uses values from the previous layer (node j).  
 
You might need to stare at the picture above for a while to see that the last part, the horizontal 
matrix with only a single row, is the transpose of the outputs from the previous layer Oj. The 
colour coding shows that the dot product is the right way around. If you’re not sure, try writing 
out the dot product with these the other way around and you’ll see it doesn’t work.  

 
- 98 - 



 
So, the matrix form of these weight update matrices, is as follow, ready for us to implement in a 
computer programming language that can work with matrices efficiently. 
 

 
 
That’s it! Job done.  
 
 

 
Key Points: 
 

● A neural network’s error is a function of the internal link weights.  
 

● Improving a neural network means reducing this error - by changing those weights. 
 

● Choosing the right weights directly is too difficult. An alternative approach is to 
iteratively improve the weights by descending the error function, taking small steps. 
Each step is taken in the direction of the greatest downward slope from your current 
position. This is called gradient descent. 

 
● That error slope is possible to calculate using calculus that isn’t too difficult. 

 
 

 
 
Weight Update Worked Example 
Let’s work through a couple of examples with numbers, just to see this weight update method 
working. 
 
The following network is the one we worked with before, but this time we’ve added example 
output values from the first hidden node oj=1 and the second hidden node oj=2. These are just 
made up numbers to illustrate the method and aren’t worked out properly by feeding forward 
signals from the input layer. 
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We want to update the weight w11 between the hidden and output layers, which currently has 
the value 2.0.  
 
Let’s write out the error slope again. 
 

 
 
Let’s do this bit by bit: 
 

● The first bit ( tk - ok ) is the error e1 = 1.5, just as we saw before.  
 

● The sum inside the sigmoid functions Σjwjkoj is (2.0 * 0.4) + (4.0 * 0.5) = 2.8. 
 

● The sigmoid 1/(1 + e-2.8) is then 0.943. That middle expression is then 0.943 * (1 - 0.943) 
= 0.054. 

 
● The last part is simply oj which is oj=1 because we’re interested in the weight w11 where j 

= 1. Here it is simply 0.4. 
 
Multiplying all these three bits together and not forgetting the minus sign at the start gives us 
-0.06048.  
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If we have a learning rate of 0.1 that give is a change of - (0.1 * - 0.06048) = + 0.006. So the 
new w11 is the original 2.0 plus 0.006 = 2.006.  
 
This is quite a small change, but over many hundreds or thousands of iterations the weights will 
eventually settle down to a configuration so that the well trained neural network produces 
outputs that reflect the training examples. 
 
 
Preparing Data 
In this section we’re going to consider how we might best prepare the training data, prepare the 
initial random weights, and even design the outputs to give the training process a good chance 
of working. 
 
Yes, you read that right! Not all attempts at using neural networks will work well, for many 
reasons. Some of those reasons can be addressed by thinking about the training data, the initial 
weights, and designing a good output scheme. Let’s look at each in turn. 
 
Inputs 
Have a look at the diagram below of the sigmoid activation function. You can see that if the 
inputs are large, the activation function gets very flat.  
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A very flat activation function is problematic because we use the gradient to learn new weights. 
Look back at that expression for the weight changes. It depends on the gradient of the activation 
function. A tiny gradient means we’ve limited the ability to learn. This is called saturating a 
neural network. That means we should try to keep the inputs small. 
 
Interestingly, that expression also depends on the incoming signal (oj) so we shouldn’t make it 
too small either. Very very tiny values can be problematic too because computers can lose 
accuracy when dealing very very small or very very large numbers.  
 
A good recommendation is to rescale inputs into the range 0.0 to 1.0. Some will add a small 
offset to the inputs, like 0.01, just to avoid having zero inputs which are troublesome because 
they kill the learning ability by zeroing the weight update expression by setting that oj = 0. 
 
Outputs 
The outputs of a neural network are the signals that pop out of the last layer of nodes. If we’re 
using an activation function that can’t produce a value above 1.0 then it would be silly to try to 
set larger values as training targets. Remember that the logistic function doesn’t even get to 1.0, 
it just gets ever closer to it. Mathematicians call this asymptotically approaching 1.0.  
 
The following diagram makes clear that output values larger than 1.0 and below zero are simply 
not possible from the logistic activation function. 
 

 
 
If we do set target values in these inaccessible forbidden ranges, the network training will drive 
ever larger weights in an attempt to produce larger and larger outputs which can never actually 
be produced by the activation function. We know that’s bad as that saturates the network. 
 
So we should rescale our target values to match the outputs possible from the activation 
function, taking care to avoid the values which are never really reached. 
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It is common to to use a range of 0.0 to 1.0, but some do use a range of 0.01 to 0.99 because 
both 0.0 and 1.0 are impossible targets and risk driving overly large weights. 
 
Random Initial Weights 
The same argument applies here as with the inputs and outputs. We should avoid large initial 
weights because they cause large signals into an activation function, leading to the saturation 
we just talked about, and the reduced ability to learn better weights.  
 
We could choose initial weights randomly and uniformly from a range -1.0 to +1.0. That would 
be a much better idea than using a very large range, say -1000 to +1000. 
 
Can we do better? Probably. 
 
Mathematicians and computer scientists have done the maths to work out a rule of thumb for 
setting the random initial weights given specific shapes of networks and with specific activation 
functions. That’s a lot of “specifics”! Let’s carry on anyway. 
 
We won’t go into the details of that working out but the core idea is that if we have many signals 
into a node, which we do in a neural network, and that these signals are already well behaved 
and not too large or crazily distributed, the weights should support keeping those signals well 
behaved as they are combined and the activation function applied. In other words, we don’t 
want the weights to undermine the effort we put into carefully scaling the input signals. The rule 
of thumb these mathematicians arrive at is that the weights are initialised randomly sampling 
from a range that is roughly the inverse of the square root of the number of links into a node. So 
if each node has 3 links into it, the initial weights should be in the range 1/(√3) = 0.577. If each 
node has 100 incoming links, the weights should be in the range 1/(√100) = 0.1. 
 
Intuitively this make sense. Some overly large initial weights would bias the activation function in 
a biased direction, and very large weights would saturate the activation functions. And the more 
links we have into a node, the more signals are being added together. So a rule of thumb that 
reduces the weight range if there are more links makes sense. 
 
If your are already familiar with the idea of sampling from probability distributions, this rule of 
thumb is actually about sampling from a normal distribution with mean zero and a standard 
deviation which is the inverse of the square root of the number of links into a node. But let’s not 
worry too much about getting this precisely right because that rule of thumb assumes quite a 
few things which may not be true, such as an activation function like the alternative tanh() and a 
specific distribution of the input signals. 
 
The following diagram summarises visually both the simple approach, and the more 
sophisticated approach with a normal distribution. 
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Whatever you do, don’t set the initial weights the same constant value, especially no zero. That 
would be bad! 
 
It would be bad because each node in the network would receive the same signal value, and the 
output out of each output node would be the same. If we then proceeded to update the weights 
in the network by back propagating the error, the error would have to be divided equally. You’ll 
remember the error is split in proportion to the weights. That would lead to equal weight updates 
leading again to another set of equal valued weights. This symmetry is bad because if the 
properly trained network should have unequal weights (extremely likely for almost all problems) 
then you’d never get there.  
 
Zero weights are even worse because they kill the input signal. The weight update function, 
which depends on the incoming signals, is zeroed. That kills the ability to update the weights 
completely. 
 
The are many other things you can do to refine how you prepare your input data, how you set 
your weights, and how you organise your desired outputs. For this guide, the above ideas are 
both easy enough to understand and also have a decent effect, so we’ll stop there. 
 
 

 
Key Points: 
 

● Neural networks don’t work well if the input, output and initial weight data is not 
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prepared to match the network design and the actual problem being solved. 
 

● A common problem is saturation - where large signals, sometimes driven by large 
weights, lead to signals that are at the very shallow slopes of the activation function. 
This reduces the ability to learn better weights. 

 
● Another problem is zero value signals or weights. These also kill the ability to learn 

better weights. 
 

● The internal link weights should be random and small, avoiding zero. Some will use 
more sophisticated rules, for example, reducing the size of these weights if there are 
more links into a node. 

 
● Inputs should be scaled to be small, but not zero. A common range is 0.01 to 0.99, or 

-1.0 to +1.0, depending on which better matches the problem. 
 

● Outputs should be within the range of what the activation function can produce. 
Values below 0 or above 1, inclusive, are impossible for the logistic sigmoid. Setting 
training targets outside the valid range will drive ever larger weights, leading to 
saturation. A good range is 0.01 to 0.99. 
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Part 2 - DIY with Python 
 
 

“To really understand something, 
you need to make it yourself.” 

 
“Start small … then grow” 
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In this section we’ll make our own neural network. 
 
We’ll use a computer because, as you know from earlier, there will be many thousands of 
calculations to do. Computers are good at doing many calculations very quickly, without getting 
bored or losing accuracy. 
 
We will tell a computer what to do using instructions that it can understand. Computers find 
human languages like English, French or Spanish hard to understand precisely and without 
ambiguity. In fact humans have trouble with precision and ambiguity when communicating with 
each other, so computers have very little hope of doing better! 
 
 
Python 
We’ll be using a computer language called Python. Python is a good language to start with 
because it is easy to learn. It’s also easy to read and understand someone else’s Python 
instructions. It is also very popular, and used in many different areas, including scientific 
research, teaching, global scale infrastructures, as well as data analytics and artificial 
intelligence. Python is increasingly being taught in schools, and the extremely popular 
Raspberry Pi has made Python accessible to even more people including children and students.  
 
The Appendix includes a guide to setting up a Raspberry Pi Zero to do all the work we’ve 
covered in this guide to make your own neural network with Python. A Raspberry Pi Zero is 
especially inexpensive small computer, and currently costs about £4 or $5. That’s not a typo - it 
really does cost £4. 
 
There is a lot that you can learn about Python, or any other computer language, but here we’ll 
remain focussed on making our own neural network, and only learn just enough Python to 
achieve this.  
 
 
Interactive Python = IPython 
Rather than go through the error-prone steps of setting up Python for your computer, and all the 
various extensions that help do mathematics and plot images, we’re going to use a 
prepackaged solution, called IPython. 
 
IPython contains the Python programming language and several common numerical and data 
plotting extensions, including the ones we’ll need. IPython also has the advantage of presenting 
interactive notebooks, which behave much like pen and paper notepads, ideal for trying out 
ideas and seeing the results, and then changing some of your ideas again, easily and without 
fuss. We avoid worrying about program files, interpreters and libraries, which can distract us 
from what we’re actually trying to do, especially when they don’t work as expected. 
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The ipython.org site gives you some options for where you can get prepackaged IPython. I’m 
using the Anaconda package from www.continuum.io/downloads, shown below.  
 

 
 
That site may have changed it’s appearance since I took that snapshot, so don’t be put off. First 
go the section for your computer, which might be a Windows computer, or an Apple Mac with 
OS X, or a Linux computer. Under the section for your computer, make sure you get the Python 
3.5 version and not the 2.7.  
 
Adoption of Python 3 is gathering pace, and is the future. Python 2.7 is well established but we 
need to move to the future and start using Python 3 whenever we can, especially for new 
projects. Most computers have  “64-bit” brains so make sure you get that version. Only 
computers roughly more than 10 years old are likely to need the legacy “32-bit” version. 
 
Follow the instructions on that site to get it installed on your computer. Installing IPython should 
be really easy, because it’s designed to be easy, and shouldn’t cause any problems.  
 
 
A Very Gentle Start with Python 
We’ll assume you now have access to IPython, having followed the instructions for getting it 
installed. 
 
Notebooks 
Once we’ve fired it up and clicked “New Notebook”, we’re presented with an empty notebook 
like the following. 
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The notebook is interactive, meaning it waits for you to ask it to do something, does it, and then 
presents back your answer, and waits again for your next instruction or question. It’s like a robot 
butler with a talent for arithmetic that never gets tired. 

If you have want to do something that is even mildly complicated, it makes sense to break it
down into sections. This makes it easy to organise your thinking, and also find which part of the 
big project went wrong. For IPython, these sections are called cells. The above IPython 
notebook has an initial empty cell, and you may be able to see the typing caret blinking, waiting
for you to type your instructions into it. 

Lets instruct the computer! Let’s ask it to multiply two numbers, say 2 times 3. Let’s type “2*3” 
into the cell and click the run cell button that looks like a audio play button. Don’t include the 
speech marks. The computer should quickly work out what you mean by this, and present the 
result back to you as follows. 

You can see the answer “6” is correctly presented. We’ve just issued our first instruction to a 
computer and successfully received a correct result. Our first computer program! 

Don’t be distracted by IPython labelling your question as “In [1]” and its answer as “Out [1]”. 
That’s just it’s way of reminding you what you asked (input) and and what it replied with (output). 
The numbers are the sequence you asked and it responded, useful for keeping track if you find 
yourself jumping around your notebook adjusting and reissuing your instructions. 
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Simple Python 
We really meant it when we said Python was an easy computer language. In the next ready cell, 
labelled “In [ ]”, type the following code and click play. The word code is widely used to refer to
instructions written in a computer language. If you find that moving the pointer to click the play
button is too cumbersome, like I do, you can use the keyboard shortcut ctrl-enter, instead. 

print(“Hello World!”) 

You should get a response which simply prints the phrase “Hello World!” as follows. 

You can see that issuing the second instruction to print “Hello World!” didn’t remove the 
previous cell with its instruction and output answer. This is useful when slowly building up a 
solution of several parts.  

Now lets see what’s going on with the following code which introduces a key idea. Enter and run 
it in a new cell. If there is no new empty cell, click the button that looks like a plus sign labelled 
“Insert Cell Below”.

x = 10 
print(x)
print(x+5) 

y = x+7 
print(y)

print(z)

The first line “x = 10” looks like a mathematical statement which says x is 10. In Python this 
means that x is set to 10, that is, the value 10 is placed in an virtual box called x. It’s as simple 
as the following diagram shows.
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That 10 stays there until further notice. We shouldn’t be surprised by the “print(x)” because 
we used the print instruction before. It should print the value of x, which is “10”.  Why doesn’t it 
just print the letter “x”? Because Python is always eager to evaluate whatever it can, and x can 
be evaluated to the value 10 so it prints that.  The next line “print (x+5)” evaluates x+5, which is 
10+5 or 15, so we expect it to print “15”.  
 
The next bit “y = x+7” again shouldn’t be difficult you work out if we follow this idea that Python 
evaluates whatever it can. We’ve told it to assign a value to a new box labelled y, but what 
value? The expression is x+7, which is 10+7, or 17. So y holds the value 17, and the next line 
should print it.  
 
What happens with the line “print(z)” when we haven’t assigned a value to z like we have with x 
and y? We get an error message which is polite and tells us about the error of our ways, trying 
to be helpful as possible so we can fix it. I have to say, most computer languages have error 
messages which try to be helpful but don’t always succeed.  
 
The following shows the results of the above code, including the helpful polite error message, 
“name z is not defined”.  
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These boxes with labels like x and y, which hold values like 10 and 17, are called variables.
Variables in computer languages are used to make a set of instructions generic, just like 
mathematicians use expressions like “x” and “y” to make general statements.  

Automating Work 
Computers are great for doing similar tasks many times - they don’t mind and they’re very quick 
compared to humans with calculators! 

Let’s see if we can get a computer to print the first ten squared numbers, starting with 0 
squared, 1 squared, then 2 squared and so on. We expect to see an output of something like 0, 
1, 4, 9, 16, 25, and so on.  

We could just do the calculation ourselves, and have a set of instructions like “print (0)”, “print
(1)”, “print (4)”, and so on. This would work but we would have failed to get the computer to do 
the calculation for us. More than that, we would have missed the opportunity to have a generic 
set of instruction to print the squares of numbers up to any specified value. To do this we need 
to pick up a few more new ideas, so we’ll take it gently.

Issue the following code into the next ready cell and run it.

list( range(10) ) 
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You should get a list of ten numbers, from 0 up to 9.  This is great because we got the computer 
to do the work to create the list, we didn’t have to do it ourselves. We are the master and the 
computer is our servant! 

You may have been surprised that the list was from 0 to 9, and not from 1 to 10. This is because
many computer related things start with 0 and not 1. It’s tripped me up many times when I
assumed a computer list started with 1 and not 0. Creating ordered lists are useful to keep count
when performing calculations, or indeed applying iterative functions, many times.

You may have noticed we missed out the “print” keyword, which we used when we printed the
phrase “Hello World!”, but again didn’t when we evaluated 2*3. Using the “print” keyword can be
optional when we’re working with Python in an interactive way because it knows we want to see
the result of the instructions we issued.

A very common way to get computers to do things repeatedly is by using code structures called
loops. The word loop does give you the right impression of something going round, and round
potentially endlessly. Rather than define a loop, it’s easiest to see a simple one. Enter and run
the following code in a new cell.

for n in range(10):
print(n)
pass

print(“done”)

There are three new things here so let’s go through them. The first line has the “range(10)” that
we saw before. This creates a list of numbers from 0 to 9, as we saw before.

The “for n in” is the bit that creates a loop, and in this case it does something for every number
in the list, and keeps count by assigning the current value to the variable n. We saw variables
earlier and this is just like assigning n=0 during the first pass of the loop, then n=1, then n=2,
until n=9 which is the last item in the list.

The next line “print(n)” shouldn’t surprise us by simply printing the value of n. We expect all the
numbers in the list to be printed. But notice the indent before “print(n)”. This is important in
Python as indents are used meaningfully to show which instructions are subservient to others, in
this case the loop created by “for n in ...“. The “pass” instruction signals the end of the loop, and
the next line is back at normal indentation and not part of the loop. This means we only expect
“done” to be printed once, and not ten times. The following shows the output, and it is as we
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expected.

It should be clear now that we can print the squares by printing “n*n”. In fact we can make the
output more helpful by printing phrases like “The square of 3 is 9”. The following code shows
this change to the print instruction repeated inside the loop. Note how the variables are not
inside quotes and are therefore evaluated.

for n in range(10):
print("The square of", n, "is", n*n)
pass

print("done")

The result is shown as follows.

 

This is already quite powerful! We can get the computer to potentially do a lot of work very 
quickly with just a very short set of instructions. We could easily make the number of loop 
iterations much larger by using range(50) or even range(1000) if we wanted. Try it! 

Comments
Before we discover more wild and wonderful Python commands, have a look at the following 
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simple code. 
 

# the following prints out the cube of 2 
print(2**3) 

 
The first line begins with a hash symbol #. Python ignores any lines beginning with a hash. 
Rather than being useless, we can use such lines to place helpful comments into the code to 
make it clearer for other readers, or even ourselves if we came back to the code at a later time.  
 
Trust me, you’ll be thankful you commented your code, especially the more complex or less 
obvious bits of code. The number of times I’ve tried to decode my own code, asking myself 
“what was I thinking …” 
 
 
Functions 
We spent a lot of time earlier in part 1 of the guide working with mathematical functions. We 
thought of these as machines which take input, do some work, and pop out the result. And 
those functions stood in their own right, and could be used again and again.  
 
Many computer languages, Python included, make it easy to create reusable computer 
instructions. Like mathematical functions, these reusable snippets of code stand on their own if 
you define them sufficiently well, and allow you to write shorter more elegant code. Why shorter 
code? Because invoking a function by its name many times is better than writing out all the 
function code many times. 
 
And what do we mean by “sufficiently well defined”? It means being clear about what kinds of 
input a function expects, and what kind of output it produces. Some functions will only take 
numbers as input, so you can’t supply them with a word made up of letters. 
 
Again, the best way to understand this simple idea of a function is to see a simple one and play 
with it. Enter the following code and run it. 
 

# function that takes 2 numbers as input 
# and outputs their average 
def avg(x,y): 
    print("first input is", x) 
    print("second input is", y)  
    a = (x + y) / 2.0 
    print("average is", a) 
    return a 

 
Let’s talk about what we’ve done here. The first two lines starting with # are ignored by Python 
but for us can be used as comments for future readers. The next bit “def avg(x,y)” tells Python 
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we are about define a new reusable function. That’s the “def” keyword. The “avg” bit is the name 
we’ve given it. It could have been called “banana” or “pluto” but it makes sense to use names 
that remind us what the function actually does. The bits in brackets (x,y) tells Python that this 
function takes two inputs, to be called x and y inside the forthcoming definition of the function. 
Some computer languages make you say what kind of objects these are, but Python doesn’t do 
this, it just complains politely later when you try to abuse a variable, like trying to use a word as 
if it was a number, or other such insanity.  
 
Now that we’ve signalled to Python that we’re about to define a function, we need to actually tell 
it what the function is to do. This definition of the function is indented, as shown in the code 
above. Some languages use lots of brackets to make it clear which instructions belong to which 
parts of a program, but the Python designers felt that lots of brackets weren’t easy on the eye, 
and that indentation made understanding the structure of a program instantly visual and easier. 
Opinions are divided because people get caught out by such indentation, but I love it! It’s one of 
the best human-friendly ideas to come out of the sometimes geeky world of computer 
programming! 
 
The definition of the avg(x,y) function is easy to understand as it uses only things we’ve seen 
already. It prints out the first and second numbers which the function gets when it is invoked. 
Printing these out isn’t necessary to work out the average at all, but we’ve done it to make it 
really clear what is happening inside the function. The next bit calculates (x+y)/2.0 and assigns 
the value to the variable named a. We again print the average just to help us see what’s going 
on in the code. The last statement says “return a”. This is is the end of the function and tells 
Python what to throw out as the functions output, just like machines we considered earlier.  
 
When we ran this code, it didn’t seem to do anything. There were no numbers produced. That’s 
because we only defined the function, but haven’t used it yet. What has actually happened is 
that Python has noted this function and will keep it ready for when we want to use it. 
 
In the next cell enter “avg(2,4)” to invoke this function with the inputs 2 and 4. By the way, 
invoking a function is called calling a function in the world of computer programming. The 
output should be what we expect, with the function printing a statement about the two input 
values and the average it calculated. You’ll also see the answer on it’s own, because calling the 
function in an interactive Python sessions prints out the returned value. The following shows the 
function definition and the results of calling it with avg(2,4) and also bigger values (200, 301). 
Have a play and experiment with your own inputs. 
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You may have noticed that the function code which calculates the average divides the sum of
the two inputs by 2.0 and not just 2. Why is this? Well this is a peculiarity of Python which I don’t
like. If we used just “2” the result would be rounded down to the nearest whole number, because
Python considers just “2” as an integer. This would be fine for avg(2,4) because 6/2 is 3, a
whole number. But for avg(200,301) the average is 501/2 which should be 250.5 but would be
rounded down to 250. This is all just very silly I think, but worth thinking about if your own code
isn’t behaving quite right. Dividing by “2.0” tells Python we really want to stick with numbers that
can have fractional parts, and we don’t want it to round down to whole numbers.

Let’s take a step back and congratulate ourselves. We’ve defined a reusable function, one of
the most important and powerful elements of both mathematics and in computer programming.

We’ll use reusable functions when we code our own neural network. For example, it makes
sense to make a reusable function that does the sigmoid activation function calculation so we
can call on it many times.

Arrays
Arrays are just tables of values, and they come in really handy. Like tables, you refer to
particular cells according to the row and column number. If you think of spreadsheets, you’ll
know that cells are referred to in this way, B1 or C5 for example, and the values in those cells
can be used in calculations, C3+D7 for example.
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When we get to coding our neural network, we’ll use arrays to represent the matrices of input 
signals, weights and output signals too. And not just those, we’ll use them to represent the 
signals inside the neural networks as they feed forward, and also the errors as they propagate 
backwards. So let’s get familiar with them. Enter and run the following code. 
 
 

import numpy 
 
What does this do? The import command tells Python to bring additional powers from 
elsewhere, to add new tools to it’s belt. Sometimes these additional tools are part of Python but 
aren’t made immediately ready to use, to keep Python lean and mean, and only carry extra stuff 
if you intend to use it. Often these additional tools not core parts of Python, but are created by 
others as useful extras, contributed for everyone to use. Here we’ve imported an additional set 
of tools packaged into a module named numpy. Numpy is really popular, and contains some 
useful stuff, like arrays and an ability to do calculations with them.  
 
In the next cell, the following code. 
 
 

a = numpy.zeros( [3,2] ) 
print(a) 

 
This uses the imported numpy module to create an array of shape 3 by 2, with all the cells set to 
the value zero and assigns the whole thing to a variable named a. We then print a. We can see 
this array full of zeros in what looks like a table with 3 rows and 2 columns. 
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Now let’s modify the contents of this array and change some of those zeros to other values. The 
following code shows how you can refer to specific cells to overwrite them with new values. It’s 
just like referring to spreadsheet cells or street map grid references.  

a[0,0] = 1 
a[0,1] = 2 
a[1,0] = 9 
a[2,1] = 12 
print(a)

The first line updates the cell at row zero and column zero with the value 1, overwriting
whatever was there before. The other lines are similar updates, with a final printout with 
“print(a)”. The following shows us what the array looks like after these changes.  

Now that we know how to set the value of cells in an array, how do we look them up without 
printing out the entire array? We’ve been doing it already. We simply use the expressions like
a[1,2] or a[2,1] to refer to the content of these cells which we can print or assign to other 
variables. The code shows us doing just this. 

print(a[0,1]) 
v = a[1,0] 
print(v)
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You can see from the output that the first print instruction produced the value 2.0 which is what’s 
inside the cell at [0,1]. Next the value inside a[1,0] is assigned to the variable v and this variable 
is printed. We get the expected 9.0 printed out.

 

The column and row numbering starts from 0 and not 1. The top left is at [0,0] not [1,1]. This 
also means that the bottom right is at [2,1] not [3,2]. This catches me out sometimes because I
keep forgetting that many things in the computer world begin with 0 and not 1.If we tried to refer 
to a[3,2] we’d get an error message telling us we were trying to locate a cell which didn’t exist.
We’d get the same if we mixed up our columns and rows. Let’s try accessing a[0,2] which 
doesn’t exist just to see what error message is reported.  

Arrays, or matrices, will be useful for neural networks because we can simplify the instructions 
to do the many many calculations for feeding signals forward and errors backwards through a
network. We saw this in part 1 of this guide. 

Plotting arrays 
Just like large tables or lists of numbers, looking at large arrays isn’t that insightful. Visualising
them helps us quickly get an idea of the general meaning. One way of plotting 2-dimensional
arrays of numbers is think of them as flat 2-dimensional surfaces, coloured according to the 
value at each cell in the array. You can choose how you turn a value inside a cell into a colour.
You might choose to simply turn the value into a colour according to a colour scale, or you might 
colour everything white except values above a certain threshold which would be black.  

Let’s try plotting the small 3 by 2 array we created above.  

Before we can do this, we need to extend Python’s abilities to plot graphics. We do this by 
importing additional Python code that others have written. You can think of this as borrowing
food recipe books from your friend to add to your own bookshelf, so that your bookshelf now
has extra content enabling you to prepare more kinds of dishes than you could before.  
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The following shows how we import graphics plotting capability.  

import matplotlib.pyplot

The “matplotlib.pyplot” is the name of the new “recipe book” that we’re borrowing. You might
come across phrases like “import a module” or “import a library”. These are just the names 
given to the additional Python code you’re importing. If you get into Python you’ll often import 
additional capabilities to make your life easier by reusing other’s useful code. You might even
create your own useful code to share with others! 

One more thing, we need to be firm with IPython about plotting any graphics in the notebook, 
and not try to plot it in a separate external window. We issue this explicit order as follows: 

%matplotlib inline 

We’re ready to plot that array now. Enter and run the following code. 

matplotlib.pyplot.imshow(a, interpolation="nearest")

The instruction to create a plot is imshow(), and the first parameter is the array we want to plot. 
That last bit “interpolation” is there to tell Python not to try to blend the colours to make the plot
look smoother, which it does by default, trying to helpful. Let’s look at the output.

Exciting! Our first plot shows the 3 by 2 sized array as colours. You can see that the array cells 
which have the same value also have the same colour. Later we’ll be using this very same
imshow() instruction to visualise an array of values that we feed our neural network. 
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The IPython package has a very rich set of tools for visualising data. You should explore them 
to get a feel for the wide range of plots possible, and even try some of them. Even the imshow() 
instruction has many options for plotting for us to explore, such as using different colour 
palettes.  
 
Objects 
We’re going to look at one more Python idea called objects. Objects are similar to the reusable 
functions because we define them once and use them many times. But objects can do a lot 
more than simple functions can. 
 
The easiest way to understand objects is to see them in action, rather than talk loads about an 
abstract concept. Have a look at the following code.  
 

# class for a dog object 
class Dog: 
 
    # dogs can bark() 
    def bark(self): 
        print("woof!") 
        pass 
  
    pass 

 
Let’s start with what we’re familiar with first. You can see there is a function called bark() inside 
that code. It’s not difficult to see that if we called the function, we’d get “woof!” printed out. That’s 
easy enough. 
 
Let’s look around that familiar function definition now. You can see the class keyword, and a 
name “Dog” and a structure that looks like a function too. You can see the parallels with function 
definitions which also have a name. The difference is that with functions we use the “def” 
keyword to define them, but with object definitions we use the keyword “class”.  
 
Before we dive in and discuss what a class is, compared to an object, again have a look at 
some real but simple code that brings these abstract ideas to life. 
 

sizzles = Dog() 
sizzles.bark() 

 
You can see the first line creates a variable called sizzles, and it seems to come from what 
looks like a function call. In fact that Dog() is a special function that creates an instance of the 
Dog class. We can see now how to create things from class definitions. These things are called 
objects. We’ve created an object called sizzles from the Dog class definition - we can consider 
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this object to be a dog! 

The next line calls the bark() function on the sizzles object. This is half familiar because we’ve 
seen functions already. What’s less familiar is that we’re calling the bark() function as if it was a
part of the sizzles object. That’s because bark() is a function that all objects created from the 
Dog class have. It’s there to see in the definition of the Dog class.

Let’s say all that in simple terms. We created sizzles, a kind of Dog. That sizzles is an object,
created in the shape of a Dog class. Objects are instances of a class.  

The following shows what we have done so far, and also confirms that sizzles.bark() does
indeed output a “woof!” 

You might have spotted the “self” in the definition of the function as bark(self). This may seem 
odd, and it does to me. As much as I like Python, I don’t think it is perfect. The reason that “self” 
is there is so that when Python creates the function, it assigns it to the right object. I think this 
should be obvious because that bark() is inside the class definition so Python should know 
which objects to connect it to, but that’s just my opinion.  

Let’s see objects and classes being used more usefully. Have a look at the following code. 

sizzles = Dog() 
mutley = Dog() 

sizzles.bark() 
mutley.bark() 

Let’s run it and see what happens. 
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This is interesting! We are creating two objects called sizzles and mutley. The important thing to
realise is that they are both created from the same Dog() class definition. This is powerful! We
define what the objects should look like and how they should behave, and then we create real
instances of them.

That is the difference between classes and objects, one is a definition and one is a real
instance of that definition. A class is a cake recipe in a book, an object is a cake made with that
recipe. The following shows visually how objects are made from a class recipe.

 

What use are these objects made from a class? Why go to the trouble? It would have been
simpler to just print the word “woof!” without all that extra code. 

Well, you can see how it might be useful to have many objects all of the same kind, all made 
from the same template. It saves having to create each one separately in full. But the real 
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benefit comes from objects having data and functions all wrapped up neatly inside them. The 
benefit is to us human coders. It helps us more easily understand more complicated problems if 
bits of code are organised around objects to which they naturally belong. Dogs bark. Buttons 
click. Speakers emit sound. Printers print, or complain they’re out of paper. In many computer 
systems, buttons, speakers and printers are indeed represented as objects, whose functions 
you invoke. 
 
You’ll sometimes see these object functions called methods. We’ve already done this above, 
we added a bark() function to the Dog class and both the sizzles and mutley objects made from 
this class have a bark() method. You saw them both bark in the example! 
 
Neural networks take some input, do some calculations, and produce an output. We also know 
they can be trained. You can see that these actions, training and producing an answer, are 
natural functions of a neural network. That is, functions of a neural network object. You’ll also 
remember that neural networks have data inside them that naturally belongs there - the link 
weights. That’s why we’ll build our neural network as an object. 
 
For completeness, let’s see how we add data variables to a class, and some methods to view 
and change this data. Have a look at the following fresh class definition of a Dog class. There’s 
a few new things going on here so we’ll look at them one at a time. 
 

# class for a dog object 
class Dog: 
  
    # initialisation method with internal data 
    def __init__(self, petname, temp): 
        self.name = petname; 
        self.temperature = temp; 
  
    # get status 
    def status(self): 
        print("dog name is ", self.name) 
        print("dog temperature is ", self.temperature) 
        pass 
  
    # set temperature 
    def setTemperature(self,temp): 
        self.temperature = temp; 
        pass 
  
    # dogs can bark() 
    def bark(self): 
        print("woof!") 
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        pass 
  
    pass 

 
The first thing to notice is we have added three new functions to this Dog class. We already had 
the bark() function, now have new ones called __init__(), status() and setTemperature(). Adding 
new functions is easy enough to understand. We could have added one called sneeze() to go 
with bark() if we wanted. 
 
But these new functions seem to have variable names inside the function names. That 
setTemperature is actually setTemperature(self, temp). The funny named __init__ is actually 
__init__(self, petname, temp). What are these extra bits inside the brackets? They are the 
variables the function expects when it is called - called parameters. Remember that averaging 
function avg(x,y) we saw earlier? The definition of avg() made clear it expected 2 numbers. So 
the __init__() function needs a petname and a temp, and the setTemperature() function needs 
just a temp.  
 
Now let’s look inside these new functions. Let’s look at that oddly named __init__() first. Why is 
it given such a weird name? The name is special, and Python will call a function called 
__init__() when an object is first created. That’s really handy for doing any work preparing an 
object before we actually use it. So what do we do in this magic initialisation function? We seem 
to only create 2 new variables, called self.name and self.temperature. You can see their values 
from the variables petname and temp passed to the function. The “self.” part means that the 
variables are part of this object itself - it’s own “self”.  That is, they belong only to this object, and 
are independent of another Dog object or general variables in Python. We don’t want to confuse 
this dog’s name with that of another dog! If this all sounds complicated, don’t worry, it’ll be easy 
to see when we actually run a real example. 
 
Next is the status() function, which is really simple. It doesn’t take any parameters, and simply 
prints out the Dog object’s name and temperature variables.  
 
Finally the setTemperature() function does take a parameter. You can see that it sets the 
self.temperature to the parameter temp supplied when this function is called. This means you 
can change the object’s temperature at any time after you created the object. You can do this as 
many times as you like. 
 
We’ve avoiding talking about why all these functions, including that bark() function have a “self” 
as the first parameter. It is a peculiarity of Python, which I find a bit irksome, but that’s the way 
Python has evolved. What it does is make clear to Python that the function you’re about to 
define belongs to the object, referred to as “self”. You would have thought it was obvious 
because we’re writing the function inside the class. You won’t be surprised that this has caused 
debates amongst even expert Python programmers, so you’re in good company in being 
puzzled. 
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Let’s see all this in action to make it really clear. The following shows the new Dog class defined 
with these new functions, and a new Dog object called lassie being created with parameters 
setting out it’s name as “Lassie” and it’s initial temperature as 37.  

You can see how calling the status() function on this lassie Dog object prints out the dog’s 
name and it’s current temperature. That temperature hasn’t changed since lassie was created. 

Let’s now change the temperature and check the it really has changed inside the object by 
asking for another update: 

lassie.setTemperature(40) 
lassie.status() 

The following shows the results.
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You can see that calling setTemperature(40) on the lassie object did indeed change the object’s 
internal record of the temperature. 

We should be really pleased because we’ve learned quite a lot about objects, which some 
consider an advanced topic, and it wasn’t that hard at all! 

We’ve learned enough Python to begin making our neural network. 

Neural Network with Python
We’ll now start the journey to make our own neural network with the Python we’ve just learned. 
We’ll progress along this journey is short easy to tackle steps, and build up a Python program
bit by bit.  

Starting small, then growing, is a wise approach to building computer code of even moderate
complexity. 

After the work we’ve just done, it seems really natural to start to build the skeleton of a neural 
network class. Let’s jump right in!

The Skeleton Code
Let’s sketch out what a neural network class should look like. We know it should have at least 
three functions:

● initialisation - to set the number of input, hidden and output nodes 
● train - refine the weights after being given a training set example to learn from 
● query - give an answer from the output nodes after being given an input
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These might not be perfectly defined right now, and there may be more functions needed, but 
for now let’s use these to make a start. 
 
The code taking shape would be something like the following: 
 

# neural network class definition 
class neuralNetwork: 
  
    # initialise the neural network 
    def __init__(): 
        pass 
  
    # train the neural network 
    def train(): 
        pass 
  
    # query the neural network 
    def query(): 
        pass 
 

That’s not a bad start at all. In fact that’s a solid framework on which to flesh out the working of 
the neural network in detail. 
 
Initialising the Network 
Let’s begin with the initialisation. We know we need to set the number of input, hidden and 
output layer nodes. That defines the shape and size of the neural network. Rather than set 
these in stone, we’ll let them be set when a new neural network object is created by using 
parameters. That way we retain the choice to create new neural networks of different sizes with 
ease.  
 
There’s an important point underneath what we’ve just decided. Good programmers, computer 
scientists and mathematicians, try to create general code rather than specific code whenever 
they can. It is a good habit, because it forces us to think about solving problems in a deeper 
more widely applicable way. If we do this, then our solutions can be applied to different 
scenarios. What this means here is that we will try to develop code for a neural network which 
tries to keep as many useful options open, and assumptions to a minimum, so that the code can 
easily be used for different needs. We want the same class to be able to create a small neural 
network as well as a very large one - simply by passing the desired size as parameters.  
 
Don’t forget the learning rate too. That’s a useful parameter to set when we create a new neural 
network. So let’s see what the __init__() function might look like: 
 

    # initialise the neural network 
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    def __init__(self, inputnodes, hiddennodes, outputnodes, 
learningrate): 
        # set number of nodes in each input, hidden, output layer 
        self.inodes = inputnodes 
        self.hnodes = hiddennodes 
        self.onodes = outputnodes 
 
        # learning rate 
        self.lr = learningrate 
        pass 

 
Let’s add that to our class definition of a neural network, and try creating a small neural network 
object with 3 nodes in each layer, and a learning rate of 0.5. 
 

# number of input, hidden and output nodes 
input_nodes = 3 
hidden_nodes = 3 
output_nodes = 3 
 
# learning rate is 0.3 
learning_rate = 0.3 
 
# create instance of neural network 
n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, 
learning_rate) 

 
That would give us an object, sure, but it wouldn’t be very useful yet as we haven’t coded any 
functions that do useful work yet. That’s ok, it is a good technique to start small and grow code, 
finding and fixing problems along the way. 
 
Just to make sure we’ve not got lost, the following shows the IPython notebook at this stage, 
with the neural network class definition and the code to create an object. 
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What do we do next? Well we’ve told the neural network object how many input, hidden and
output layer nodes we want, but nothing has really been done about it.

Weights - The Heart of the Network
So the next step is to create the network of nodes and links. The most important part of the
network is the link weights. They’re used to calculate the signal being fed forward, the error as
it’s propagated backwards, and it is the link weights themselves that are refined in an attempt to
to improve the network.

We saw earlier that the weights can be concisely expressed as a matrix. So we can create:

● A matrix for the weights for links between the input and hidden layers, Winput_hidden, of size
(hidden_nodes by input_nodes).

● And another matrix for the links between the hidden and output layers, Whidden_output, of
size (output_nodes by hidden_nodes).

Remember the convention earlier to see why the first matrix is of size (hidden_nodes by
input_nodes) and not the other way around (input_nodes by hidden_node).
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Remember from part 1 of this guide that the initial values of the link weights should be small and 
random. The following numpy function generates an array of values selected randomly between
0 and 1, where the size is (rows by columns). 

numpy.random.rand(rows, columns)

All good programmers use internet search engines to find online documentation on how to use 
cool Python functions, or even to find useful functions they didn’t know existed. Google is
particularly good for finding stuff about programming. This numpy.random.rand() function is 
described here, for example. 

If we’re going to use the numpy extensions, we need to import the library at the top of our code. 
Try this function, and confirm to yourself it works. The following shows it working for a (3 by 3) 
numpy array. You can see that each value in the array is random and between 0 and 1.  

 

We can do better because we’ve ignored the fact that the weights could legitimately be negative 
not just positive. The range could be between -1.0 and +1.0. For simplicity, we’ll simply subtract 
0.5 from each of the above values to in effect have a range between -0.5 to +0.5. The following 
shows this neat trick working, and you can see some random values below zero. 

 

We’re ready to create the initial weight matrices in our Python program. These weights are an
intrinsic part of a neural network, and live with the neural network for all its life, not a temporary
set of data that vanishes once a function is called. That means it needs to be part of the
initialisation too, and accessible from other functions like the training and the querying.

The following code, with comments included, creates the two link weight matrices using the
self.inodes, self.hnodes and self.onodes to set the right size for both of them.

# link weight matrices, wih and who
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# weights inside the arrays are w_i_j, where link is from node 
i to node j in the next layer 
# w11 w21 
# w12 w22 etc  
self.wih = (numpy.random.rand(self.hnodes, self.inodes) - 0.5) 
self.who = (numpy.random.rand(self.onodes, self.hnodes) - 0.5) 

 
Great work! We’ve implemented the very heart of a neural network, its link weight matrices!  
 
Optional: More Sophisticated Weights 
This bit is optional as it is just a simple but popular refinement to initialising weights. 
 
If you followed the earlier discussion in part 1 of this guide about preparing data and initialising 
weights at the end of the first part of this guide, you will have seen that some prefer a slightly 
more sophisticated approach to creating the initial random weights. They sample the weights 
from a normal probability distribution centred around zero and with a standard deviation that is 
related to the number of incoming links into a node, 1/√(number of incoming links). 
 
This is easy to do with the help of the numpy library. Again Google is really helpful in finding the 
right documentation. The numpy.random.normal() function described here, helps us sample a 
normal distribution. The parameters are the centre of the distribution, the standard deviation and 
the size of a numpy array if we want a matrix of random numbers instead of just a single 
number. 
 
Our updated code to initialise the weights will look like this: 
 

self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), 
(self.hnodes, self.inodes)) 
self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5), 
(self.onodes, self.hnodes)) 

 
You can see we’ve set the centre of the normal distribution to 0.0. You can see the expression 
for the standard deviation related to the number of nodes in next layer in Python form as 
pow(self.hnodes, -0.5) which is simply raising the number of nodes to the power of -0.5. That 
last parameter is the shape of the numpy array we want. 
 
Querying the Network 
It sounds logical to start working on the code that trains the neural network next, by fleshing out 
the currently empty train() function. We’ll delay doing that, and instead, work on the simpler 
query() function. This will give us more time to gradually build confidence and get some practice 
at using both Python and these weight matrices inside the neural network object.  
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The query() function takes the input to a neural network and returns the network’s output. That’s 
simple enough, but to do that you’ll remember that we need to pass the input signals from the 
input layer of nodes, through the hidden layer and out of the final output layer. You’ll also 
remember that we use the link weights to moderate the signals as they feed into any given 
hidden or output node, and we also use the sigmoid activation function to squish the signal 
coming out of those nodes.  
 
If we had lots of nodes, we would have a horrible task on our hands, writing out the Python code 
for each of those nodes, doing the weight moderating, summing signals, applying the activation 
function. And the more nodes, the more code. That would be a nightmare! 
 
Luckily we don’t have to do that because we worked out how to write all these instructions in a 
simple concise matrix form. The following shows how the matrix of weights for the link between 
the input and hidden layers can be combined with the matrix of inputs to give the signals into the 
hidden layer nodes: 
 

Xhidden = Winput_hidden · I 
 
The great thing about this was not just that it was easier for us to write down, but that 
programming languages like Python can also understand matrices and do all the real work quite 
efficiently because they recognise the similarities between all the underlying calculations. 
 
You’ll be amazed at how simple the Python code actually is. The following applies the numpy 
library’s dot product function for matrices to the link weights Winput_hidden and the inputs I.  
 

hidden_inputs = numpy.dot(self.wih, inputs) 
 
That’s it! 
 
That simple piece of Python does all the work of combining all the inputs with all the right link 
weights to produce the matrix of combined moderated signals into each hidden layer node. We 
don’t have to rewrite it either if next time we choose to use a different number of nodes for the 
input or hidden layers. It just works! 
 
This power and elegance is why we put the effort into trying to understand the matrix 
multiplication approach earlier. 
 
To get the signals emerging from the hidden node, we simply apply the sigmoid squashing 
function to each of these emerging signals: 
 

Ohidden = sigmoid( Xhidden ) 
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That should be easy, especially if the sigmoid function is already defined in a handy Python 
library. It turns out it is! The scipy Python library has a set of special functions, and the sigmoid 
function is called expit(). Don’t ask me why it has such a silly name. This scipy library is 
imported just like we imported the numpy library: 
 

# scipy.special for the sigmoid function expit() 
import scipy.special 

 
Because we might want to experiment and tweak, or even completely change, the activation 
function, it makes sense to define it only once inside the neural network object when it is first 
initialised. After that we can refer to it several times, such as in the query() function. This 
arrangement means we only need to change this definition once, and not have to locate and 
change the code anywhere an activation function is used.  
 
The following defines the activation function we want to use inside the neural network’s 
initialisation section. 
 

# activation function is the sigmoid function 
self.activation_function = lambda x: scipy.special.expit(x) 

 
What is this code? It doesn’t look like anything we’ve seen before. What is that lambda? Well, 
this may look daunting, but it really isn’t. All we’ve done here is created a function like any other, 
but we’ve used a shorter way of writing it out. Instead of the usual def() definitions, we use the 
magic lambda to create a function there and then, quickly and easily. The function here takes x 
and returns scipy.special.expit(x) which is the sigmoid function. Functions created with lambda 
are nameless, or anonymous as seasoned coders like to call them, but here we’ve assigned it 
to the name self.activation_function(). All this means is that whenever someone needs to user 
the activation function, all they need to do is call self.activation_function(). 
 
So, going back to the task at hand, we want to apply the activation function to the combined and 
moderated signals into the hidden nodes. The code is as simple as the following: 
 

# calculate the signals emerging from hidden layer 
hidden_outputs = self.activation_function(hidden_inputs) 

 
That is, the signals emerging from the hidden layer nodes are in the matrix called 
hidden_outputs. 
 
That got us as far as the middle hidden layer, what about the final output layer? Well, there isn’t 
anything really different between the hidden and final output layer nodes, so the process is the 
same. This means the code is also very similar. 
 

 
- 135 - 



Have a look at the following code which summarises how we calculate not just the hidden layer 
signals but also the output layer signals too.  
 

# calculate signals into hidden layer 
hidden_inputs = numpy.dot(self.wih, inputs) 
# calculate the signals emerging from hidden layer 
hidden_outputs = self.activation_function(hidden_inputs) 
  
# calculate signals into final output layer 
final_inputs = numpy.dot(self.who, hidden_outputs) 
# calculate the signals emerging from final output layer 
final_outputs = self.activation_function(final_inputs) 

 
If we took away the comments, there are just four lines of code shown in bold that do all the 
calculations we needed, two for the hidden layer and two for the final output layer.  
 
The Code Thus Far 
Let’s take a breath and pause to check what the code for the neural network class we’re 
building up looks like. It should look something like the following. 
 

# neural network class definition 
class neuralNetwork: 
  
  
    # initialise the neural network 
    def __init__(self, inputnodes, hiddennodes, outputnodes, 
learningrate): 
        # set number of nodes in each input, hidden, output 
layer 
        self.inodes = inputnodes 
        self.hnodes = hiddennodes 
        self.onodes = outputnodes 
  
        # link weight matrices, wih and who 
        # weights inside the arrays are w_i_j, where link is 
from node i to node j in the next layer 
        # w11 w21 
        # w12 w22 etc  
        self.wih = numpy.random.normal(0.0, pow(self.hnodes, 
-0.5), (self.hnodes, self.inodes)) 
        self.who = numpy.random.normal(0.0, pow(self.onodes, 
-0.5), (self.onodes, self.hnodes)) 
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        # learning rate 
        self.lr = learningrate 
  
        # activation function is the sigmoid function 
        self.activation_function = lambda x: 
scipy.special.expit(x) 
  
        pass 
 
  
    # train the neural network 
    def train(): 
        pass 
 
  
    # query the neural network 
    def query(self, inputs_list): 
        # convert inputs list to 2d array 
        inputs = numpy.array(inputs_list, ndmin=2).T 
  
        # calculate signals into hidden layer 
        hidden_inputs = numpy.dot(self.wih, inputs) 
        # calculate the signals emerging from hidden layer 
        hidden_outputs = 
self.activation_function(hidden_inputs) 
  
        # calculate signals into final output layer 
        final_inputs = numpy.dot(self.who, hidden_outputs) 
        # calculate the signals emerging from final output 
layer 
        final_outputs = self.activation_function(final_inputs) 
  
        return final_outputs 

 
That is just the class, aside from that we should be importing the numpy and scipy.special 
modules right at the top of the code in the first notebook cell: 
 

import numpy 
# scipy.special for the sigmoid function expit() 
import scipy.special 

 
It is worth briefly noting the query() function only needs the input_list. It doesn’t need any other 
input.  
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That’s good progress, and now we look at the missing piece, the train() function. Remember
there are two phases to training, the first is calculating the output just as query() does it, and the
second part is backpropagating the errors to inform how the link weights are refined. 

Before we go on to write the train() function for training the network with examples, let’s just test 
the code we have at this point works. Let’s create a small network and query it with some 
random input, just to see it working. Obviously there won’t be any real meaning to this, we’re 
only doing this to use these functions we just created. 

The following shows the creation of a small network with 3 nodes in each of the input, hidden 
and output layers, and queries it with a randomly chosen input of (1.0, 0.5, -1.5). 

You can see the creation of a neural network object does need a learning rate to be set, even 
though we’re not using it yet. That’s because our definition of the neural network class has an 
initialisation function __init__() that does require it to be specified. If it’s not set, the Python code 
will fail and throw you an error to chew on! 

You can also see that the input is a list, which in Python is written inside square brackets. The 
output is also a list, with some numbers. Even if this output has no real meaning, because we
haven’t trained the network, we can be happy the thing worked with no errors. 

Training the Network 
Let’s now tackle the slightly more involved training task. There are two parts to this: 

● The first part is working out the output for a given training example. That is no different to 
what we just did with the query() function.  

● The second part is taking this calculated output, comparing it with the desired output, 
and using the difference to guide the updating of the network weights. 

We’ve already done the first part so let’s write that out: 
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# train the neural network 
def train(self, inputs_list, targets_list): 
    # convert inputs list to 2d array 
    inputs = numpy.array(inputs_list, ndmin=2).T 
    targets = numpy.array(targets_list, ndmin=2).T 
  
    # calculate signals into hidden layer 
    hidden_inputs = numpy.dot(self.wih, inputs) 
    # calculate the signals emerging from hidden layer 
    hidden_outputs = self.activation_function(hidden_inputs) 
  
    # calculate signals into final output layer 
    final_inputs = numpy.dot(self.who, hidden_outputs) 
    # calculate the signals emerging from final output layer 
    final_outputs = self.activation_function(final_inputs) 
  
    pass 

 
This code is almost exactly the same as that in the query() function, because we’re feeding 
forward the signal from the input layer to the final output layer in exactly the same way. 
 
The only difference is that we have an additional parameter, targets_list, defined in the function 
name because you can’t train the network without the training examples which include the 
desired or target answer. 
 

def train(self, inputs_list, targets_list) 
 
The code also turns the targets_list into a numpy array, just as the inputs_list is turned into a 
numpy array. 
 

targets = numpy.array(targets_list, ndmin=2).T 
 
Now we’re getting closer to the heart of the neural network’s working, improving the weights 
based on the error between the calculated and target output. 
 
Let’s do this in gentle manageable steps.  
 
First we need to calculate the error, which is the difference between the desired target output 
provided by the training example, and the actual calculated output. That’s the difference 
between the matrices (targets - final_outputs) done element by element. The Python code for 
this is really simple, showing again the elegant power of matrices. 
 

# error is the (target - actual) 
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output_errors = targets - final_outputs 
 
We can calculate the back-propagated errors for the hidden layer nodes. Remember how we 
split the errors according to the connected weights, and recombine them for each hidden layer 
node. We worked out the matrix form of this calculation as 
 

errorshidden = weightsT
hidden_output · errorsoutput 

 
The code for this is again simple because of Python’s ability to do matrix dot products using 
numpy. 
 

# hidden layer error is the output_errors, split by weights, 
recombined at hidden nodes 
hidden_errors = numpy.dot(self.who.T, output_errors) 

 
So we have what we need to refine the weights at each layer. For the weights between the 
hidden and final layers, we use the output_errors. For the weights between the input and 
hidden layers, we use these hidden_errors we just calculated. 
 
We previously worked out the expression for updating the weight for the link between a node j 
and a node k in the next layer in matrix form: 
 

 
 
The alpha is the learning rate, and the sigmoid is the squashing activation function we saw 
before. Remember that the * multiplication is the normal element by element multiplication, and 
the · dot is the matrix dot product. That last bit, the matrix of outputs from the previous layer, is 
transposed. In effect this means the column of outputs becomes a row of outputs. 
 
That should translate nicely into Python code. Let’s do the code for the weights between the 
hidden and final layers first: 
 

# update the weights for the links between the hidden and output 
layers 
self.who += self.lr * numpy.dot((output_errors * final_outputs * 
(1.0 - final_outputs)), numpy.transpose(hidden_outputs)) 

 

 
- 140 - 



That’s a long line of code, but the colour coding should help you see how it relates back to that 
mathematical expression. The learning rate is self.lr and simply multiplied with the rest of the 
expression. There is a matrix multiplication done by numpy.dot() and the two elements are 
coloured red and green to show the part related to the error and sigmoids from the next layer, 
and the transposed outputs from the previous layer.  
 
That += simply means increase the preceding variable by the next amount. So x += 3 means 
increase x by 3. It’s just a shorter way of writing x = x + 3. You can use other arithmetic too so x 
/= 3 means divide x by 3. 
 
The code for the other weights between the input and hidden layers will be very similar. We just 
exploit the symmetry and rewrite the code replacing the names so that they refer to the previous 
layers. Here is the code for both sets of weights, coloured so you can see the similarities and 
differences: 
 

# update the weights for the links between the hidden and output 
layers 
self.who += self.lr * numpy.dot((output_errors * final_outputs * 
(1.0 - final_outputs)), numpy.transpose(hidden_outputs)) 
  
# update the weights for the links between the input and hidden 
layers 
self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * 
(1.0 - hidden_outputs)), numpy.transpose(inputs)) 

 
That’s it! 
 
It’s hard to believe that all that work we did earlier with huge volumes of calculations, the effort 
we put into working out the matrix approach, working our way through the gradient descent 
method of minimising the network error, … all that has amounted to the above short concise 
code! In some ways, that’s the power of Python but actually it is a reflection of our hard work to 
simplify something which could easily have been made complex and horrible. 
 
The Complete Neural Network Code 
We’ve completed the neural network class. Here it is for reference, and you can always get it 
from the following link to github, an online place to sharing code: 
 

● https://github.com/makeyourownneuralnetwork/makeyourownneuralnetwork/blob/master/
part2_neural_network.ipynb 

 
# neural network class definition 
class neuralNetwork: 
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    # initialise the neural network 
    def __init__(self, inputnodes, hiddennodes, outputnodes, 
learningrate): 
        # set number of nodes in each input, hidden, output layer 
        self.inodes = inputnodes 
        self.hnodes = hiddennodes 
        self.onodes = outputnodes 
  
        # link weight matrices, wih and who 
        # weights inside the arrays are w_i_j, where link is from 
node i to node j in the next layer 
        # w11 w21 
        # w12 w22 etc  
        self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), 
(self.hnodes, self.inodes)) 
        self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5), 
(self.onodes, self.hnodes)) 
 
 
        # learning rate 
        self.lr = learningrate 
  
        # activation function is the sigmoid function 
        self.activation_function = lambda x: scipy.special.expit(x) 
  
        pass 
 
  
    # train the neural network 
    def train(self, inputs_list, targets_list): 
        # convert inputs list to 2d array 
        inputs = numpy.array(inputs_list, ndmin=2).T 
        targets = numpy.array(targets_list, ndmin=2).T 
  
        # calculate signals into hidden layer 
        hidden_inputs = numpy.dot(self.wih, inputs) 
        # calculate the signals emerging from hidden layer 
        hidden_outputs = self.activation_function(hidden_inputs) 
  
        # calculate signals into final output layer 
        final_inputs = numpy.dot(self.who, hidden_outputs) 
        # calculate the signals emerging from final output layer 
        final_outputs = self.activation_function(final_inputs) 
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        # output layer error is the (target - actual) 
        output_errors = targets - final_outputs 
        # hidden layer error is the output_errors, split by weights, 
recombined at hidden nodes 
        hidden_errors = numpy.dot(self.who.T, output_errors)  
  
        # update the weights for the links between the hidden and 
output layers 
        self.who += self.lr * numpy.dot((output_errors * 
final_outputs * (1.0 - final_outputs)), 
numpy.transpose(hidden_outputs)) 
  
        # update the weights for the links between the input and 
hidden layers 
        self.wih += self.lr * numpy.dot((hidden_errors * 
hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs)) 
  
        pass 
 
  
    # query the neural network 
    def query(self, inputs_list): 
        # convert inputs list to 2d array 
        inputs = numpy.array(inputs_list, ndmin=2).T 
  
        # calculate signals into hidden layer 
        hidden_inputs = numpy.dot(self.wih, inputs) 
        # calculate the signals emerging from hidden layer 
        hidden_outputs = self.activation_function(hidden_inputs) 
  
        # calculate signals into final output layer 
        final_inputs = numpy.dot(self.who, hidden_outputs) 
        # calculate the signals emerging from final output layer 
        final_outputs = self.activation_function(final_inputs) 
  
        return final_outputs 

 
There’s not a lot of code here, especially if you appreciate that this code can be used to create, 
train and query 3-layer neural networks for almost any task.  
 
Next we’ll work on our specific task of learning to recognise numbers written by humans. 
 
 
The MNIST Dataset of Handwritten Numbers 
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Recognising human handwriting is an ideal challenge for testing artificial intelligence, because 
the problem is sufficiently hard and fuzzy. It’s not clear and defined like multiplying lots of lots of 
numbers.  
 
Getting computers to correctly classify what an image contains, sometimes called the image 
recognition problem, has withstood decades of attack. Only recently has good progress been 
made, and methods like neural networks have been a crucial part of these leaps forward.  
 
To give you a sense of how hard the problem of image recognition is, we humans will 
sometimes disagree on what an image contains. We’ll easily disagree what a handwritten 
character actually is, particularly if the character was written in a rush or without care. Have a 
look at the following handwritten number. Is it a 4 or a 9? 
 

 
 
There is a collection of images of handwritten numbers used by artificial intelligence researchers 
as a popular set to test their latest ideas and algorithms. The fact that the collection is well 
known and popular means that it is easy to check how well our latest crazy idea for image 
recognition works compared to others. That is, different ideas and algorithms are tested against 
the same data set. 
 
That data set is called the MNIST database of handwritten digits, and is available from the 
respected neural network researcher Yann LeCun’s website http://yann.lecun.com/exdb/mnist/. 
That page also lists how well old and new ideas have performed in learning and correctly 
classifying these handwritten characters. We’ll come back to that list several times to see how 
well our own ideas perform against professionals! 
 
The format of the MNIST database isn't the easiest to work with, so others have helpfully 
created data files of a simpler format, such as this one http://pjreddie.com/projects/mnist-in-csv/. 
These files are called CSV files, which means each value is plain text separated by commas 
(comma separated values). You can easily view them in any text editor, and most spreadsheet 
or data analysis software will work with CSV files. They are pretty much a universal standard. 
This website provides two CSV files: 
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● A training set http://www.pjreddie.com/media/files/mnist_train.csv

● A test set http://www.pjreddie.com/media/files/mnist_test.csv 

As the names suggest, the training set is the set of 60,000 labelled examples used to train the 
neural network. Labelled means the inputs come with the desired output, that is, what the 
answer should be.  

The smaller test set of 10,000 is used to see how well our idea or algorithm works. This too 
contains the correct labels so we can check to see if our own neural network got the answer 
right or not. 

The idea of having separate training and test data sets is to make sure we test against data we 
haven’t seen before. Otherwise we could cheat and simply memorise the training data to get a 
perfect, albeit deceptive, score. This idea of separating training from test data is common across 
machine learning.

Let’s take a peek at these files. The following shows a section of the MNIST test set loaded into 
a text editor. 

Whoah! That looks like something went wrong! Like one of those movies from the 80s where a
computer gets hacked.

Actually all is well. The text editor is showing long lines of text. Those lines consist of numbers,
separated by commas. That is easy enough to see. The lines are quite long so they wrap
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around a few times. Helpfully this text editor shows the real line numbers in the margin, and we 
can see four whole lines of data, and part of the fifth one. 
 
The content of these records, or lines of text, is easy to understand: 
 

● The first value is the label, that is, the actual digit that the handwriting is supposed to 
represent, such as a "7" or a "9". This is the answer the neural network is trying to learn 
to get right. 

 
● The subsequent values, all comma separated, are the pixel values of the handwritten 

digit. The size of the pixel array is 28 by 28, so there are 784 values after the label. 
Count them if you really want! 

 
So that first record represents the number “5” as shown by the first value, and the rest of the 
text on that line are the pixel values for someone’s handwritten number 5. The second record 
represents a handwritten “0”, the third represents “4”, the fourth record is “1” and the fifth 
represents “9”. You can pick any line from the MNIST data files and the first number will tell you 
the label for the following image data. 
 
But it is hard to see how that long list of 784 values makes up a picture of someone’s 
handwritten number 5. We should plot those numbers as an image to confirm that they really 
are the colour values of handwritten number. 
 
Before we dive in and do that we should download a smaller subset of the MNIST data set. The 
MNIST data data files are pretty big and working with a smaller subset is helpful because it 
means we can experiment, trial and develop our code without being slowed down by a large 
data set slowing our computers down. Once we’ve settled on an algorithm and code we’re 
happy with, we can use the full data set. 
 
The following are the links to a smaller subsets of the MNIST dataset, also in CSV format: 
 

● 10 records from the MNIST test data set - 
https://raw.githubusercontent.com/makeyourownneuralnetwork/makeyourownneuralnetw
ork/master/mnist_dataset/mnist_test_10.csv 

 
● 100 records from the MNIST training data set - 

https://raw.githubusercontent.com/makeyourownneuralnetwork/makeyourownneuralnetw
ork/master/mnist_dataset/mnist_train_100.csv 

 
If your browser shows the data instead of downloading it automatically, you can manually save 
the file using the “File -> Save As …”, or equivalent action in your browser.  
 

 
- 146 - 



Save the data files to a location that works well for you. I keep my data files in a folder called 
“mnist_dataset” next to my IPython notebooks as shown in the following screenshot. It gets 
messy if IPython notebooks and data files are scattered all over the place. 

Before we can do anything with the data, like plotting it or training a neural network with it, we
need to find a way to get at it from our Python code.

Opening a file and getting its content is really easy in Python. It’s best to just show it and explain
it. Have a look at the following code:

data_file = open("mnist_dataset/mnist_train_100.csv", 'r') 
data_list = data_file.readlines() 
data_file.close() 

There are only three lines of code here. Let’s talk through each one.

The first line uses a function open() to open a file. You can see first parameter passed to the 
function is the name of the file. Actually, it is more than just the filename “mnist_train_100.csv”, 
it is the whole path which includes the directory the file is in. The second parameter is optional, 
and tells Python how we want to treat the file. The ‘r’ tells Python that we want to open the file 
for reading only, and not for writing. That way we avoid any accidents changing or deleting the 
data. If we tried to write to that file and change it, Python would stop us and raise an error. 
What’s that variable data_file? The open() function creates a file handle, a reference, to that file 
and we’ve assigned it to a variable named data_file. Now that we’ve opened the file, any further 
actions like reading from it, are done through that handle. 

The next line is simple. We use the readlines() function associated with the file handle data_file, 
to read all of the lines in the file into the variable data_list. The variable contains a list, where 
each item of the list is a string representing a line in the file. That’s much more useful because 
we can jump to specific lines just like we would jump to specific entries in a list. So data_list[0] 
is the first record, and data_list[9] is the tenth record, and so on. 
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By the way, you may hear people tell you not to use readlines() because it reads the entire file 
into memory. They will tell you to read one line at a time and do whatever work you need with
each line, and then move onto the next line. They aren’t wrong, it is more efficient to work on a 
line at a time, and not read the entire file into memory. However our files aren’t that massive, 
and the code is easier if we use readlines(), and for us, simplicity and clarity is important as we 
learn Python. 

The last line closes the file. It is good practice to close and clean up after using resources like
files. If we don’t, they remain open and can cause problems. What problems? Well, some 
programs might not want to write to a file that was opened elsewhere in case it led to an 
inconsistency. It would be like two people trying to write a letter on the same piece of paper! 
Sometimes your computer may lock a file to prevent this kind of clash. If you don’t clean up after 
you use files, you can have a build up of locked files. At the very least, closing a file, allows your 
computer to free up memory it used to hold parts of that file.

Create a new empty notebook and try this code, and see what happens when you print out 
elements of that list a. The following shows this working.

You can see that the length of the list is 100. The Python len() function tells us how big a list is. 
You can also see the content of the first record data_list[0]. The first number is ‘5’ which is the
label, and the rest of the 784 numbers are the colour values for the pixels that make up the 
image. If you look closely you can tell these colour values seem to range between 0 and 255. 
You might want to look at other records and see if that is true there too. You’ll find that the 
colour values do indeed fall within the range from 0 to 255.
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We did see earlier how we might plot a rectangular array of numbers using the imshow() 
function. We want to do the same here but we need to convert that list of comma separated 
numbers into a suitable array. Here are the steps to do that: 
 

● Split that long text string of comma separated values into individual values, using the 
commas as the place to do the splitting. 

 
● Ignore the first value, which is the label, and take the remaining list of 28 * 28 = 784 

values and turn them into an array which has a shape of 28 rows by 28 columns. 
 

● Plot that array! 
 
Again, it is easiest to show the fairly simple Python code that does this, and talk through the 
code to explain in more detail what is happening. 
 
First we mustn’t forget to import the Python extension libraries which will help us with arrays and 
plotting: 
 

import numpy 
import matplotlib.pyplot 
%matplotlib inline 

 
Look at the following 3 lines of code. The variables have been coloured to make it easier to 
understand which data is being used where. 
 

all_values = data_list[0].split(',') 
image_array = numpy.asfarray(all_values[1:]).reshape((28,28)) 
matplotlib.pyplot.imshow(image_array, cmap='Greys', 
interpolation='None') 

 
The first line takes the first records data_list[0] that we just printed out, and splits that long 
string by its commas. You can see the split() function doing this, with a parameter telling it which 
symbol to split by. In this case that symbol is the comma. The results will be placed into 
all_values. You can print this out to check that is indeed a long Python list of values.  
 
The next line looks more complicated because there are several things happening on the same 
line. Let’s work out from the core. The core has that all_values list but this time the square 
brackets [1:] are used to take all except the first element of this list. This is how we ignore the 
first label value and only take the rest of the 784 values. The numpy.asfarray() is a numpy 
function to convert the text strings into real numbers and to create an array of those numbers. 
Hang on - what do we mean by converting text string into numbers? Well the file was read as 
text, and each line or record is still text. Splitting each line by the commas still results in bits of 
text. That text could be the word “apple”, “orange123” or “567”. The text string “567” is not the 
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same as a number 567. That’s why we need to convert text strings to numbers, even if the text
looks like numbers. The last bit .reshape((28,28)) makes sure the list of number is wrapped 
around every 28 elements to make a square matrix 28 by 28. The resulting 28 by 28 array is
called image_array. Phew! That was a fair bit happening in one line.

The third line simply plots the image_array using the imshow() function just like we saw earlier. 
This time we did select a greyscale colour palette with cmap=’Greys’ to better show the
handwritten characters.

The following shows the results of this code: 

You can see the plotted image is a 5, which is what the label said it should be. If we instead
choose the next record data_list[1] which has a label of 0, we get the following image.
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You can tell easily the handwritten number is indeed zero.

Preparing the MNIST Training Data 
We’ve worked out how to get data out of the MNIST data files and disentangle it so we can 
make sense of it, and visualise it too. We want to train our neural network with this data, but we
need to think just a little about preparing this data before we throw it at our neural network. 

We saw earlier that neural networks work better if the input data, and also the output values, are 
of the right shape so that they stay within the comfort zone of the network node activation 
functions.  

The first thing we need to do is to rescale the input colour values from the larger range 0 to 255
to the much smaller range 0.01 - 1.0. We’ve deliberately chosen 0.01 as the lower end of the
range to avoid the problems we saw earlier with zero valued inputs because they can artificially
kill weight updates. We don’t have to choose 0.99 for the upper end of the input because we
don’t need to avoid 1.0 for the inputs. It’s only for the outputs that we should avoid the 
impossible to reach 1.0.  

Dividing the raw inputs which are in the range 0-255 by 255 will bring them into the range 0-1. 
We then need to multiply by 0.99 to bring them into the range 0.0 - 0.99. We then add 0.01 to 
shift them up to the desired range 0.01 to 1.00. The following Python code shows this in action: 

scaled_input = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 
0.01
print(scaled_input)

The output confirms that the values are now in the range 0.01 to 0.99.
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So we’ve prepared the MNIST data by rescaling and shifting it, ready to throw at our neural
network for both training and querying.

We now need to think about the neural network’s outputs. We saw earlier that the outputs
should match the range of values that the activation function can push out. The logistic function
we’re using can’t push out numbers like -2.0 or 255. The range is between 0.0 and 1.0, and in
fact you can’t reach 0.0 or 1.0 as the logistic function only approaches these extremes without
actually getting there. So it looks like we’ll have to scale our target values when training.

But actually, we have a deeper question to ask ourselves. What should the output even be?
Should it be an image of the answer? That would mean we have a 28x28 = 784 output nodes.

If we take a step back and think about what we’re asking the neural network, we realise we’re
asking it to classify the image and assign the correct label. That label is one of 10 numbers,
from 0 to 9. That means should be able to have an output layer of 10 nodes, one for each of the
possible answers, or labels. If the answer was “0” the first output layer node would fire and the
rest should be silent. If the answer was “9” the last output layer node would fire and the rest
would be silent. The following illustrates this scheme, with some example outputs too.
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The first example is where the neural network thinks it has seen the number “5”. You can see 
that the largest signal emerging from the output layer is from the node with label 5. Remember 
this is the sixth node because we’re starting from a label for zero. That’s easy enough. The rest 
of the output nodes produce a small signal very close to zero. Rounding errors might result in an 
output of zero, but in fact you’ll remember the activation function doesn’t produce an actual 
zero.  
 
The next example shows what might happen if the neural network thinks it has seen a 
handwritten “zero”. Again the largest output by far is from the first output node corresponding to 
the label “0’.  
 
The last example is more interesting. Here the neural network has produced the largest output 
signal from the last node, corresponding to the label “9”. However it has a moderately big output 
from the node for “4”. Normally we would go with the biggest signal, but you can see how the 
network partly believed the answer could have been “4”. Perhaps the handwriting made it hard 
to be sure? This sort of uncertainty does happen with neural networks, and rather than see it as 
a bad thing, we should see it as a useful insight into how another answer was also a contender. 
 
That’s great! Now we need to turn these ideas into target arrays for the neural network training. 
You can see that if the label for a training example is “5”, we need to create a target array for 
the output node where all the elements are small except the one corresponding to the label “5”. 
That could look like the following [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]. 
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In fact we need to rescale those numbers because we’ve already seen how trying to get the 
neural network to create outputs of 0 and 1, which are impossible for the activation function, will 
drive large weights and a saturated network. So we’ll use the values 0.01 and 0.99 instead, so 
the target for the label “5” should be [0.01, 0.01, 0.01, 0.01, 0.01, 0.99, 0.01, 0.01, 0.01, 0.01].  

Have a look at the following Python code which constructs the target matrix: 

#output nodes is 10 (example)
onodes = 10
targets = numpy.zeros(onodes) + 0.01
targets[int(all_values[0])] = 0.99 

The first line, other than the comment, simply sets the number of output nodes to 10, which is
right for our example with ten labels. 

The second line simple uses a convenient numpy function called numpy.zeros() to create an 
array filled with zeros. The parameter it takes is the size and shape of the array we want. Here 
we just want a simple one of length onodes, which the number of nodes on the final output 
layer. We add 0.01 to fix the problem with zeros we just talked about. 

The next line takes the first element of the MNIST dataset record, which is the training target 
label, and converts that string into an integer. Remember that record is read from the source 
files as a text string, not a number. Once that conversion is done, that target label is used to set 
the right element of the targets list to 0.99. It looks neat because a label of “0” will be converted 
to integer 0, which is the correct index into the targets[] array for that label. Similarly, a label of 
“9” will be converted to integer 9, and targets[9] is indeed the last element of that array. 

The following shows an example of this working: 

Excellent, we have now worked out how to prepare the inputs for training and querying, and the
outputs for training too.

Let’s update our Python code to include this work. The following shows the code developed thus
far. The code will always be available on github at the following link, but will evolve as we add
more to it:
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● https://github.com/makeyourownneuralnetwork/makeyourownneuralnetwork/blob/master/

part2_neural_network_mnist_data.ipynb 
 
You can always see the previous versions as they’ve developed at the following history view: 
 

● https://github.com/makeyourownneuralnetwork/makeyourownneuralnetwork/commits/ma
ster/part2_neural_network_mnist_data.ipynb 

 
# python notebook for Make Your Own Neural Network 
# code for a 3-layer neural network, and code for learning the MNIST 
dataset 
# (c) Tariq Rashid, 2016 
# license is GPLv2 
 
import numpy 
# scipy.special for the sigmoid function expit() 
import scipy.special 
# library for plotting arrays 
import matplotlib.pyplot 
# ensure the plots are inside this notebook, not an external window 
%matplotlib inline 
 
# neural network class definition 
class neuralNetwork: 
  
  
    # initialise the neural network 
    def __init__(self, inputnodes, hiddennodes, outputnodes, 
learningrate): 
        # set number of nodes in each input, hidden, output layer 
        self.inodes = inputnodes 
        self.hnodes = hiddennodes 
        self.onodes = outputnodes 
  
        # link weight matrices, wih and who 
        # weights inside the arrays are w_i_j, where link is from 
node i to node j in the next layer 
        # w11 w21 
        # w12 w22 etc  
        self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), 
(self.hnodes, self.inodes)) 
        self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5), 
(self.onodes, self.hnodes)) 
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        # learning rate 
        self.lr = learningrate 
  
        # activation function is the sigmoid function 
        self.activation_function = lambda x: scipy.special.expit(x) 
  
        pass 
 
  
    # train the neural network 
    def train(self, inputs_list, targets_list): 
        # convert inputs list to 2d array 
        inputs = numpy.array(inputs_list, ndmin=2).T 
        targets = numpy.array(targets_list, ndmin=2).T 
  
        # calculate signals into hidden layer 
        hidden_inputs = numpy.dot(self.wih, inputs) 
        # calculate the signals emerging from hidden layer 
        hidden_outputs = self.activation_function(hidden_inputs) 
  
        # calculate signals into final output layer 
        final_inputs = numpy.dot(self.who, hidden_outputs) 
        # calculate the signals emerging from final output layer 
        final_outputs = self.activation_function(final_inputs) 
  
        # output layer error is the (target - actual) 
        output_errors = targets - final_outputs 
        # hidden layer error is the output_errors, split by weights, 
recombined at hidden nodes 
        hidden_errors = numpy.dot(self.who.T, output_errors)  
  
        # update the weights for the links between the hidden and 
output layers 
        self.who += self.lr * numpy.dot((output_errors * 
final_outputs * (1.0 - final_outputs)), 
numpy.transpose(hidden_outputs)) 
  
        # update the weights for the links between the input and 
hidden layers 
        self.wih += self.lr * numpy.dot((hidden_errors * 
hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs)) 
  
        pass 
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    # query the neural network 
    def query(self, inputs_list): 
        # convert inputs list to 2d array 
        inputs = numpy.array(inputs_list, ndmin=2).T 
  
        # calculate signals into hidden layer 
        hidden_inputs = numpy.dot(self.wih, inputs) 
        # calculate the signals emerging from hidden layer 
        hidden_outputs = self.activation_function(hidden_inputs) 
  
        # calculate signals into final output layer 
        final_inputs = numpy.dot(self.who, hidden_outputs) 
        # calculate the signals emerging from final output layer 
        final_outputs = self.activation_function(final_inputs) 
  
        return final_outputs 
 
# number of input, hidden and output nodes 
input_nodes = 784 
hidden_nodes = 100 
output_nodes = 10 
 
# learning rate is 0.3 
learning_rate = 0.3 
 
# create instance of neural network 
n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, 
learning_rate) 
 
# load the mnist training data CSV file into a list 
training_data_file = open("mnist_dataset/mnist_train_100.csv", 'r') 
training_data_list = training_data_file.readlines() 
training_data_file.close() 
 
# train the neural network 
 
# go through all records in the training data set 
for record in training_data_list: 
    # split the record by the ',' commas 
    all_values = record.split(',') 
    # scale and shift the inputs 
    inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 
    # create the target output values (all 0.01, except the desired 
label which is 0.99) 
    targets = numpy.zeros(output_nodes) + 0.01 
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    # all_values[0] is the target label for this record 
    targets[int(all_values[0])] = 0.99 
    n.train(inputs, targets) 
    pass 

 
You can see we’ve imported the plotting library at the top, added some code to set the size of 
the input, hidden and output layers, read the smaller MNIST training data set, and then trained 
the neural network with those records. 
 
Why have we chosen 784 input nodes? Remember, that’s 28 x 28, the pixels which make up 
the handwritten number image.  
 
The choice of 100 hidden nodes is not so scientific. We didn’t choose a number larger than 784 
because the idea is that neural networks should find features or patterns in the input which can 
be expressed in a shorter form than the input itself. So by choosing a value smaller than the 
number of inputs, we force the network to try to summarise the key features. However if we 
choose too few hidden layer nodes, then we restrict the ability of the network to find sufficient 
features or patterns. We’d be taking away its ability to express its own understanding of the 
MNIST data. Given the output layer needs 10 labels, hence 10 output nodes, the choice of an 
intermediate 100 for the hidden layer seems to make sense.  
 
It is worth making an important point here. There isn’t a perfect method for choosing how many 
hidden nodes there should be for a problem. Indeed there isn’t a perfect method for choosing 
the number of hidden layers either. The best approaches, for now, are to experiment until you 
find a good configuration for the problem you’re trying to solve.  
 
Testing the Network 
Now that we’ve trained the network, at least on a small subset of 100 records, we want to test 
how well that worked. We do this against the second data set, the training dataset.  
 
We first need to get at the test records, and the Python code is very similar to that used to get 
the training data. 
 

# load the mnist test data CSV file into a list 
test_data_file = open("mnist_dataset/mnist_test_10.csv", 'r') 
test_data_list = test_data_file.readlines() 
test_data_file.close() 

 
We unpack this data in the same way as before, because it has the same structure.  
 
Before we create a loop to go through all the test records, let’s just see what happens if we 
manually run one test. The following shows the first record from the test data set being used to 
query the now trained neural network. 
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You can see that the label for the first record from the test data set is “7”. That’s what we hope 
the neural network will answer when we query it. 
 
Plotting the pixel values as an image confirms the handwritten number is indeed a “7”.  
 
Querying the trained network produces a list of numbers, the outputs from each of the output 
nodes. You can quickly see that one output value is much larger than the others, and is the one 
corresponding to the label “7”. That’s the eighth element, because the first one corresponds to 
the label “0”. 
 
It worked! 
 
This is real moment to savour. All our hard work throughout this guide was worth it! 
 
We trained our neural network and we just got it to tell is what it thinks is the number 
represented by that picture. Remember that it hasn’t seen that picture before, it wasn’t part of 
the training data set. So the neural network was able to correctly classify a handwritten 
character that it had not seen before. That is massive! 
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With just a few lines of simple Python we have created a neural network that learns to do 
something that many people would consider artificial intelligence - it learns to recognise images 
of human handwriting.  
 
This is even more impressive given that we only trained on a tiny subset of the full training data 
set. Remember that training data set has 60,000 records, and we only trained on 100. I 
personally didn’t think it would work! 
 
Let’s crack on and write the code to see how the neural network performs against the rest of the 
data set, and keep a score so we can later see if our own ideas for improving the learning 
worked, and also to compare with how well others have done this. 
 
It’s easiest to look at the following code and talk through it: 
 

# test the neural network 
 
# scorecard for how well the network performs, initially empty 
scorecard = [] 
 
# go through all the records in the test data set 
for record in test_data_list: 
    # split the record by the ',' commas 
    all_values = record.split(',') 
    # correct answer is first value 
    correct_label = int(all_values[0]) 
    print(correct_label, "correct label") 
    # scale and shift the inputs 
    inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 
    # query the network 
    outputs = n.query(inputs) 
    # the index of the highest value corresponds to the label 
    label = numpy.argmax(outputs) 
    print(label, "network's answer") 
    # append correct or incorrect to list 
    if (label == correct_label): 
        # network's answer matches correct answer, add 1 to 
scorecard 
        scorecard.append(1) 
    else: 
        # network's answer doesn't match correct answer, add 0 to 
scorecard 
        scorecard.append(0) 
        pass 
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   pass 

Before we jump into the loop which works through all the test data set records, we create an
empty list, called scorecard, which will be the scorecard that we update after each record. 

You can see that inside the loop, we do what we did before, we split the text record by the 
commas to separate out the values. We keep a note of the first value as the correct answer. We 
grab the remaining values and rescale them so they’re suitable for querying the neural network. 
We keep the response from the neural network in a variable called outputs.

Next is the interesting bit. We know the output node with the largest value is the one the 
network thinks is the answer. The index of that node, that is, its position, corresponds to the
label. That’s a long way of saying, the first element corresponds to the label “0”, and the fifth
element corresponds to the label “4”, and so on. Luckily there is a convenient numpy function 
that finds the largest value in an array and tells us its position, numpy.argmax(). You can read 
about it online here. If it returns 0 we know the network thinks the answer is zero, and and so 
on.

That last bit of code compares the label with the known correct label. If they are the same, a “1” 
is appended to the scorecard, otherwise a “0” is appended. 

I’ve included some useful print() commands in the code so that we can see for ourselves the 
correct and predicted labels. The following shows the results of this code, and also of printing 
out the scorecard. 
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Not so great this time! We can see that there are quite a few mismatches. The final scorecard 
shows that out of ten test records, the network got 6 right. That’s a score of 60%. That’s not 
actually too bad given the small training set we used. 

Let’s finish off with some code to print out that test score as a fraction. 

# calculate the performance score, the fraction of correct answers 
scorecard_array = numpy.asarray(scorecard) 
print ("performance = ", scorecard_array.sum() /
scorecard_array.size)

This is a simple calculation to workout the fraction of correct answers. It’s the sum of “1” entries
on the scorecard divided by the total number of entries, which is the size of the scorecard. Let’s 
see what this produces. 

 

That produces the fraction 0.6 or 60% accuracy as we expected.

Training and Testing with the Full Datasets
Let’s add all this new code we’ve just developed to testing the network’s performance to our
main program.

While we’re at it, let’s change the file names so that we’re now pointing to the full training data
set of 60,000 records, and the test data set of 10,000 records. We previously saved those files
as mnist_dataset/mnist_train.csv and mnist_dataset/mnist_test.csv. We’re getting serious
now!

Remember, you can get the Python notebook online at github:

● https://github.com/makeyourownneuralnetwork/makeyourownneuralnetwork/blob/master/
part2_neural_network_mnist_data.ipynb

The history of that code is also available on github so you can see the code as it developed:

● https://github.com/makeyourownneuralnetwork/makeyourownneuralnetwork/commits/ma
ster/part2_neural_network_mnist_data.ipynb
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The result of training our simple 3-layer neural network against the full 60,000 training 
examples, and then testing it against the 10,000 records, gives us an overall performance score
of 0.9473. That is very very good. Almost 95% accurate!

It is worth comparing this score of just under 95% accuracy against industry benchmarks 
recorded at http://yann.lecun.com/exdb/mnist/. We can see that we’re better than some of the
historic benchmarks, we are about the same performance as the simplest neural network
approach listen there, which has a performance of 95.3%. 

That’s not bad at all. We should be very pleased that our very first go at a simple neural network 
achieves the kind of performance that a professional neural network researcher achieved. 

By the way, it shouldn’t surprise you that crunching through 60,000 training examples, each 
requiring a set of feedforward calculations from 784 input nodes, through 100 hidden nodes,
and also doing an error feedback and weight update, all takes a while even for a fast modern
home computer. My new laptop took about 2 minutes to get through the training loop. Yours 
may be quicker or slower.  

Some Improvements: Tweaking the Learning Rate
A 95% performance score on the MNIST dataset with our first neural neural network, using only 
simple ideas and simple Python is not a bad at all, and if you wanted to stop here you would be
entirely justified.  

But let’s see if we can make some easy improvements. 

The first improvement we can try is to adjust the learning rate. We set it at 0.3 previously without 
really experimenting with different values. 

Let’s try doubling it to 0.6, to see if a boost will actually be helpful or harmful to the overall 
network learning. If we run the code we get a performance score of 0.9047. That’s worse than 
before. So it looks like the larger learning rate leads to some bouncing around and overshooting
during the gradient descent. 

Let’s try again with a learning rate of 0.1. This time the performance is an improvement at 
0.9523. It’s similar in performance to one listed on that website which has 1000 hidden nodes.
We’re doing well with much less!
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What happens if we keep going and set a learning rate of an even smaller 0.01? The 
performance isn’t so good at 0.9241. So it seems having too small a learning rate is damaging. 
This makes sense because we’re limiting the speed at which gradient descent happens, we’re 
making the steps too small.  
 
The following plots a graph of these results. It’s not a very scientific approach because we 
should really do these experiments many times to reduce the effect of randomness and bad 
journeys down the gradient descent, but it is still useful to see the general idea that there is a 
sweet spot for learning rate. 
 

 
 
The plot suggested that between a learning rate of 0.1 and 0.3 there might be better 
performance, so let’s try a learning rate of 0.2. The performance is 0.9537. That is indeed a tiny 
bit better than either 0.1 and 0.3 This idea of plotting graphs to get a better feel for what is going 
on is something you should consider in other scenarios too - pictures help us understand much 
better than a list of numbers! 
 
So we’ll stick with a learning rate of 0.2, which seems to be a sweet spot for the MNIST data set 
and our neural network.  
 
By the way, if you run this code yourself, your own scores will be slightly different because the 
whole process is a little random. Your initial random weights won’t be the same as my initial 
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random weights, and so your own code will take a different route down the gradient descent 
than mine. 
 
Some Improvements: Doing Multiple Runs 
The next improvement we can do is to repeat the training several times against the data set. 
Some people call each run through an epoch. So a training session with 10 epochs means 
running through the entire training data set 10 times. Why would we do that? Especially if the 
time our computers take goes up to 10 or 20 or even 30 minutes? The reason it is worth doing is 
that we’re helping those weights do that gradient descent by providing more chances to creep 
down those slopes.  
 
Let’s try it with 2 epochs. The code changes slightly because we now add an extra loop around 
the training code. The following shows this outer loop colour coded to help see what’s 
happening. 
 

# train the neural network 
 
# epochs is the number of times the training data set is used for 
training 
epochs = 10 
 
for e in range(epochs): 
    # go through all records in the training data set 
    for record in training_data_list: 
        # split the record by the ',' commas 
        all_values = record.split(',') 
        # scale and shift the inputs 
        inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 
0.01 
        # create the target output values (all 0.01, except the 
desired label which is 0.99) 
        targets = numpy.zeros(output_nodes) + 0.01 
        # all_values[0] is the target label for this record 
        targets[int(all_values[0])] = 0.99 
        n.train(inputs, targets) 
        pass 
    pass 

 
The resulting performance with 2 epochs is 0.9579, a small improvement over just 1 epoch. 
 
Just like we did with tweaking the learning rate, let’s experiment with a few different epochs and 
plot a graph to visualise the effect this has. Intuition suggests the more training you do the better 
the performance. Some of you will realise that too much training is actually bad because the 
network overfits to the training data, and then performs badly against new data that it hasn’t 
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seen before. This overfitting is something to beware of across many different kinds of machine 
learning, not just neural networks. 
 
Here’s what happens: 
 

 
 
You can see the results aren’t quite so predictable. You can see there is a sweet spot around 5 
or 7 epochs. After that performance degrades, and this may be the effect of overfitting. The dip 
at 6 epochs is probably a bad run with the network getting stuck in a bad minimum during 
gradient descent. Actually, I would have expected much more variation in the results because 
we’ve not done many experiments for each data point to reduce the effect of expected 
variations from what is essentially a random process. That’s why I’ve left that odd point for 6 
epochs in, to remind us that neural network learning is a random process at heart and can 
sometimes not work so well, and sometimes work really badly. 
 
Another idea is that the learning rate is too high for larger numbers of epochs. Lets try this 
experiment again and tune down the learning rate from 0.2 down to 0.1 and see what happens. 
 
The peak performance is now up to 0.9628, or 96.28%, with 7 epochs. 
 
The following graph shows the new performance with learning rate at 0.1 overlaid onto the 
previous one.  
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You can see that calming down the learning rate did indeed produce better performance with 
more epochs. That peak of 0.9689 represents an approximate error rate of 3%, which is 
comparable to the networks benchmarks on Yann LeCun’s website. 
 
Intuitively it makes sense that if you plan to explore the gradient descent for much longer (more 
epochs), you can afford to take shorter steps (learning rate), and overall you’ll find a better path 
down. It does seem that 5 epochs is probably the sweet spot for this neural network against this 
MNIST learning task. Again keep in mind that we did this in a fairly unscientific way. To do it 
properly you would have to do this experiment many times for each combination of learning 
rates and epochs to minimise the effect of randomness that is inherent in gradient descent. 
 
Change Network Shape 
One thing we haven’t yet tried, and perhaps should have earlier, is to change the shape of the 
neural network. Let’s try changing the number of middle hidden layer nodes. We’ve had them 
set to 100 for far too long! 
 
Before we jump in and run experiments with different numbers of hidden nodes, let’s think about 
what might happen if we do. The hidden layer is the layer which is where the learning happens. 
Remember the input nodes simply bring in the input signals, and the output nodes simply push 
out the network’s answer. It’s the hidden layer (or layers) which have to learn to turn the input 
into the answer. It’s where the learning happens. Actually, it’s the link weights before and after 
the hidden nodes that do the learning, but you you know what I mean. 
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If we had too few hidden nodes, say 3, you can image there is no way there is enough space to 
learn whatever a network learns, to somehow turn all the inputs into the correct outputs. It would 
be like asking a car with 5 seats to carry 10 people. You just can’t fit that much stuff inside. 
Computer scientists call this kind of limit a learning capacity. You can’t learn more than the 
learning capacity, but you can change the vehicle, or the network shape, to increase the 
capacity.  
 
What if we had 10000 hidden nodes? Well we won’t be short of learning capacity, but we might 
find it harder to train the network because now there are too many options for where the 
learning should go. Maybe it would take 10000s of epochs to train such a network.  
 
Let’s run some experiments and see what happens. 
 

 
 
You can see that for low numbers of hidden nodes the results are not as good for higher 
numbers. We expected that. But the performance from just 5 hidden nodes was 0.7001. That is 
pretty amazing given that from such few learning locations the network is still about 70% right. 
Remember we’ve been running with 100 hidden nodes thus far. Just 10 hidden nodes gets us 
0.8998 accuracy, which again is pretty impressive. That’s 1/10th of the nodes we’ve been used 
to, and the network’s performance jumps to 90%.  
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This point is worth appreciating. The neural network is able to give really good results with so 
few hidden nodes, or learning locations. That’s a testament to their power. 
 
As we increase the number of hidden nodes, the results do improve but not as drastically. The 
time taken to train the network also increases significantly, because each extra hidden node 
means new network links to every node in the preceding and next layers, which all require lots 
more calculations! So we have to choose a number of hidden nodes with a tolerable run time. 
For my computer that’s 200 nodes. Your computer may be faster or slower. 
 
We’ve also set a new record for accuracy, with 0.9751 with 200 nodes. And a long run with 500 
nodes gave us 0.9762. That’s really good compared to the benchmarks listed on LeCun’s 
website.  
 
Looking back at the graphs you can see that the previous stubborn limit of about 95% accuracy 
was broken by changing the shape of the network. 
 
 
Good Work! 
Looking back over this work, we’ve created a neural network using only the simple concepts we 
covered earlier, and using simple Python. 
 
And that neural network has performed so well, without any extra fancy mathematical magic, its 
performance is very respectable compared to networks that academics and researchers make.  
 
There’s more fun in part three of guide, but even if you don’t explore those ideas, don’t hesitate 
to experiment further with the neural network you’ve already made - try a different number of 
hidden nodes, or a different scaling, or even a different activation function, just to see what 
happens. 
 
Final Code 
The following shows the final code in case you can’t access the code on github, or just prefer a 
copy here for easy reference.  
 

# python notebook for Make Your Own Neural Network 
# code for a 3-layer neural network, and code for learning the MNIST 
dataset 
# (c) Tariq Rashid, 2016 
# license is GPLv2 
 
 
import numpy 
# scipy.special for the sigmoid function expit() 
import scipy.special 
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# library for plotting arrays 
import matplotlib.pyplot 
# ensure the plots are inside this notebook, not an external window 
%matplotlib inline 
 
# neural network class definition 
class neuralNetwork: 
  
  
    # initialise the neural network 
    def __init__(self, inputnodes, hiddennodes, outputnodes, 
learningrate): 
        # set number of nodes in each input, hidden, output layer 
        self.inodes = inputnodes 
        self.hnodes = hiddennodes 
        self.onodes = outputnodes 
  
        # link weight matrices, wih and who 
        # weights inside the arrays are w_i_j, where link is from 
node i to node j in the next layer 
        # w11 w21 
        # w12 w22 etc  
        self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), 
(self.hnodes, self.inodes)) 
        self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5), 
(self.onodes, self.hnodes)) 
 
        # learning rate 
        self.lr = learningrate 
  
        # activation function is the sigmoid function 
        self.activation_function = lambda x: scipy.special.expit(x) 
  
        pass 
 
  
    # train the neural network 
    def train(self, inputs_list, targets_list): 
        # convert inputs list to 2d array 
        inputs = numpy.array(inputs_list, ndmin=2).T 
        targets = numpy.array(targets_list, ndmin=2).T 
  
        # calculate signals into hidden layer 
        hidden_inputs = numpy.dot(self.wih, inputs) 
        # calculate the signals emerging from hidden layer 
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        hidden_outputs = self.activation_function(hidden_inputs) 
  
        # calculate signals into final output layer 
        final_inputs = numpy.dot(self.who, hidden_outputs) 
        # calculate the signals emerging from final output layer 
        final_outputs = self.activation_function(final_inputs) 
  
        # output layer error is the (target - actual) 
        output_errors = targets - final_outputs 
        # hidden layer error is the output_errors, split by weights, 
recombined at hidden nodes 
        hidden_errors = numpy.dot(self.who.T, output_errors)  
  
        # update the weights for the links between the hidden and 
output layers 
        self.who += self.lr * numpy.dot((output_errors * 
final_outputs * (1.0 - final_outputs)), 
numpy.transpose(hidden_outputs)) 
  
        # update the weights for the links between the input and 
hidden layers 
        self.wih += self.lr * numpy.dot((hidden_errors * 
hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs)) 
  
        pass 
 
  
    # query the neural network 
    def query(self, inputs_list): 
        # convert inputs list to 2d array 
        inputs = numpy.array(inputs_list, ndmin=2).T 
  
        # calculate signals into hidden layer 
        hidden_inputs = numpy.dot(self.wih, inputs) 
        # calculate the signals emerging from hidden layer 
        hidden_outputs = self.activation_function(hidden_inputs) 
  
        # calculate signals into final output layer 
        final_inputs = numpy.dot(self.who, hidden_outputs) 
        # calculate the signals emerging from final output layer 
        final_outputs = self.activation_function(final_inputs) 
  
        return final_outputs 
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# number of input, hidden and output nodes 
input_nodes = 784 
hidden_nodes = 200 
output_nodes = 10 
 
# learning rate 
learning_rate = 0.1 
 
 
# create instance of neural network 
n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, 
learning_rate) 
 
# load the mnist training data CSV file into a list 
training_data_file = open("mnist_dataset/mnist_train.csv", 'r') 
training_data_list = training_data_file.readlines() 
training_data_file.close() 
 
 
# train the neural network 
 
# epochs is the number of times the training data set is used for 
training 
epochs = 5 
 
for e in range(epochs): 
    # go through all records in the training data set 
    for record in training_data_list: 
        # split the record by the ',' commas 
        all_values = record.split(',') 
        # scale and shift the inputs 
        inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 
0.01 
        # create the target output values (all 0.01, except the 
desired label which is 0.99) 
        targets = numpy.zeros(output_nodes) + 0.01 
        # all_values[0] is the target label for this record 
        targets[int(all_values[0])] = 0.99 
        n.train(inputs, targets) 
        pass 
    pass 
 
 
# load the mnist test data CSV file into a list 
test_data_file = open("mnist_dataset/mnist_test.csv", 'r') 
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test_data_list = test_data_file.readlines() 
test_data_file.close() 
 
 
# test the neural network 
 
# scorecard for how well the network performs, initially empty 
scorecard = [] 
 
# go through all the records in the test data set 
for record in test_data_list: 
    # split the record by the ',' commas 
    all_values = record.split(',') 
    # correct answer is first value 
    correct_label = int(all_values[0]) 
    # scale and shift the inputs 
    inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 
    # query the network 
    outputs = n.query(inputs) 
    # the index of the highest value corresponds to the label 
    label = numpy.argmax(outputs) 
    # append correct or incorrect to list 
    if (label == correct_label): 
        # network's answer matches correct answer, add 1 to 
scorecard 
        scorecard.append(1) 
    else: 
        # network's answer doesn't match correct answer, add 0 to 
scorecard 
        scorecard.append(0) 
        pass 
  
    pass 
 
 
# calculate the performance score, the fraction of correct answers 
scorecard_array = numpy.asarray(scorecard) 
print ("performance = ", scorecard_array.sum() / 
scorecard_array.size) 
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Part 3 - Even More Fun 
 
 

“If you don’t play, you don’t learn.” 
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In this part of the guide we’ll explore further ideas just because they’re fun. They aren’t 
necessary to understanding the basic of neural networks so don’t feel you have to understand 
everything here. 
 
Because this is a fun extra section, the pace will be slightly quicker, but we will still try to explain 
the ideas in plain English. 
 
 
Your Own Handwriting 
Throughout this guide we’ve been using images of handwritten numbers from the MNIST 
dataset. Why not use your own handwriting? 
 
In this experiment, we’ll create our test dataset using our own handwriting. We’ll also try using 
different styles of writing, and noisy or shaky images to see how well our neural network copes.  
 
You can create images using any image editing or painting software you like. You don’t have to 
use the expensive Photoshop, the GIMP is a free open source alternative available for 
Windows, Mac and Linux. You can even use a pen on paper and photograph your writing with a 
smartphone or camera, or even use a proper scanner. The only requirement is that the image is 
square (the width is the same as the length) and you save it as PNG format. You’ll often find the 
saving format option under File > Save As, or File > Export in your favourite image editor. 
 
Here are some images I made. 
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The number 5 is simply my own handwriting. The 4 is done using a chalk rather than a marker. 
The number 3 is my own handwriting but deliberately with bits chopped out. The 2 is a very 
traditional newspaper or book typeface but blurred a bit. The 6 is a deliberately wobbly shaky 
image, almost like a reflection in water. The last image is the same as the previous one but with 
noise added to see if we can make the neural network’s job even harder! 
 
This is fun but there is a serious point here. Scientists have been amazed at the human brain’s 
ability to continue to function amazingly well after suffering damage. The suggestion is that 
neural networks distribute what they’ve learned across several link weights, which means if they 
suffer some damage, they can perform fairly well. This also means that they can perform fairly 
well if the input image is damaged or incomplete. That’s a powerful thing to have. That’s what 
we want to test with the chopped up 3 in the image set above.  
 
We’ll need to create smaller versions of these PNG images rescaled to 28 by 28 pixels, to 
match what we’ve used from the MNIST data. You can use your image editor to do this. 
 
Python libraries again help us out with reading and decoding the data from common image file 
formats, including the PNG format. Have a look at the following simple code: 
 

import scipy.misc 
img_array = scipy.misc.imread(image_file_name, flatten=True) 
 
img_data  = 255.0 - img_array.reshape(784) 
img_data = (img_data / 255.0 * 0.99) + 0.01 
 

The scipy.misc.imread() function is the one that helps us get data out of image files such as 
PNG or JPG files. We have to import  the scipy.misc library to use it. The “flatten=True” 
parameter turns the image into simple array of floating point numbers, and if the image were 
coloured, the colour values would be flattened into grey scale, which is what we need. 
 
The next line reshapes the array from a 28x28 square into a long list of values, which is what we 
need to feed to our neural network. We’ve done that many times before. What is new is the 
subtraction of the array’s values from 255.0. The reason for this is that it is conventional for 0 to 
mean black and 255 to mean white, but the MNIST data set has this the opposite way around, 
so we have to reverse the values to match what the MNIST data does. 
 
The last line does the familiar rescaling of the data values so they range from 0.01 to 1.0. 
 
Sample code to demonstrate the reading of PNG files is always online at gihub: 
 

● https://github.com/makeyourownneuralnetwork/makeyourownneuralnetwork/blob/master/
part3_load_own_images.ipynb 
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We need to create a version of our basic neural network program that trains on the MNIST 
training data set but instead of testing with the MNIST test set, it tests against data created from 
our own images.  
 
The new program is online at github: 
 

● https://github.com/makeyourownneuralnetwork/makeyourownneuralnetwork/blob/master/
part3_neural_network_mnist_and_own_data.ipynb 

 
Does it work? It does! The following summarises the results of querying with our own images. 
 

 
 
You can see that the neural network recognised all of the images we created, including the 
deliberately damaged “3”. Only the “6” with added noise failed. 
 
Try it with your own images, especially handwritten, to prove to yourself that the neural network 
really does work.  
 
And see how far you can go with damaged or deformed images. You’ll be impressed with how 
resilient the neural network is. 
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Inside the Mind of a Neural Network 
Neural networks are useful for solving the kinds of problems that we don’t really know how to 
solve with simple crisp rules. Imagine writing a set of rules to apply to images of handwritten 
numbers in order to decide what the number was. You can imagine that wouldn’t be easy, and 
our attempts probably not very successful either.  
 
Mysterious Black Box 
Once a neural network is trained, and performs well enough on test data, you essentially have a 
mysterious black box. You don’t really know how it works out the answer - it just does.  
 
This isn’t always a problem if you’re just interested in answers, and don’t really care how they’re 
arrived at. But it is a disadvantage of these kinds of machine learning methods - the learning 
doesn’t often translate into understanding or wisdom about the problem the black box has 
learned to solve. 
 
Let’s see if we can take a peek inside our simple neural network to see if we can understand 
what it has learned, to visualise the knowledge it has gathered through training. 
 
We could look at the weights, which is after all what the neural network learns. But that’s not 
likely to be that informative. Especially as the way neural networks work is to distribute their 
learning across different link weights. This gives them an advantage in that they are resilient to 
damage, just like biological brains are. It’s unlikely that removing one node, or even quite a few 
nodes, will completely damage the ability of a neural network to work well.  
 
Here’s a crazy idea. 
 
Backwards Query 
Normally, we feed a trained neural network a question, and out pops an answer. In our 
example, that question is an image of a human handwritten number. The answer is a label 
representing a number from 0 to 9. 
 
What if we turned this around and did it backwards? What if we fed a label into the output 
nodes, and fed the signal backwards through the already-trained network, until out popped an 
image from the input nodes? The following diagram shows the normal forward query, and this 
crazy reverse back query idea.  
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We already know how to propagate signals through a network, moderating them with link 
weights, and recombining them at nodes before applying an activation function. All this works 
for signals flowing backwards too, except that the inverse activation is used. If y = f(x) was the 
forward activation then the inverse is x = g(y). This isn’t that hard to work out for the logistic 
function using simple algebra: 
 

y = 1 / (1 + e-x) 
 

1 + e-x = 1/y 
 

e-x = (1/y) -1 = (1 - y) / y 
 

-x = ln [ (1-y) / y ] 
 

x = ln [ y / (1-y) ] 
 
This is called the logit function, and the Python scipy.special library provides this function as 
scipy.special.logit(), just like it provides scipy.special.expit() for the logistic sigmoid function. 
 
Before applying the logit() inverse activation function, we need to make sure the signals are 
valid. What does this mean? Well, you remember the logistic sigmoid function takes any value 
and outputs a value somewhere between 0 and 1, but not including 0 and 1 themselves. The 
inverse function must take values from the same range, somewhere between 0 and 1, excluding 
0 and 1, and pop out a value that could be any positive or negative number. To achieve this, we 
simply take all the values at a layer about to have the logit() applied, and rescale them to the 
valid range. I’ve chosen the range 0.01 to 0.99. 
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The code is always available online at github at the following link: 

● https://github.com/makeyourownneuralnetwork/makeyourownneuralnetwork/blob/master/
part3_neural_network_mnist_backquery.ipynb

The Label “0” 
Let’s see what happens if we do a back query with the label “0”. That is, we present values to 
the output nodes which are all 0.01 except for the first node representing the label “0” where we 
use the value 0.99. In other words, the array [0.99, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 
0.01]. 

The following shows the image that pops out of the input nodes. 

 

That is interesting!

That image is a privileged insight into the mind of a neural network. What does it mean? How do 
we interpret it?

The main thing we notice is that there is a round shape in the image. That makes sense,
because we’re asking the neural network what the ideal question is for an answer to be “0”.  

We also notice dark, light and some medium grey areas: 

● The dark areas are the parts of the question image which, if marked by a pen, make up 
supporting evidence that the answer should be a “0”. These make sense as they seem 
to form the outline of a zero shape. 
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● The light areas are the bits of the question image which should remain clear of any pen 
marks to support the case that the answer is a “0”. Again these make sense as they form 
the middle part of a zero shape.  

 
● The neural network is broadly indifferent to the grey areas.  

 
So we have actually understood, in a rough sense, what the neural network has learned about 
classifying images with the label “0”.  
 
That’s a rare insight as more complex networks with more layers, or more complex problems, 
may not have such readily interpretable results. You’re encouraged to experiment and gave a 
go yourself! 
 
More Brain Scans 
The following shows the results of back querying the rest of the digits. 
 

 
 
Wow! Again some really interesting images. They're like ultrasound scans into the brain of the 
neural network. 
 
Some notes about these images: 
 

● The "7" is really clear. You can see the dark bits which, if marked in the query image, 
strongly suggest a label "7". You can also see the additional "white" area which must be 
clear of any marking. Together these two characteristics indicate a "7". 

 
● The same applies to the "3" - there are dark areas which, if marked, indicate a "3", and 

there are white areas which must be clear. 
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● The “2” and "5" are similarly clear too. 

 
● The "4" is interesting in that there is a shape which appears to have 4 quadrants, and 

excluded areas too.  
 

● The "8" is largely made up of a “snowman” shaped white areas suggesting that an eight 
is characterised by markings kept out of these “head and body” regions. 

 
● The “1” is rather puzzling. It seems to focus more on areas which much be kept clear 

than on areas which must be marked. That’s ok, it’s what the network happens to have 
learned from the examples. 

 
● The “9” is not very clear at all. It does have a definite dark area and some finer shapes 

for the white areas. This is what the network has learned, and overall, when combined 
with what it has learned for the rest of the digits, allows the network to perform really well 
at 97.5% accuracy. We might look at this image and conclude that more training 
examples might help the network learn a clearer template for “9”. 

 
So there you have it - a rare insight into the workings of the mind of a neural network. 
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Creating New Training Data: Rotations 
If you think about the MNIST training data you realise that it is quite a rich set of examples of 
how people write numbers. There are all sorts of styles of handwriting in there, good and bad 
too. 
 
The neural network has to learn as many of these variations as possible. It does help that there 
are many forms of the number “4” in there. Some are squished, some are wide, some are 
rotated, some have an open top and some are closed.  
 
Wouldn’t it be useful if we could create yet more such variations as examples? How would we 
do that? We can’t easy collect thousands more examples of human handwriting. We could but it 
would be very laborious.  
 
A cool idea is to take the existing examples, and create new ones from those by rotating them 
clockwise and anticlockwise, by 10 degrees for example. For each training example we could 
have two additional examples. We could create many more examples with different rotation 
angles, but for now let’s just try +10 and -10 degrees to see if the idea works. 
 
Python’s many extensions and libraries come to the rescue again. The 
ndimage.interpolation.rotate() can rotate an array by a given angle, which is exactly what we 
need. Remember that our inputs are a one-dimensional long list of length 784, because we’ve 
designed our neural networks to take a long list of input signals. We’ll need to reshape that long 
list into a 28*28 array so we can rotate it, and then unroll the result back into a 784 long list of 
input signals before we feed it to our neural network. 
 
The following code shows how we use the ndimage.interpolation.rotate() function, assuming we 
have the scaled_input array from before: 
 

# create rotated variations 
# rotated anticlockwise by 10 degrees 
inputs_plus10_img = 
scipy.ndimage.interpolation.rotate(scaled_input.reshape(28,28), 10, 
cval=0.01, reshape=False) 
# rotated clockwise by 10 degrees 
inputs_minus10_img = 
scipy.ndimage.interpolation.rotate(scaled_input.reshape(28,28), -10, 
cval=0.01, reshape=False) 

 
You can see that the original scaled_input array is reshaped to a 28 by 28 array, then scaled. 
That reshape=False parameter prevents the library from being overly helpful and squishing the 
image so that it all fits after the rotation without any bits being clipped off. The cval is the value 
used to fill in array elements because they didn’t exist in the original image but have now come 
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into view. We don’t want the default value of 0.0 but instead 0.01 because we’ve shifted the 
range to avoid zeros being input to our neural network. 
 
Record 6 (the seventh record) of the smaller MNIST training set is a handwritten number “1”. 
You can see the original and two additional variations produced by the code in the diagram 
below. 
 

 
 
You can see the benefits clearly. The version of the original image rotated +10 degrees provides 
an example where someone might have a style of writing that slopes their 1’s backwards. Even 
more interesting is the version of the original rotated -10 degrees, which is clockwise. You can 
see that this version is actually straighter than the original, and in some sense a more 
representative image to learn from.  
 
Let’s create a new Python notebook with the original neural network code, but now with 
additional training examples created by rotating the originals 10 degrees in both directions. This 
code is available online at github at the following link: 
 

● https://github.com/makeyourownneuralnetwork/makeyourownneuralnetwork/blob/master/
part2_neural_network_mnist_data_with_rotations.ipynb 

 
An initial run with learning rate set to 0.1, and only one training epoch, the resultant 
performance was 0.9669. That’s a solid improvement over 0.954 without the additional rotated 
training images. This performance is already amongst the better ones listed on Yann LeCunn’s 
website.  
 
Let’s run a series of experiments, varying the number of epochs to see if we can push this 
already good performance up even more. Let’s also reduce the learning rate to 0.01 because 
we are now creating much more training data, so can afford to take smaller more cautious 
learning steps, as we’ve extended the learning time overall. 
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Remember that we don’t expect to get 100% as there is very likely an inherent limit due to our 
specific neural network architecture or the completeness of our training data, so we may never 
hope to get above 98% or some other figure. By “specific neural network architecture” we mean 
the choice of nodes in each layer, the choice of hidden layers, the choice of activation function, 
and so on. 
 
Here’s the graph showing the performance as we vary the angle of additional rotated training 
images. The performance without the additional rotated training examples is also shown for 
easy comparison.  
 

 
 
You can see that with 5 epochs the best result is 0.9745 or 97.5% accuracy. That is a jump up 
again on our previous record.  
 
It is worth noticing that for large angles the performance degrades. That makes sense, as large 
angles means we create images which don’t actually represent the numbers at all. Imagine a “3” 
on its side at 90 degrees. That’s not a three anymore. So by adding training examples with 
overly rotated images, we’re reducing the quality of the training by adding false examples. Ten 
degrees seems to be the optimal angle for maximising the value of additional data. 
 
The performance for 10 epochs peaks at a record breaking 0.9787 or almost 98%! That is really 
a stunning result, amongst the best for this kind of simple network. Remember we haven’t done 
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any fancy tricks to the network or data that some people will do, we’ve kept it simple, and still 
achieved a result to be very proud of.  
 

 
 
Well done! 
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Epilogue 
 
In this guide I hope that you have seen how some problems are easy for humans to solve, but 
hard for traditional computer approaches. Image recognition is one of these so-called “artificial 
intelligence” challenges. 
 
Neural networks have enabled huge progress on image recognition, and a wide range of other 
kinds of hard problems too. A key part of their early motivation was the puzzle that biological 
brains - like pigeon or insect brains - appeared to be simpler and slower, than today’s huge 
supercomputers and yet they could carry out complex tasks like flight, feeding and building 
homes. Those biological brains also seemed extremely resilient to damage, or to imperfect 
signals. Digital computers and traditional computing weren’t either of these things. 
 
Today, neural networks are a key part of some of the most fantastic successes in artificial 
intelligence. There is continued huge interest in neural networks and machine learning, 
especially deep learning - where a hierarchy of machine learning methods are used. In early 
2016, Google’s DeepMind beat a world master at the ancient game of Go. This is a massive 
milestone for artificial intelligence, because Go requires much deeper strategy and nuance than 
chess, for example, and researchers had thought a computer playing that well was years off. 
Neural networks played a key role in that success. 
 
I hope you’ve seen how the core ideas behind neural networks are actually quite simple. And I 
hope you’ve had fun experimenting with neural networks too. Perhaps you’ve developed an 
interest to explore other kinds of machine learning and artificial intelligence. 
 
If you’ve done any of these things, I’ve succeeded. 
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Appendix A: 
A Gentle Introduction to Calculus 

 
Imagine you’re in a car cruising smoothly and relaxed at a constant 30 miles per hour. Imagine 
you then press the accelerator pedal. If you keep it pressed your speed increases to 35, 40, 50, 
and 60 miles per hour. 
 
The speed of the car changes. 
 
In this section we’ll explore the idea of things changing - like the speed of a car - and how to 
work out that change mathematically. What do we mean, mathematically? We mean 
understanding how things are related to each other, so we can work out precisely how  changes 
in one result in changes in another. Like car speed changing with the time on my watch. Or 
plant height changing with rain levels. Or the extension of a metal spring changing as we apply 
different amounts of pulling force.  
 
This is called calculus by mathematicians. I hesitated about calling this section calculus 
because many people seem to think that is a hard scary subject to be avoided. That’s a real 
shame, and the fault of bad teaching and terrible school textbooks.  
 
By the end of this appendix, you’ll see that working out how things change in a mathematically 
precise way - because that’s all calculus really is - is not that difficult for many useful scenarios. 
 
Even if you’ve done calculus or differentiation already, perhaps at school, it is worth going 
through this section because we will understand how calculus was invented back in history. The 
ideas and tools used by those pioneering mathematicians are really useful to have in your back 
pocket, and can be very helpful when trying to solve different kinds of problems in future.  
 
If you enjoy a good historical punch-up, look up the drama between Leibniz and Newton who 
both claimed to have invested calculus first! 
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A Flat Line 
Let’s first start with a very easy scenario to get ourselves settled and ready to go. 
 
Imagine that car again, but cruising at a constant speed of 30 miles per hour. Not faster, not 
slower, just 30 miles per hour.  
 
Here’s a table showing the speed at various points in time, measured every half a minute. 
 

Time (mins) Speed (mph) 

0.0 30 

0.5 30 

1.0 30 

1.5 30 

2.0 30 

2.5 30 

3.0 30 

 
The following graph visualises this speed at those several points in time.  
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You can see that the speed doesn’t change over time, that’s why it is a straight horizontal line. It 
doesn’t go up (faster) or down (slower), it just stays at 30 miles per hour. 

The mathematical expression for the speed, which we’ll call s, is

 

Now, if someone asked how the speed changes with time, we’d say it didn’t. The rate of change
is zero. In other words, the speed doesn’t depend on time. That dependency is zero. 

We’ve just done calculus! We have, really! 

Calculus is about establishing how things change as a result of other things changing. Here we 
are thinking about how speed changes with time.

There is a mathematical way of writing this.
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What are those symbols? Think of the symbols meaning “how speed changes when time 
changes”, or “how does s depend on t”.  
 
So that expression is a mathematician’s concise way of saying the speed doesn’t change with 
time. Or put another way, the passing of time doesn’t affect speed. The dependency of speed 
on time is zero. That’s what the zero in the expression means. They are completely 
independent. Ok, ok - we get it! 
 
In fact you can see this independence when you look again at the expression for the speed, s = 
30. There is no mention of the time in there at all. That is, there is no symbol t hidden in that 
expression. So we don’t need to do any fancy calculus to work out that ∂s / ∂t = 0, we can do it 
by simply looking at the expression. Mathematicians call this “by inspection”. 
 
Expressions like ∂s / ∂t, which explain a rate of change, are called derivatives. We don’t need 
to know this for our purposes, but you may come across that word elsewhere. 
 
Now let’s see what happens if we press the accelerator. Exciting! 
 
 
A Sloped Straight Line 
Imagine that same car going at 30 miles per hour. We press the accelerator gently and the car 
speeds up. We keep it pressed and watch the speed dial on the dashboard and note the speed 
every 30 seconds. 
 
After 30 seconds the car is going at 35 miles per hour. After 1 minute the car is now going at 40 
miles per hour. After 90 seconds it’s going at 45 miles per hour, and after 2 minutes it’s 50 miles 
per hour. The car keeps speeding up by 10 miles per hour every minute. 
 
Here’s the same information summarised in a table. 
 

Time (mins) Speed (mph) 

0.0 30 

0.5 35 

1.0 40 

1.5 45 

2.0 50 

2.5 55 

3.0 60 
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Let’s visualise this again. 

 

You can see that the speed increases from 30 miles per hour all the way up to 60 miles per hour
at a constant rate. You can see this is a constant rate because the increments in speed are the
same every half a minute and this leads to a straight line for speed.

What’s the expression for the speed? Well we must have speed 30 at time zero. And after that
we add an extra 10 miles per hour every minute. So the expression is as follows.

 

Or using symbols,  

 

You can see the constant 30 in there. And you can also see the (10 * time) which adds the 10
miles per hour for every minute. You’ll quickly realise that the 10 is the gradient of that line we
plotted. Remember the general form of straight lines is y = ax + b where a is the slope, or
gradient.

So what’s the expression for how speed changes with time? Well, we’ve already been talking
about it, speed increases 10 mph every minute.
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What this is saying, is that there is indeed a dependency between speed and time. This is 
because ∂s / ∂t is not zero.  
 
Remembering that the slope of a straight line y = ax + b is a, we can see “by inspection” that 
the slope of s = 30 + 10t will be 10.  
 
Great work! We’ve covered a lot of the basics of calculus already, and it wasn’t that hard at all. 
 
Now let’s hit that accelerator harder! 
 
 
A Curved Line 
Imagine I started the car from stationary and hit the accelerator hard and kept it pressed hard. 
Clearly the starting speed is zero because we’re not moving initially. 
 
Imagine we’re pressing the accelerator so hard that the car doesn’t increase it’s speed at a 
constant rate. Instead it increases it’s speed in faster way. That means, it is not adding 10 miles 
per hour every minute. Instead it is adding speed at a rate that itself goes up the longer we keep 
that accelerator pressed. 
 
For this example, let’s imagine the speed is measured every minute as shown in this table.  
 

Time (mins) Speed (mph) 

0 0 

1 1 

2 4 

3 9 

4 16 

5 25 

6 36 

7 49 
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8 64 

If you look closely you might have spotted that I’ve chosen to have the speed as the square of
the time in minutes. That is, the speed at time 2 is 22=4, and at time 3 is 32=9, and time 4 is 
42=16, and so on. 

The expression for this is easy to write too. 

Yes, I know this is a very contrived example of car speed, but it will illustrate really well how we 
might do calculus. 

Let’s visualise this so we can get a feel for how the speed changes with time. 

 

You can see the speed zooming upwards at an ever faster rate. The graph isn’t a straight line
now. You can imagine that the speed would explode to very high numbers quite quickly. At 20
minutes the speed would be 400 miles per hour. And at 100 minutes the speed would be 10,000
miles per hour!

The interesting question is - what’s the rate of change for the speed with respect to time? That
is, how does the speed change with time?
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This isn’t the same as asking, what is the actual speed at a particular time. We already know 
that because we have the expression s = t2.  
 
What we’re asking is this - at any point in time, what is the rate of change of speed? What does 
this even mean in this example where the graph is curved? 
 
If we think back to our previous two examples, we saw that the rate of change was the slope of 
the graph of speed against time. When the car was cruising at a constant 30, the speed wasn’t 
changing, so it’s rate of change was zero. When the car was getting faster steadily, it’s rate of 
change was 10 miles per hour every minute. And that 10 mph every minute was true for any 
point in time. At time 2 minutes the rate of change was 10 mph/min. And it was true at 4 minutes 
and would be true at 100 minutes too.  
 
Can we apply this same thinking to this curved graph? Yes we can - but let’s go extra slowly 
here. 
 
 
Calculus By Hand 
Let’s look more closely at what is happening at time 3 minutes.  
 
At 3 minutes, the speed is 9 miles per hour. We know it will be faster after 3 minutes. Let’s 
compare that with what is happening at 6 minutes. At 6 minutes, the speed is 36 miles per hour. 
We also know that the speed will be faster after 6 minutes.  
 
But we also know that a moment after 6 minutes the speed increase will be greater than an 
equivalent moment after 3 minutes. There is a real difference between what’s happening at time 
3 minutes and time 6 minutes.  
 
Let’s visualise this as follows. 
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You can see that the slope at time 6 minutes is steeper than at time 3 minutes. These slopes 
are the rate of change we want. This is an important realisation, so let’s say it again. The rate of 
change of a curve at any point, is the slope of the curve at that point. 
 
But how do we measure the slope of a line that is curved? Straight lines were easy, but curvy 
lines? We could try to estimate the slope by drawing a straight line, called a tangent, which just 
touches that curved line in a way that tries to be at the same gradient as the curve just at the 
point. This is in fact how people used to do it before other ways were invented.  
 
Let’s try this rough and ready method, just so we have some sympathy with that approach. The 
following diagram shows the speed graph with a tangent touching the speed curve at time 6 
minutes. 
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To work out the slope, or gradient, we know from school maths that we need to divide the height 
of the incline by the extent. In the diagram this height (speed) is shown as Δs, and the extent 
(time) is shown as Δt. That symbol, Δ called “delta”, just means a small change. So Δt is a 
small change in t. 
 
The slope is Δs / Δt. We could chose any sized triangle for the incline, and use a ruler to 
measure the height and extent. With my measurements I just happen to have a triangle with Δs 
measured as 9.6, and Δt as 0.8. That gives the slope as follows: 
 

 
 
We have a key result! The rate of change of speed at time 6 minutes is 12.0 mph per min. 
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You can see that relying on a ruler, and even trying to place a tangent by hand, isn’t going to be 
very accurate. So let’s get a tiny bit more sophisticated. 
 
 
Calculus Not By Hand 
Look at the following graph which has a new line marked on it. It isn’t the tangent because it 
doesn’t touch the curve only at a single point. But is does seem to be centred around time 3 
minutes in some way.  
 

 
 
In fact there is connection to time 3 minutes. What we’ve done is chosen a time above and 
below this point of interest at t=3. Here, we’ve selected points 2 minutes above and below t=3 
minutes. That is, t=1 and t=5 minutes.  
 
Using our mathematical notation, we say we have a Δx of 2 minutes. And we have chosen 
points x-Δx and x+Δx. Remember that symbol Δ just means a “small change”, so Δx is a small 
change in x. 
 
Why have we done this? It’ll become clear very soon - hang in there just a bit. 
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If we look at the speeds at times x-Δx and x+Δx, and draw a line between between those two 
points, we have something that very roughly has the same slope as a tangent at the middle 
point x. Have a look again at the diagram above to see that straight line. Sure, it’s not going to 
have exactly the same slope as a true tangent at x, but we’ll fix this. 
 
Let’s work out the gradient of this line. We use the same approach as before where the gradient 
is the height of the incline divided by the extent. The following diagram makes clearer what the 
height and extent is here. 
 

 
 
The height is the difference between the two speeds at x-Δx and x+Δx, that is, 1 and 5 minutes. 
We know the speeds are 12=1 and 52=25 mph at these points so the difference is 24. The extent 
is the very simple distance between x-Δx and x+Δx, that is, between 1 and 5, which is 4. So we 
have: 
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The gradient of the line, which is approximates the tangent at t=3 minutes, is 6 mph per min. 
 
Let’s pause and have a think about what we’ve done. We first tried to work out the slope of a 
curved line by hand drawing a tangent. This approach will never be accurate, and we can’t do it 
many many times because, being human, we’ll get tired, bored, and make mistakes. The next 
approach doesn’t need us to hand draw a tangent, instead we follow a recipe to create a 
different line which seems to have approximately the right slope. This second approach can be 
automated by a computer and done many times and very quickly, as no human effort is needed. 
 
That’s good but not good enough yet! 
 
That second approach is only an approximation. How can we improve it so it’s not an 
approximation? That’s our aim after all, to be able to work out how things change, the gradient, 
in a mathematically precise way. 
 
This is where the magic happens! We’ll see one of the neat tools that mathematicians have 
developed and had a bit too much fun with! 
 
What would happen if we made the extent smaller? Another way of saying that is, what would 
happen if we made the Δx smaller? The following diagram illustrates several approximations or 
slope lines resulting from a decreasing Δx. 
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We’ve drawn the lines for Δx = 2.0, Δx = 1.0, Δx = 0.5 and Δx = 0.1. You can see that the lines 
are getting closer to the point of interest at 3 minutes. You can imagine that as we keep making 
Δx smaller and smaller, the line gets closer and closer to a true tangent at 3 minutes. 
 
As Δx becomes infinitely small, the line becomes infinitely closer to the true tangent. That’s 
pretty cool! 
 
This idea of approximating a solution and improving it by making the deviations smaller and 
smaller is very powerful. It allows mathematicians to solve problems which are hard to attack 
directly. It’s a bit like creeping up to a solution from the side, instead of running at it head on! 
 
 
Calculus without Plotting Graphs 

 
- 202 - 



We said earlier, calculus is about understanding how things change in a mathematically precise 
way. Let’s see if we can do that by applying this idea of ever smaller Δx to the mathematical 
expressions that define these things - things like our car speed curves. 
 
To recap, the speed is a function of the time that we know to be s = t2. We want to know how 
the speed changes as a function of time. We’ve seen that is the slope of s when it is plotted 
against t.  
 
This rate of change ∂s / ∂t is the height divided by the extent of our constructed lines but where 
the Δx gets infinitely small. 
 
What is the height? It is (t + Δx)2 - (t - Δx)2 as we saw before. This is just s = t2 where t is a bit 
below and a bit above the point of interest. That amount of bit is Δx. 
 
What is the extent? As we saw before, it is simply the distance between (t + Δx) and (t - Δx) 
which is 2Δx. 
 
We’re almost there,  
 

 
 
Let’s expand and simplify that expression, 
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We’ve actually been very lucky here because the algebra simplified itself very neatly.  
 
So we’ve done it! The mathematically precise rate of change is ∂s / ∂t = 2t. That means for any 
time t, we know the rate of change of speed ∂s / ∂t = 2t. 
 
At t = 3 minutes we have ∂s / ∂t = 2t = 6. We actually confirmed that before using the 
approximate method. For t = 6 minutes, ∂s / ∂t = 2t = 12, which nicely matches what we found 
before too.  
 
What about t = 100 minutes? ∂s / ∂t = 2t = 200 mph per minute. That means after 100 minutes, 
the car is speeding up at a rate of 200 mph per minute.  
 
Let’s take a moment to ponder the magnitude and coolness of what we just did. We have a 
mathematical expression that allows us to precisely know the rate of change of the car speed at 
any time. And following our earlier discussion, we can see that changes in s do indeed depend 
on time.  
 
We were lucky that the algebra simplified nicely, but the simple s = t2 didn’t give us an 
opportunity to try reducing the Δx in an intentional way. So let’s try another example where the 
speed of the car is only just a bit more complicated, 
 

 
 
What is the height now? It is the difference between s calculated at t+Δx and s calculated at 
t-Δx. That is, the height is (t + Δx)2 + 2(t + Δx) - (t - Δx)2 - 2(t - Δx). 
 
What about the extent? It is simply the distance between (t + Δx) and (t - Δx) which is still 2Δx. 
 

 
 
Let’s expand and simplify that expression, 
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That’s a great result! Sadly the algebra again simplified a little too easily. It wasn’t wasted effort 
because there is a pattern emerging here which we’ll come back to. 
 
Let’s try a another example, which isn’t that much more complicated. Let’s set the speed of the 
car to be the cube of the time. 
 

 
 
Let’s expand and simplify that expression, 
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Now this is much more interesting! We have a result which contains a Δx, whereas before they 
were all cancelled out.  
 
Well, remember that the gradient is only correct as the Δx gets smaller and smaller, infinitely 
small.  
 
This is the cool bit! What happens to the Δx in the expression ∂s / ∂t = 3t2 + Δx2 as Δx gets 
smaller and smaller? It disappears! If that sounds surprising, think of a very small value for Δx. If 
you try, you can think of an even smaller one. And an even smaller one .. and you could keep 
going forever, getting ever closer to zero. So let’s just get straight to zero and avoid all that 
hassle. 
 
That gives is the mathematically precise answer we were looking for: 
 

 
 
That’s a fantastic result, and this time we used a powerful mathematical tool to do calculus, and 
it wasn’t that hard at all.  
 
 
Patterns 
As fun as it is to work out derivatives using deltas like Δx and seeing what happens when we 
make them smaller and smaller, we can often do it without doing all that work. 
 
See if you can see any pattern in the derivatives we’ve worked out so far: 
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You can see that the derivative of a function of t is the same function but with each power of t 
reduced by one. So t4 becomes t3, and t7 would become t6, and so on. That’s really easy! And if 
you remember that t is just t1, then in the derivative it becomes t0, which is 1.  
 
Constant numbers on their own like 3 or 4 or 5 simply disappear. Constant variables on their 
own, which we might call a, b or c, also disappear, because they too have no rate of change. 
That’s why they’re called constants. 
 
But hang on, t2 became 2t not just t. And t3 became 3t2 not just t2. Well there is an extra step 
where the power is used as a multiplier before it is reduced. So the 5 in 2t5 is used as an 
additional multiplier before the power is reduced 5*2t4 = 10t4. 
 
The following summarises this power rule for doing calculus. 
 

 
 
Let’s try it on some more examples just to practice this new technique. 
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So this rule allows us to do quite a lot of calculus and for many purposes it’s all the calculus we 
need. Yes, it only works for polynomials, that is expressions made of variables with powers like 
y = ax3 + bx2 + cx + d, and not with things like sin(x) or cos(x). That’s not a major flaw because 
there are a huge number of uses for doing calculus with this power rule. 
 
However for neural networks we do need one extra tool, which we’ll look at next.  
 
 
Functions of Functions 
Imagine a function 
 

 
 
where y is itself 
 

 
 
We can write this as f = (x3 + x)2 if we wanted to. 
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How does f change with y? That is, what is ∂f / ∂y ? This is easy as we just apply the power rule 
we just developed, multiplying and reducing the power, so ∂f / ∂y = 2y.  
 
What about a more interesting question - how does f change with x? Well we could expand out 
the expression f = (x3 + x)2 and apply this same approach. We can’t can’t apply it naively to (x3 
+ x)2 to become 2(x3 + x). 
 
If we worked many of these out the long hard way, using the diminishing deltas approach like 
before, we’d stumble upon another set of patterns. Let’s jump straight to the answer. 
 
The pattern is this: 
 

 
 
This is a very powerful result, and is called the chain rule.  
 
You can see that it allows us to work out derivatives in layers, like onion rings, unpacking each 
layer of complexity. To work out ∂f / ∂x we might find it easier to work out ∂f / ∂y and then also 
easier to work out ∂y / ∂x. If these are easier, we can then do calculus on expressions that 
otherwise look quite impossible. The chain rule allows us to break a problem into smaller easier 
ones. 
 
Let’s look at that example again and apply this chain rule: 
 

 
 
We now work out the easier bits. The first bit is ( ∂f / ∂y ) = 2y. The second bit is ( ∂y / ∂x ) = 3x2 
+ 1. So recombining these bits using the chain rule we get 
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We know that y = x3 + x so we can have an expression with only x 
 

 
 
Magic! 
 
You may challenge this as ask why we didn’t just expand out f in terms of x first and then apply 
simple power rule calculus to the resulting polynomial. We could have done that, but we 
wouldn’t have illustrated the chain rule, which allows us to crack much harder problems. 
 
Let’s look at just one final example because it shows us how to handle variables which are 
independent of other variables.  
 
If we have a function 
 

 
 
where x, y and z are independent of each other. What do we mean by independent? We mean 
that x, y and z can be any value and don’t care what the other variables are - they aren’t 
affected by changes in the other variables. This wasn’t the case in previous example where y 
was x3 + x, so y was dependent on x.  
 
What is ∂f / ∂x? Let’s look at each part of that long expression. The first bit is 2xy, so the 
derivative is 2y. Why is this so simple? It’s simple because y is not dependent on x. What we’re 
asking when we say ∂f / ∂x is how does f change when x changes. If y doesn’t depend on x, we 
can treat it like a constant. That y might as well be another number like 2 or 3 or 10.  
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Let’s carry on. The next bit is 3x2z. We can apply the power reduction rule to get 2*3xz or 6xz. 
We treat z as just a boring constant number like 2 or 4 or maybe 100, because x and z are 
independent of each other. A change in z doesn’t affect x.  
 
The final bit 4z has no x in it at all. So it vanishes completely, because we treat it like a plain 
constant number like 2 or 4. 
 
The final answer is 
 

 
 
The important thing in this last example is having the confidence to ignore variables that you 
know are independent. It makes doing calculus on quite complex expressions drastically 
simpler, and it is an insight we’ll need lots when looking at neural networks. 
 
 
You can do Calculus! 
If you got this far, well done! 
 
You have a genuine insight into what calculus really is, and how it was invented using 
approximations that get better and better. You can always try these methods on other tough 
problems that resist normal ways for solving them. 
 
The two techniques we learned, reducing powers and the chain rule, allows us to do quite a lot 
of calculus, including understanding how neural networks really work and why. 
 
Enjoy your new powers! 
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Appendix B: 
Do It with a Raspberry Pi 

 
In this section we will aim to get IPython set up on a Raspberry Pi. 
 
There are several good reasons for doing this: 
 

● Raspberry Pis are fairly inexpensive and accessible to many more people than 
expensive laptops. 

 
● Raspberry Pis are very open - they run the free and open source Linux operating 

system, together with lots of free and open source software, including Python. Open 
source is important because it is important to understand how things work, to be able to 
share your work and enable others to build on your work. Education should be about 
learning how things work, and making your own, and not be about learning to buy closed 
proprietary software. 

 
● For these and other reasons, they are wildly popular in schools and at home for children 

who are learning about computing, whether it is software or building hardware projects. 
 

● Raspberry Pis are not as powerful as expensive computers and laptops. So it is an 
interesting and worthy challenge to be prove that you can still implement a useful neural 
network with Python on a Raspberry Pi. 

 
I will use a Raspberry Pi Zero because it is even cheaper and smaller than the normal 
Raspberry Pis, and the challenge to get a neural network running is even more worthy! It costs 
about £4 UK pounds, or $5 US dollars. That wasn’t a typo! 
 
Here’s mine, shown next to a 2 penny coin. It’s tiny! 
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Installing IPython 
We’ll assume you have a Raspberry Pi powered up and a keyboard, mouse, display and access 
to the internet working.  
 
There are several options for an operating system, but we’ll stick with the most popular which is 
the officially supported Raspian, a version of the popular Debian Linux distribution designed to 
work well with Raspberry Pis. Your Raspberry Pi probably came with it already installed. If not 
install it using the instructions at that link. You can even buy an SD memory card with it already 
installed, if you’re not confident about installing operating systems. 
 
This is the desktop you should see when you start up your Raspberry Pi. 
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You can see the menu button clearly at the top left, and some shortcuts along the top too.  
 
We’re going to install IPython so we can work with the more friendly notebooks through a web 
browser, and not have to worry about source code files and command lines. 
 
To get IPython we do need to work with the command line, but we only need to do this once, 
and the recipe is really simple and easy. 
 
Open the Terminal application, which is the icon shortcut at the top which looks like a black 
monitor. If you hover over it, it’ll tell you it is the Terminal. When you run it, you’ll be presented 
with a black box, into which you type commands, looking like the this. 
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Your Raspberry Pi is very good because it won’t allow normal users to issue commands that 
make deep changes. You have to assume special privileges. Type the following into the 
terminal: 
 

sudo su - 
 
You should see the prompt end in with a ‘#’ hash character. It was previously a ‘$’ dollar sign. 
That shows you now have special privileges and you should be a little careful what you type.  
 
The following commands refresh your Raspberry’s list of current software, and then update the 
ones you’ve got installed, pulling in any additional software if it’s needed. 
 

apt-get upgrade 
apt-get update 

 
Unless you already refreshed your software recently, there will likely be software that needs to 
be updated. You’ll see quite a lot of text fly by. You can safely ignore it. You may be prompted 
to confirm the update by pressing “y”.  
 
Now that our Raspberry is all fresh and up to date, issue the command to get IPython. Note 
that, at the time of writing, the Raspian software packages don’t contain a sufficiently recent 
version of IPython to work with the notebooks we created earlier and put on github for anyone to 
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view and download. If they did, we would simply issue a simple “apt-get install ipython3 
ipython3-notebook” or something like that.  
 
If you don’t want to run those notebooks from github, you can happily use the slightly older 
IPython and notebook versions that come from Raspberry Pi’s software repository.  
 
If we do want to run more recent IPython and notebook software, we need to use some “pip” 
commands in additional to the “apt-get” to get more recent software from the Python Package 
Index. The difference is that the software is managed by Python (pip), not by your operating 
system’s software manager (apt). The following commands should get everything you need. 
 

apt-get install python3-matplotlib 
apt-get install python3-scipy 
 
pip3 install ipython 
pip3 install jupyter 
pip3 install matplotlib 
pip3 install scipy 

 
After a bit  of text flying by, the job will be done. The speed will depend on your particular 
Raspberry Pi model, and your internet connection. The following shows my screen when I did 
this. 
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The Raspberry Pi normally uses an memory card, called an SD card, just like the ones you 
might use in your digital camera. They don’t have as much space as a normal computer. Issue 
the following command to clean up the software packages that were downloaded in order to 
update your Raspberry Pi. 
 

apt-get clean 
 
That’s it, job done. Restart your Raspberry Pi in case there was a particularly deep change such 
as a change to the very core of your Raspberry Pi, like a kernel update. You can restart your 
Raspberry Pi by selecting the “Shutdown …” option from the main menu at the top left, and then 
choosing “Reboot”, as shown next. 
 

 
 
After your Raspberry Pi has started up again, start IPython by issuing the following command 
from the Terminal: 
 

jupyter notebook 
 
This will automatically launch a web browser with the usual IPython main page, from where you 
can create new IPython notebooks. Jupyter is the new software for running notebooks. 
Previously you would have used the “ipython3 notebook” command, which will continue to work 
for a transition period. The following shows the main IPython starting page. 
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That’s great! So we’ve got IPython up and running on a Raspberry Pi. 
 
You could proceed as normal and create your own IPython notebooks, but we’ll demonstrate 
that the code we developed in this guide does run. We’ll get the notebooks and also the MNIST 
dataset of handwritten numbers from github. In a new browser tab go to the link: 
 

● https://github.com/makeyourownneuralnetwork/makeyourownneuralnetwork 
 
You’ll see the github project page, as shown next. Get the files by clicking “Download ZIP” at the 
top right. 
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The browser will tell you when the download has finished. Open up a new Terminal and issue 
the following command to unpack the files, and then delete the zip package to clear space. 
 

unzip Downloads/makeyourownneuralnetwork-master.zip 
rm -f Downloads/makeyourownneuralnetwork-master.zip 

 
The files will be unpacked into a directory called makeyourownneuralnetwork-master. Feel free 
to rename it to a shorter name if you like, but it isn’t necessary. 
 
The github site only contains the smaller versions of the MNIST data, because the site won’t 
allow very large files to be hosted there. To get the full set, issue the following commands in that 
same terminal to navigate to the mnist_dataset directory and then get the full training and test 
datasets in CSV format. 
 

cd makeyourownneuralnetwork-master/mnist_dataset 
wget -c http://pjreddie.com/media/files/mnist_train.csv 
wget -c http://pjreddie.com/media/files/mnist_test.csv 

 
The downloading may take some time depending on your internet connection, and the specific 
model of your Raspberry Pi.  
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You’ve now got all the IPython notebooks and MNIST data you need. Close the terminal, but not 
the other one that launched IPython. 
 
Go back to the web browser with the IPython starting page, and you’ll now see the new folder 
makeyourownneuralnetwork-master showing on the list. Click on it to go inside. You should be 
able to open any of the notebooks just as you would on any other computer. The following 
shows the notebooks in that folder. 
 

 
 
 
Making Sure Things Work 
Before we train and test a neural network, let’s first check that the various bits, like reading files 
and displaying images, are working. Let’s open the notebook called 
“part3_mnist_data_set_with_rotations.ipynb” which does these tasks. You should see the 
notebook open and ready to run as follows. 
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From the “Cell” menu select “Run All” to run all the instructions in the notebook. After a while, 
and it will take longer than a modern laptop, you should get some images of rotated numbers. 
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That shows several things worked, including loading the data from a file, importing the Python 
extension modules for working with arrays and images, and plotting graphics. 
 
Let’s now “Close and Halt” that notebook from the File menu. You should close notebooks this 
way, rather than simply closing the browser tab. 
 
 
Training And Testing A Neural Network 
Now lets try training a neural network. Open the notebook called 
“part2_neural_network_mnist_data”. That’s  the version of our program that is fairly basic and 
doesn’t do anything fancy like rotating images. Because our Raspberry Pi is much slower than a 
typical laptop, we’ll turn down some of parameters to reduce the amount of calculations needed, 
so that we can be sure the code works without wasting hours and finding that it doesn’t. 
 
I’ve reduced the number of hidden nodes to 10, and the number of epochs to 1. I’ve still used 
the full MNIST training and test datasets, not the smaller subsets we created earlier. Set it 
running with “Run All” from the “Cell” menu. And then we wait ... 
 
Normally this would take about one minute on my laptop, but this completed in about 25 
minutes. That's not too slow at all, considering this Raspberry Pi Zero costs 400 times less than 
my laptop. I was expecting it to take all night. 
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Raspberry Pi Success! 
We’ve just proven that even with a £4 or $5 Raspberry Pi Zero, you can still work fully with 
IPython notebooks and create code to train and test neural networks - it just runs a little slower! 
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